
RMWPaxos: Fault-Tolerant In-Place
Consensus Sequences

Jan Skrzypczak , Florian Schintke , and Thorsten Sch€utt

Abstract—Building consensus sequences based on distributed, fault-tolerant consensus, as used for replicated state machines,

typically requires a separate distributed state for every new consensus instance. Allocating and maintaining this state causes

significant overhead. In particular, freeing the distributed, outdated states in a fault-tolerant way is not trivial and adds further

complexity and cost to the system. In this article, we propose an extension to the single-decree Paxos protocol that can learn a

sequence of consensus decisions ‘in-place’, i.e., with a single set of distributed states. Our protocol does not require dynamic log

structures and hence has no need for distributed log pruning, snapshotting, compaction, or dynamic resource allocation. The protocol

builds a fault-tolerant atomic register that supports arbitrary read-modify-write operations. We use the concept of consistent quorums

to detect whether the previous consensus still needs to be consolidated or is already finished so that the next consensus value can be

safely proposed. Reading a consolidated consensus is done without state modifications and is thereby free of concurrency control and

demand for serialisation. A proposer that is not interrupted reaches agreement on consecutive consensus decisions within a single

message round-trip per decision by preparing the acceptors eagerly with the previous request.

Index Terms—Consensus, Paxos, atomic register, consistent quorum, fault-tolerance, data management

Ç

1 INTRODUCTION

STATE machine replication [1] is a common technique for
implementing distributed, fault-tolerant services. Com-

monly, replicated state machine (RSM) implementations are
centred around the use of a consensus protocol, as replicas
must sequentially apply the same commands in the same
order to prevent divergence.

Existing consensus protocols such as Paxos [2], [3],
Raft [4], or variations thereof [5], [6], [7] that can be used to
build an RSM are based on the idea of a command log. Once
a replica learns one or multiple commands by consensus, it
appends them to its persistent local command log. Several
practical systems [8], [9], [10] follow this general approach.

However, the implementation of such a command log
incurs additional challenges such as log truncation, snap-
shotting, and log recovery. In case of Paxos, these problems
have to be addressed separately on top of the consensus
algorithm. This is a challenging and error-prone task, as
noted by Chandra et al. [11]. Other consensus solutions, e.g.,
Raft, consider some of these issues as part of the core proto-
col while sacrificing the ability to make consensus decisions
without an elected leader. In either case, implementing con-
sensus sequences requires extensive state management.

A command log is worth its overhead when the com-
mands are small compared to the managed state. However,
aggregating largely independent data into a bigger man-
aged state, such as multiple key-value pairs in a key-value

store, to compensate for the log overhead is counterproduc-
tive because the log would then unnecessarily order com-
mands targeting different keys. Managing each key-value
pair separately would be ideal, but this is unpractical when
using a log due to the implied overhead and challenges.

In this paper, we present a novel approach called Read-
Modify-Write Paxos (RMWPaxos) where the state of an RSM
is managed ‘in-place’. Instead of replicating a command log
as an intermediate step, RMWPaxos replicates the latest
state directly. A new command is processed by applying it
to the current state and proposing the result as the next
value in a sequence of consensus decisions. Thereby, it is
possible to use a fixed set of state variables for all decisions,
which avoids the state management issues. At the same
time, distributed consensus can be used on a finer granular-
ity than before and it becomes trivial to use an arbitrary
number of parallel consensus instances. This allows the
fault-tolerant implementation of ubiquitous primitives like
counter, locks, or sets. In addition to existing use cases like
key-value stores, we believe that such fault-tolerant, fine-
granular RSM usage might become more and more relevant
with the rise of byte-addressable non-volatile memory and
RDMA-capable low latency interconnects.

Before presenting RMWPaxos, we introduce the notion
of a consensus sequence register, an obstruction-free multi-
writer, multi-reader register that performs any submitted
write operation at-least-once. Writes are expressed in the
form of update commands applied on an opaque object.
Instead of explicitly agreeing on a sequence of com-
mands, such register agrees on the sequence of object
states that result from the submitted update commands.
By adhering to the safety properties of consensus, reads
are guaranteed to observe the latest consistent state.
Strengthening the register to apply writes exactly-once

� The authors are with the Zuse Institute Berlin, the Department of
Distributed Algorithms, 14195 Berlin, Germany.
E-mail: {skrzypczak, schintke, schuett}@zib.de.

Manuscript received 6 Sept. 2019; revised 6 Mar. 2020; accepted 10 Mar.
2020. Date of publication 30 Mar. 2020; date of current version 15 May 2020.
(Corresponding author: Jan Skrzypczak.)
Recommended for acceptance by P. Balaji.
Digital Object Identifier no. 10.1109/TPDS.2020.2981891

2392 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 10, OCTOBER 2020

1045-9219� 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tps://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0002-5423-7121
https://orcid.org/0000-0002-5423-7121
https://orcid.org/0000-0002-5423-7121
https://orcid.org/0000-0002-5423-7121
https://orcid.org/0000-0002-5423-7121
https://orcid.org/0000-0003-4548-788X
https://orcid.org/0000-0003-4548-788X
https://orcid.org/0000-0003-4548-788X
https://orcid.org/0000-0003-4548-788X
https://orcid.org/0000-0003-4548-788X
https://orcid.org/0000-0002-8245-5687
https://orcid.org/0000-0002-8245-5687
https://orcid.org/0000-0002-8245-5687
https://orcid.org/0000-0002-8245-5687
https://orcid.org/0000-0002-8245-5687
mailto:skrzypczak@zib.de
mailto:schintke@zib.de
mailto:schuett@zib.de

results in RMWPaxos—a fault-tolerant general atomic
read-modify-write (RMW) register.

The main contributions of this paper are:

� We introduce the abstractions of a consensus sequence
register and strengthen it to provide an atomic RMW reg-
ister(Section 4). These abstractions can be used to imple-
ment RSMs. If updates are idempotent the consensus
sequence register suffices to build an RSM. Otherwise,
the atomic RMWregister is required (Section 5.6).

� We provide a new implementation of a fault-tolerant
atomic write-once register by modifying the Paxos
algorithm. In particular, we enhance Paxos by using
the concept of consistent quorums—a set of replies
containing identical answers—to reduce contention
in read-heavy workloads. Once a consistent quorum
is detected, the consensus decision is known. This
allows learning the register’s value in two message
delays and prevents concurrent reads from blocking
each other (Section 5.4).

� By further exploiting consistent quorums, we extend
the atomic write-once register to a multi-write register
that is a consensus sequence register. Here, a consistent
quorum indicates the most recent consensus decision.
This makes it possible to propose a follow-up value
in-place, i.e., without a command log or multiple
independent consensus instances (Section 5.4). If there
is only a single writer, follow-up decisions can be
made in two message delays (Section 5.8) without
electing a leader.

� The consensus sequence register applies submitted
updates from multiple writers at-least once, which is
sufficient when updates manipulate the opaque object
(or parts of it) in an idempotent way (like adding a
member to a set).We show that by using ordered links,
exactly-once semantics can be achieved to build an
atomic RMW register, called RMWPaxos (Section 5.5).

2 SYSTEM MODEL

We consider an asynchronous distributed system with pro-
cesses that communicate by message passing. Processes
work at arbitrary speed, may crash, omit messages and may
recover with their internal state intact (a recovering process
is indistinguishable from one experiencing omission fail-
ures). We do not consider Byzantine failures. A process is
correct if it does not crash or recovers from crashes in finite
time with its (possibly outdated) state intact. We assume
that every process can be identified by its process ID (PID).

In the first part of this paper, processes send messages to
each other via direct unreliable communication links. Links
may lose or delay messages indefinitely or deliver them
out-of-order. While a fair-loss property [12] is desirable to
support progress, it is not formally necessary. In Section 5.5,
we strengthen this and require reliable in-order message
delivery. Such reliable links can easily be constructed on
top of unreliable fair-loss links [12]. In practice, TCP is often
used as reliable communication protocol [6].

3 THE CONSENSUS PROBLEM

The consensus problem describes the agreement of sev-
eral processes on a common value in a distributed

system. We differentiate between proposer processes
that propose values and learner processes that must agree
on a single proposed value. In practice, a process can
also implement both roles. A correct solution to the con-
sensus problem must satisfy the following safety
properties [13]:

C-Nontriviality. Any learned value must have been
proposed.

C-Stability. A learner can learn at most one value.
C-Consistency. Two different learners cannot learn different

values.
In addition to safety, the liveness property requires that

some value is eventually learned if a sufficient number of
processes are correct. However, guaranteeing liveness while
satisfying the safety properties of consensus is impossible in
an asynchronous system with one faulty process [14].

4 PROBLEM STATEMENT

We define a fault-tolerant register that is replicated on N
processes and tolerates the crashes of a minority of replicas.
The register holds a value v. Its initial value is v ¼ ?. Any
number of clients can read or modify v by submitting com-
mands to any replica. The primary motivation of our work is
to provide a register abstraction that allows the implemen-
tation of a replicated state machine. For that, we start with a
simpler abstraction, which we then extend.

Write-Once Atomic Register. Commands submitted to the
register either write a value or read its current value. Read
commands return either ? or a value vw that has been sub-
mitted by some write. The register is linearisable [15], i.e.,
all commands appear to take effect instantaneously at
some time between their submission and the correspond-
ing completion response from the register. Thus, once a
read returns vw, then all subsequent reads must return vw
as well. However, an arbitrary number of reads is allowed
to return ? beforehand if no value was written yet. This is
achieved by satisfying the safety properties stated in
Section 3.

Consensus Sequence Register. We extend the write-once
atomic register by allowing multiple clients to submit update
commands that change the register’s value. We say that a
value v is the result of update sequence sðvÞ ¼ u1; . . . ; un, iff v
equals un � . . . � u1 applied on ? (� being function composi-
tion). The register ensures that reads return values with
growing update sequences. For that, we extend the safety
properties of consensus for consensus sequences.

CS-Nontriviality. Any read value is the result of applying a
sequence of submitted updates.

CS-Stability. For any two subsequent reads returning values
v1 and v2, sðv1Þ is a prefix of sðv2Þ.

CS-Consistency. For any two reads (including concurrent
ones) returning values v1 and v2, sðv1Þ is a prefix of
sðv2Þ or vice versa.

The prefix relation on update sequences is reflexive.
Every update sequence is its own prefix. Update sequences
are merely a tool to argue about the register’s properties.
The actual register implementation does not explicitly store
them. It simply keeps the value resulting from the latest
update.

SKRZYPCZAK ETAL.: RMWPAXOS: FAULT-TOLERANT IN-PLACE CONSENSUS SEQUENCES 2393

For updates, we also require the following properties:

CS-Update-Visibility. Any completed update is included at
least once in the update sequence of all values returned
by subsequent reads.

CS-Update-Stability. For any two subsequent updates u1 and
u2, u1 appears before u2 in the update sequence of any
returned value that includes both u1 and u2.

Atomic Read-Modify-Write Register. To satisfy linearisabil-
ity, we strengthen CS-Update-Visibility by requiring that
every completed update is included exactly-once in the
update sequence of all values returned by subsequent reads.
This results in a general atomic read-modify-write (RMW)
register [16]. Unlike specialised RMW registers that can per-
form a single type of RMW operation like test-and-set or
fetch-and-add, this register can atomically execute arbitrary
computations on its previous value.

As liveness is impossible in our systemmodel,wait-freedom
[17] cannot be provided.However,we require obstruction-free-
domness [18] for a valid implementation of the registers. If
wait-freedom is still required, an obstruction-free implementa-
tion can be extended by a leader oracle assuming a W failure
detector [19].

5 IN-PLACE CONSENSUS SEQUENCE

In this section, we present our protocols that satisfy the prop-
erties of the register abstractions introduced in Section 4. The
write-once atomic register makes use of the principles of
Paxos consensus [2], [3] and adopts the concept of consistent
quorums [20]. These concepts are then extended for the
more powerful abstractions to allow a sequence of multiple
consensus decisions ‘in-place’, i.e., on the same set of state
variables by overwriting the previous consensus. A more
detailed, albeit more informal description of a previous ver-
sion is given by Skrzypczak [21]. We discuss how to build an
RSMwith our register in Section 5.6.

5.1 Paxos Overview

Our approach is derived from the Paxos protocol. In addi-
tion to proposers and learners, Paxos introduces the role of
acceptor processes that coordinate concurrent proposals by
voting on them. If a sufficient number of acceptors have
voted for the same proposal, the proposal’s value can be
learned by a learner. Such a set of acceptors is called a quo-
rum. A proposal is chosen if it has acquired a quorum of
votes. The value of a chosen proposal is a chosen value. The
size of quorums depends on the application and Paxos vari-
ant in use [7], [22], [23]. However, it is generally required
that any two quorums have a non-empty intersection to pre-
vent two disjoint quorums that voted for different values (as
this would allow two learners to learn different values).

For Paxos to learn a value, a quorum of acceptors, a
learner, and the proposer that has proposed the value, must
be correct during the execution of the protocol. For simplic-
ity, we consider any majority of acceptors to be a quorum.
Thus, a system with 2F þ 1 acceptors can tolerate at most F
acceptor failures.

If enough processes are correct, then Paxos is obstruc-
tion-free [18], i.e., an isolated proposer without concurrent
access succeeds in a finite number of steps. However,

concurrent proposals can invalidate each other repeatedly,
thereby preventing learners from learning any value. This
scenario is known as duelling proposers.

5.2 Consistent Quorums

Similar to Paxos, our approach structures the communica-
tion between proposers and acceptors into phases. In each
phase, a proposer sends a message to all acceptors and waits
for a minimal quorum of replies. The seen quorum is consis-
tent if the indicated state by the acceptors in the quorum is
identical, otherwise, it is inconsistent (see Fig. 1). Not wait-
ing for more replies than necessary ensures tolerating a
minority of failed acceptors without delaying progress.

If a proposer p observes an inconsistent quorum, it can-
not infer which of the seen values is or will be chosen and
learned. For example, if p receives the quorum depicted in
the right part of Fig. 1, it cannot decide if � or � exists in a
majority since it has no information about the state of
acceptors 1–3. In contrast, it is trivial for p to deduce the cho-
sen value with a consistent quorum (Fig. 1 left). Existing
Paxos variants do not distinguish consistent or inconsistent
quorums. As we will see, detecting a consistent quorum
allows the proposer to terminate the protocol early in the
single-decree case. Furthermore, the consistent state can be
used as the basis for follow-up proposals if multiple consen-
sus decisions are needed in sequence.

5.3 Paxos Write-Once Atomic Register

In the following, we present our modifications to the original
single-decree Paxos protocol for implementing a write-once
atomic register. Its pseudocode is depicted in Algorithm 1.
We note that no separate learner role exists, as each proposer
also implements the functionality of a learner in our imple-
mentation. To make the algorithm easier to understand, we
provide an execution example in Fig. 2. We discuss differ-
ences to Paxos in Section 5.3.2. Before proceeding to the
algorithm description, we first cover some general concepts
and conventions.

Rounds. Concurrent proposals are ordered by so-called
rounds (analogue to ‘proposals numbered n’ in [2] and
‘ballot numbers’ in [3]). A round is a tuple ðn; idÞ, where n is
a non-negative integer and id some globally unique identi-
fier. Rounds are partially ordered. r1 < r2 iff r1:n < r2:n.
Furthermore, r1 ¼ r2 iff r1:n ¼ r2:n ^ r1:id ¼ r2:id. Newer
proposals are indicated by higher rounds. Rounds with the
same n but different id cannot be ordered.

Acceptor State. Acceptors act as the distributed, fault-
tolerant storage. Each acceptor manages three values (cf.
Algorithm 1, line 24): (1) the highest round rack it has
acknowledged, (2) the last value val it has voted for, and (3)
round rvoted in which the proposal including the value was
proposed in. By acknowledging a round, acceptors promise
not to vote for lower-numbered proposals in the future.

Fig. 1. Consistent/inconsistent quorum with 7 acceptors. A quorum view
Q for a system using n acceptors consists of jQj ¼ bn2c þ 1 elements
(here 4).

2394 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 10, OCTOBER 2020

Pseudocode Conventions. For brevity’s sake, we use the fol-
lowing conventions when handling sets of reply messages:
Let a process receive a set of reply messages S. Each mes-
sage in S is an n-tuple denoted as ht; e1; . . . ; en�1i. We make
use of pattern matching techniques commonly found in
functional programming. The type t of the message is
matched to ensure it has the correct format. Its payload is
stored in tuple elements e1 to en�1. Since messages in S may
hold different values in the same tuple element, we define
the following functions: consSðeiÞ returns the value of ei if it
is equal for all messages in S, or false otherwise; maxSðeiÞ
returns the largest value of ei; maxSðei; ejÞ returns the value
of ej from the message with the largest value of ei.

We furthermore assume that processes can keep track of
multiple concurrent requests and know to which outstand-
ing request a received reply belongs.

5.3.1 Protocol Description

The protocol has two phases. In the first phase, a pro-
poser checks for concurrently proposed values and pre-
pares acceptors to deny outdated proposals. In the
second phase, a proposer proposes either its own or a
value seen in the first phase. To eventually learn a value,
both phases must be passed without interruption by
other proposers.

The protocol begins with proposer p receiving a request
from a client (line 1). The request is either a write that tries
to set the register to a value val, or a read that returns the
register’s current value (here, val ¼ ?). The request of the

client is handled asynchronously. The client will be notified
by aDONE message once the request has been processed.

Proposer p starts the first phase by choosing a round ID
and sending it in a PREPARE message along with the
request type to all acceptors (lines 2–4). Any acceptor A that
receives a write request from p acknowledges this by incre-
menting rack and updating its ID. Thereby, A promises p to
not vote for any lower-numbered proposals in the future
(lines 28–29). If A received a read request, then it does not
increment rack as p does not intend to modify the register’s
value by submitting a proposal. Letting the state untouched
when processing reads reduces their interference with other
ongoing requests and is not part of canonical Paxos.

After processing the request, A replies with its current
state and indicates if its rack round was incremented
(lines 29, 32). The second phase begins as soon as p has
received replies from a quorum Q of acceptors. Depending
on the replies, p proceeds in one of the following ways:

1) If all acceptors inQ have voted for the same proposal
(same rvoted), then p knows that consensus was
already reached and that the proposal’s value is cho-
sen. Thereby, p has learned the register’s value and
returns it to the client. Similarly, p can be certain that
consensus was not reached if no acceptor in Q has
voted for any proposal yet. Thus, it can return an
empty value if it is processing a read (lines 6–8).

2) If all acceptors in Q incremented their rounds and
responded with a consistent rack round, then p can
propose a value. If at least one of the acceptors has

Fig. 2. Example message exchange of a write, starting with inconsistent acceptor states. Time moves from left to right. Acceptor states are shown as
(rack, val, rvoted). Round IDs are omitted for simplicity.

SKRZYPCZAK ETAL.: RMWPAXOS: FAULT-TOLERANT IN-PLACE CONSENSUS SEQUENCES 2395

voted for a past proposal, p receives an inconsistent
quorum as shown in Fig. 1. It cannot decide if the
proposal’s value is already established or not. In
order to not violate safety, p must propose the value
seen in the highest round. If no acceptor has voted
for any proposal yet, p can choose its own value.
The proposal is sent in a VOTE message to all
acceptors using the acknowledged round rack
(lines 9–16).

3) In all other cases, p has to retry the first phase. This
happens if acceptors are currently in an inconsistent
state, e.g., because of an ongoing proposal, lost mes-
sages, or a crashed proposer. As p has already
knowledge about the current state of the acceptors, it
can choose an explicit round number that is higher
than all rounds observed so far, which is then
included in PAXOS PREP messages (lines 17–20).
An example of this is depicted in Fig. 2.

Each acceptor that has received a proposal by p (case (2)),
votes for the proposal if they have not given a promise for a
higher round during a (concurrent) phase 1 and notifies p of
its vote (lines 40–43). Otherwise, the acceptor ignores the
proposal or may optionally notify p that its proposal is out-
dated (not shown). Once p has received a quorum of posi-
tive replies, it knows that its proposed value is chosen and
notifies the client on the established consensus (line 22).
This concludes the protocol.

5.3.2 Comparison to Paxos

Our write-once atomic register is based on the same mecha-
nism for safety as Paxos, but differs from the canonical
single-decree Paxos [2] in several aspects:

Consistent Quorums. In canonical Paxos, all proposals
must complete both phases of the algorithm even if a value
was already chosen. This effectively serialises concurrent
reads and causes unnecessary state changes in acceptors
(their round numbers). Our protocol, instead, terminates
early and returns the result after the first phase, when a
proposer observes a consistent quorum. This prevents (1)
state modifications by reads, (2) allows termination in two
message delays and (3) prevents live-locks caused by duel-
ling proposers once all correct acceptors have agreed on a
proposal. This is possible because once a proposal with
value v is chosen, any proposal made in a higher round
will contain v (see Section 5.3.3). As the value of the regis-
ter cannot change any more, it is needless to execute the
second phase.

Distinguishing Between Reads and Writes. In canonical
Paxos, to read the state of a consensus it is necessary to pro-
pose a value for consensus when no proposal was seen yet,
i.e., actually performing a write, which is unintended. For a
read, a client can either (1) initiate the protocol as a proposer
and—in accordance to the protocol—has to propose a
(dummy) value itself when no value was chosen yet or (2) it
can ask a learner. However, a learner that has not learned a
value also has to propose a (dummy) value to ensure its
answer is up-to-date. As this dummy valuemight bewritten,
the read semantic is violated. Drawing from the concept of
consistent quorums, we support reads without the risk to
change the register’s value and are also able to reliably

recognise an empty register. A read acts like a write only
when an ongoing, partially accepted proposal is seen that
may need help to fully establish. However, no value will be
proposed that was not already proposed by awrite.

Incremental Round Number Negotiation. Proposers have to
choose a high enough round number for their proposal to
succeed. Canonically, a proposer chooses the round num-
ber itself. If it is too low, the proposer’s attempt fails and it
has to try again with a higher round. This works well
when a leader makes the proposals, as it knows the previ-
ous used round number. Without a leader, however, the
first guess of a proposer is likely to fail, costing a round
trip even without concurrent access. Instead, we let the
acceptors increment their round on an initial round-less
attempt and retrieve the ‘assigned’ round from the replies
when they form a consistent quorum. Otherwise, we calcu-
late a higher round number from the replies and retry like
in Paxos.

Using incremental rounds is optional. If a proposer can
determine a round number that likely succeeds, it can also
start with that without violating the protocol’s safety.

Single Learner Per Request. In canonical Paxos, acceptors
send their VOTED messages to a set of learner processes,
which learn the value once they have received a quorum of
votes for a proposal. Therefore, the number of messages
sent is the product of the number of acceptors and the num-
ber of learners. In our approach, the proposer that has
received a request acts as its sole learner. Thus, every accep-
tor sends only a single VOTEDmessage.

5.3.3 Sketched Proof of Safety

In this section, we provide a proof sketch for our Paxos
atomic write-once register. We show that the safety require-
ments of Section 3, as well as linearisability are satisfied.
Since our protocol has a close resemblance to canonical
Paxos, we can use analogue arguments and invariants as
described by Lamport [2] to prove safety.

Proposition 1. If a proposal p was learned in round r, then there
exists a quorum of acceptors Q such that any acceptor in Q has
given a vote for p (i.e., the proposal must have been chosen).

Proof Sketch. For any two acceptors a1, a2, which have
voted for proposal p1 and p2 respectively in the same
round r, it holds that p1 ¼ p2 because rounds are
uniquely identified by their ID. To learn a value, a pro-
poser must either (a) receive a consistent quorum of
rvoted rounds from acceptors at the beginning of phase
2, or (b) receive a quorum of VOTED messages. For (a)
to be possible, a quorum with r ¼ rvoted must exist. For
(b), a quorum of acceptors must have voted for the
proposer’s proposal. Since a proposal is issued for a
specific round, all replying acceptors have voted for a
proposal in the same round. tu
C-Nontriviality is trivial to proof using proposition 1

since acceptors can only vote for any value that was previ-
ously proposed by a proposer. C-Stability and C-Consis-
tency hold by satisfying the following invariant:

Proposition 2. If a proposal with value vc and round rc is cho-
sen, then every proposal issued with round r > rc by any pro-
poser has also value vc.

2396 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 10, OCTOBER 2020

Proof Sketch. By Proposition 1, there is a quorum Q that
has voted for vc in rc. Since any two quorums have a non-
empty intersection, any proposer p will receive at least
one ACK reply of an acceptor included in Q. Further-
more, no acceptor has voted for a proposal valued v0 with
v0 6¼ v in round r0 with r0 > rc. This would imply the exis-
tence of a quorum Q0 for which every acceptor has
acknowledged round r0 before voting for the proposal in
round rc. This contradicts the existence of Q since accept-
ors cannot vote for a lower round than they have previ-
ously acknowledged. Therefore, the proposal with the
highest round that p receives has value vc. Thus, p issues
a proposal with vc. tu
Proposition 2 assumes that rounds can be totally ordered.

However, they are only partially ordered due to our modi-
fied negotiation mechanism. Thus, we must show:

Proposition 3. For any round number n, at most one proposal is
issued.

Proof Sketch. A proposer can only issue a proposal in a
round with round number n once it has received an
acknowledgement from a quorum of acceptors with con-
sistent and increased rack with round number n. Any
acceptor can send at most one ACK message in which it
has also increased its rack to have round number n. Thus,
at most one proposer can receive such a quorum to make
a proposal. If incremental rounds are not used, proposers
have to choose their own unique round numbers (cf.
canonical Paxos). tu

Proposition 4. The Paxos-based write-once atomic register is
linearisable.

Proof Sketch. Proposition 1 and 2 show that all writes
return value vc of the first chosen proposal as their result.
Reads differ from writes in that they can return the initial
value ?, but only if no value is chosen since a consistent
quorum is required. Since a proposer must have learned
a value before any write (or read not returning ?) can
complete, any subsequent read will return vc. tu

5.4 Consensus Sequence Register

The typical approach to learn a sequence of consensus
values is to chain multiple consensus instances on sepa-
rate resources [2], [11]. In contrast, we aim to operate on
the same set of resources. For that, we extend our fault-
tolerant write-once atomic register to support a sequence
of updates.

The interface of our extended register changes slightly.
Instead of including a specific value val (see Algorithm 1,
line 1) in a write request, clients include an update com-
mand cmd, which transforms the current value of the regis-
ter to the next value. The required changes of the proposer’s
second phase are highlighted in Algorithm 2. The behaviour
of the acceptors remains unchanged.

We introduced the concept of consistent quorums in our
write-once register to detect if the current value is chosen or
not (see Section 5.3). We can use this information to handle
a sequence of updates: A proposer is allowed to propose a
new value if the current value is chosen. Otherwise, it must
complete the unfinished consensus by proposing an existing

value. We refer to the former as a successor proposal and to
the latter as awrite-through proposal.

Lines 5–13 shows how a proposer submits a successor
proposal. It first applies the update command cmd it has
received from the client on the current established value. If
the update is a valid operation, the proposer can send the
result to all acceptors. Sometimes, the update reduces to a
no-op as it cannot be applied to the current value, for
instance, if it includes compare-and-swap semantics or
requires a write lock that is missing. The proposer does not
have to complete the second phase as the update has no
effect and can therefore immediately return to the client.

The submission of a write-through proposal (line 14–23)
is equivalent to proposing a value using our write-once reg-
ister. The proposer proposes the value seen in the highest
round. Afterwards, it must re-execute the protocol to pro-
cess the received write request as a successor proposal.

Safety. Intuitively, the register behaves as if executing
multiple single-decree Paxos instances in sequence, with
each instance using the previously chosen proposal and
its round as initial state. Updates are applied on top of a
chosen value, which is ensured by observing a consistent
quorum. Thus, for any two values v1 and v2 that are cho-
sen in this order, sðv1Þ is the prefix of sðv2Þ. By an argu-
ment analogous to Proposition 4, reads always return
the latest chosen value. Thus, CS-Stability and CS-Con-
sistency are satisfied.

An update u can only complete if a value that includes u
in its update sequence is chosen, as a quorum of VOTED
messages is required. As only chosen values are returned,
CS-Update-Visibility is guaranteed. No proposer applies u
on any chosen value after u is completed. Thus, every subse-
quent update appears after the last occurrence of u in sðvÞ of
a subsequently chosen value v (CS-Update-Stability).

5.5 RMWPaxos: Atomic Read-Modify-Write Register

The consensus sequence register presented in the previous
section is not atomic, as it is possible that an update

SKRZYPCZAK ETAL.: RMWPAXOS: FAULT-TOLERANT IN-PLACE CONSENSUS SEQUENCES 2397

command submitted by a client is proposed and applied
multiple times by the same proposer. For example, consider
the following scenario: Proposer p1 completes phase 1 and
submits a successor proposal. However, it only gets a
minority of acceptor votes, as some concurrent proposer p2
already increased the rack rounds of a quorum of acceptors.
In this case, p2 may observe an inconsistent quorum and
therefore executes a write-through of p1’s proposal. If it suc-
ceeds, then p1’s proposal was effectively accepted because
the value proposed by p1 is chosen. However, p1 does not
know this and retries, potentially executing the command
twice.

For atomicity, we must ensure that a proposer does not
re-submit a successor proposal once the proposed value of a
previous attempt is chosen. For that, we assume reliable in-
order message delivery (see Section 2). This can be provided
by reliable communication protocols such as TCP. Note,
that messages can be lost if a TCP connection fails and is
later re-established during the processing of a request. To
solve this issue, processes can be treated as crashed until
the request is completed. Now, the protocol can be modified
as follows (cf. Algorithm 3):

For every write request that proposer p receives, it gener-
ates a request ID (ReqID) consisting of its PID and some
locally unique value (line 2). Every acceptor holds the
ReqID of the last proposal it voted for and includes it in all
phase 1 ACK messages it sends.

If a proposer submits a successor proposal, it includes its
own ReqID as reqcur and the ReqID received in phase 1 as
reqprev in its VOTE messages (line 14). Here, reqprev indicates
the last successor proposal that was chosen by the register.
If the proposer submits a write-through, it includes the

ReqID received in phase 1 as reqcur. Since the last chosen
proposal is now known, reqprev remains empty (line 20).

Each time an acceptor votes for a new proposal, it updates
req to reqcur (line 53). If reqprev is non-empty, it sends a
LEARNED message to the respective proposer (line 52).
Receiving a LEARNED message guarantees that the corre-
sponding proposal was chosen. A proposer that retries a
request with some ReqID can stop the protocol if (1) it
observes a consistent quorum with this ReqID (line 8), or (2)
it receives a LEARNED message with it (line 30). In both
cases, it notifies the client that its write request succeeded.

We note that it is easy to avoid sending values in
LEARNED and VOTED messages back to the proposer
if the proposer keeps track of its proposed values locally.
By extension, it is not necessary to include valprev in
VOTE messages. For simplicity, this is not shown in
Algorithm 3.

Safety. Assume a write request with ReqID r and update
command u is processed by proposer p. Assume that p’s
attempt failed, but its proposed value is chosen (e.g., due to a
write-through). Proposer p does not propose u as the direct
successor of its own proposed value because it would
observe a consistent quorum with ReqID r beforehand.
Thus, assume that some successor value proposed by a dif-
ferent proposer is chosen. This means that LEARNED mes-
sages with ReqID r are sent to p by some quorum Q. Let p
retry its request. In order to apply u and propose a new
value, p must observe a consistent quorum Q0. As
Q \Q0 6¼ ? and reliable ordered links are used, p receives a
LEARNED message before receiving a consistent quorum.
Thus, p does not apply u on a value whose update sequence
already includes u.

2398 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 10, OCTOBER 2020

5.6 State Machine Replication

By using RMWPaxos, we can build a fault-tolerant repli-
cated state machine using a fixed set of storage resources.
The state is stored in the register and state changes are done
by the corresponding update commands. If updates are
idempotent, the consensus sequence register suffices. One
way to achieve this is by using transactional semantics such
as compare-and-swap.

In log-based approaches like Multi-Paxos [2, Sect. 3],
acceptors accept commands, i.e., state transitions of the state
machine. In our approach, in contrast, the acceptors accept
the complete state. This has several implications. First, a
dedicated set of learner processes is no longer required.
Any process that wishes to learn the current state of the
RSM can do so by executing a read. This process then acts
as the sole learner in the context of this command. In con-
trast, Multi-Paxos requires multiple learners in order to
have access to the state in a fault-tolerant manner. Since
every learner must also learn every command to make prog-
ress, n �m VOTED messages are required in a setup with n
acceptors and m learners. Our approach requires only n
VOTEDmessages.

Second, by keeping the full state in acceptors, a sequence
of commands can now be applied to the RSM in-place using
the same set of acceptors. Thus, it is not necessary to allocate
and free storage resources. This simplifies the protocol’s
complexity and its implementation. Due to the absence of
any state management overhead, it is trivial to use arbitrary
many RMWPaxos instances in parallel, allowing a more
fine-granular use of the RSM paradigm. This is especially
useful if the state can be split into many independent parti-
tions, as it is often the case in key-value structured data.

5.7 Liveness

Reads and writes are obstruction-free [18] as long as a quo-
rum of acceptors and the proposer receiving the requests
are correct. Wait- or lock-freedom [17] cannot be guaranteed
without further assumptions, as postulated by the FLP
result [14]. A common assumption is the existence of a sta-
ble leader to which all requests are forwarded. The leader
then acts as the sole proposer of the system. To handle
leader failures, aW failure detector [19] is necessary.

5.8 Optimisations

There are several ways to optimise the basic protocol.
Fast Writes. Handling writes requires a proposer to com-

plete both phases of the protocol. That means that at least
four message delays are needed. By using a mechanism sim-
ilar to Multi-Paxos [2], the first phase can be skipped by a
proposer that processes multiple writes uninterrupted by
other proposers. We refer to such writes as fast writes.

The modification is simple. Whenever an acceptor votes
for a proposal made in round r, it sets rack to ðr:nþ 1; r:idÞ
(cf. Algorithm 1 line 40). By doing so, it effectively behaves
as if receiving a PREPARE message from the same pro-
poser immediately after voting. Therefore, this proposer
can skip the first phase when making its next proposal.

This optimisation is useful for single-writer settings or
scenarios in which a proposer must execute multiple writes
within a short period. As no locking or lease mechanism is

used, an ongoing fast write sequence can be interrupted at
any time by other proposers. Thus, we avoid the costs and
unavailability associated with a leader and its (re-)election.

Fewer Concurrency Conflicts Caused by Reads. If a read
observes a consistent quorum after the first phase, it returns
a result without interfering with any concurrent request
because acceptors do not modify their rounds. If a read
observes an inconsistent quorum, a write-through is trig-
gered, which can cause interference. Write-throughs cannot
be prevented completely, as a crashing proposer can cause
a proposal to be only partially established. Therefore, we
adopt the idea of contention management [18], [24] to unre-
liably detect a crashed writer:

When a reading proposer observes an inconsistent quo-
rum, it stores the highest round it has received. Then, it
retries phase 1 without an explicit round. If the quorum is
again inconsistent, it checks whether progress was made by
comparing the received rounds with the rounds from the
previous iteration. If they remain unchanged, then it is pos-
sible that the write crashed and a write-through must be
triggered. Otherwise, the reader can try again. The proposer
can keep collecting replies from its previous attempts as it is
possible to reach a consistent quorum with delayed replies.

To prevent a read from starving due to a continuous
stream of writes, we define an upper limit on the number of
retry attempts. Its effects are evaluated in Section 7.

Batching. Batching is a commonly used engineering
technique to reduce bandwidth and contention by bun-
dling multiple commands in a single request at the cost
of higher response latency. Every proposer manages sepa-
rate batches for read and update commands. A batch is
processed at regular intervals by starting the protocol.
For write batches, all update commands of the batch are
applied in-order on the old value before proposing the
resulting new value. When processing a read batch, the
read value is simply returned to all clients. The size of all
messages remains constant, independent of the number
of batched commands. This shifts the performance bottle-
neck from internal communication to the processing
speed of the respective proposers.

6 ANALYSIS

In this section, we focus on additional aspects that might be
beneficial for practical deployments. An experimental eval-
uation can be found in Section 7.

Compared to canonical Paxos and Multi-Paxos our regis-
ters require a similar number of 2–4 message delays per
consensus in the conflict-free case. Two additional message
delays are needed by canonical Paxos when a valid round
number is not known yet and by our registers when a read
using incremental rounds has to help to establish a consen-
sus. Reading a stable, established consensus with our
approach only needs 2 message delays, no concurrency con-
trol and does not cause acceptor state changes, which is
costly if their state must be persisted. Furthermore, our
approach works on a fixed set of resources which makes
dynamic resource allocation, pruning, and deallocation
needless. This makes our register applicable on a more fine-
granular level than other consensus-based approaches that
rely on a command log.

SKRZYPCZAK ETAL.: RMWPAXOS: FAULT-TOLERANT IN-PLACE CONSENSUS SEQUENCES 2399

Relying on consistent quorums does not harm robustness
nor performance. Like in canonical Paxos, a single replica
with the highest round seen in an inconsistent quorum will
suffice to propose its value. But on a consistent quorum, we
can (a) terminate a read operation early by not needing to
write and re-learn the consensus and (b) can base the next
consensus in our consensus sequence on that.

Not requiring an explicit leader provides more continu-
ous availability. In our approach, any proposer can issue
requests to the register at any time. When a proposer fails,
other proposers can immediately proceed and do not need
to wait for or elect a new leader. Still, a proposer submitting
many requests in sequence without any interference of
other proposers can perform each write to the register in
just two message delays (no batching), like a leader.

7 EXPERIMENTAL EVALUATION

We implemented RMWPaxos in Scalaris [25], a distributed
key-value store written in Erlang. The correctness of our
implementation was tested using a protocol scheduler [26],
which forces random interleavings of incoming messages.
We detected no safety violations using this approach.

The primary focus of the evaluation is to show the scalabil-
ity of our approach under different workloads, as absolute
performance is highly dependent on the available hardware
environment and engineering efforts that are independent of
the actual approach. Our register aims to be a general primi-
tive. Thus, we consider use-case dependent techniques that
optimise network traffic and concurrent access, e.g., request
batching, being out-of-scope of this paper.

All benchmarks were performed on a cluster with two
Intel Xeon E5-2670 v3, 2.40 GHz per node. All nodes are
fully-connected with 10 Gbit/s links. Each cluster node
hosts a single replica, which is a Scalaris node that encapsu-
lates one proposer and one acceptor process. Load genera-
tion was performed on up to two separate cluster nodes
using the benchmarking tool Basho Bench [27], which was
modified to enable workloads with heterogeneous client
processes. In all experiments, Basho Bench clients were dis-
tributed evenly across the load generating nodes. All clients
submit their requests sequentially, i.e., each client waits for
a response before issuing the next request.

All shown measurements ran for 10 minutes with request
data aggregation in one-second intervals. We show the
mean with 99 percent confidence intervals (CI) and 99th
percentile latencies. In almost all cases, the CI lies within
two percent of the reported median.

7.1 Comparison With Raft and Multi-Paxos

First, we compare the performance of RMWPaxos with
open-source implementations of Multi-Paxos [2], [28] and
Raft [4], [29], two commonly used state-of-the-art protocols.
To minimise the performance impact of the IO subsystem,
we configured both approaches to write their data to RAM
disk. In RMWPaxos, data is stored by using Erlang’s build-
in term storage [30]. All approaches use three replicas. As
both Multi-Paxos and Raft make use of a leader, we simu-
late a leader by randomly selecting one node to which all
requests are forwarded to in the case of RMWPaxos. As any

leader election protocol can be implemented on top of
RMWPaxos, we consider leader election to be out-of-scope.

We measured the throughput of all approaches in scenar-
ios: First, a counter that is accessed by an increasing number
of clients (Fig. 3a). Second, a binary value of increasing size
accessed by a fixed number of clients (Fig. 3b).

All three approaches handle requests in a single round-
trip between leader and a quorum of following nodes.
Thus, the observed differences can largely be attributed to
their different strategies in handling the data locally. Due to
the absence of any state management, RMWPaxos consis-
tently outperforms both the Raft and Multi-Paxos imple-
mentation for small state sizes. For the latter two, overhead
caused by reading/writing data to the local file system
increases request latency, which in turn negatively affects
throughput. In addition, the Multi-Paxos and Raft imple-
mentations use mechanisms such as checksum validation to
protect against disk corruption.

We note that Multi-Paxos has a higher throughput than
RMWPaxos in read-heavy workloads with few clients. We
attribute this to our method of load generation. As clients
submit requests sequentially, both approaches do not reach
full capacity. Here, we observe a slightly lower mean read
latency for Multi-Paxos (0.6ms vs 0.8ms), which is likely
caused by implementation-specific overhead.

For values smaller or equals to 4kB, all approaches exhibit
nearly constant read performance. However, the throughput
of RMWPaxos decreases for larger values. This is because
the full value is always transferred from a quorum of nodes
to the proposer when executing a read. This causes high
communication costs in settings where individual objects
have moderate or large size. However, analysis of existing
large-scale key-value stores have shown a heavy skew
towards small values of less than a kilobyte [31], [32].

In contrast to RMWPaxos, the Raft and Multi-Paxos
implementations include optimisations to keep data transfer
costs between nodes constant when executing a read if the
leader is stable. In Raft’s case, an empty heartbeat log entry
must be appended to the command logs to ensure that the
data of the leader is up-to-date. This introduces a slight
overhead when reading entries.

7.2 Leaderless Performance

RMWPaxos is derived from Paxos. Thus, it does not depend
on the existence of a leader to satisfy the safety properties of
consensus, in contrast to protocols like Raft, which do not
work without a single leader. However, a leader is beneficial
for progress because it prevents the duelling proposer prob-
lem. For RMWPaxos, we can alleviate the need for a leader
as it is trivial to deploy an arbitrary number of concurrent
RMWPaxos instances. This way, load on a single instance
can be greatly reduced, depending on theworkload.

We examined both single-writer (Fig. 4) and multi-writer
(Fig. 5) workloads, as previous work in the design of data
structures has shown that supporting concurrent modifica-
tions often inhibits their performance [24]. To better illus-
trate the effects of concurrent requests, we increased the
system size to five replicas (acceptors).

Single-Writer. To evaluate single-writer performance, we
used one writing client and up to 1024 concurrent readers

2400 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 10, OCTOBER 2020

with a different number of read retries (parameter X). The
results are depicted in Fig. 4. We observed that even a single
retry (X=1) improves both read and write throughput
greatly compared to disabling this optimization (X=0). In
the latter case, the register was overloaded due to concur-
rent write-through attempts by the readers if more than 64
readers where used, dropping throughput to 0 at some
times. As these results are not stable, they are not shown in
Fig. 4a. Choosing a value for X larger than 2 has only a
minor impact on the read throughput. As acceptors must
handle more messages with an increasing number of
clients, their response latency increases. This leads to a con-
sistent decline of the write throughput, as shown in Fig. 4b.
Since the load is distributed more evenly across all replicas,
the maximum observed throughput increased by roughly
70 percent compared to our leader-based experiments (cf.
Fig. 3a), even though the system size increased from 3 to
5 replicas.

Fig. 4c shows the latency impact of using read retries.
Read latency only increases by approx. 0.5 ms in the pres-
ence of a concurrent writer. This may contradict the

expectation that some reads require multiple round trips as
they can observe an inconsistent quorum initially. However,
proposers can continue collecting replies from the initial
attempt and return a result once they observe a consistent
quorum. As there is only a single writer, such a quorum
always exists, at the latest after receiving a reply from every
acceptor. This also means that reads trigger no write-
throughs. Thus, both reads and writes succeed after a single
round trip in a single writer setup as long as no acceptor
fails. Note that writes exhibit a slightly lower latency as
they always succeed with a quorum of replies, wheres reads
must potentially wait for all replies in some cases.

Multi-Writer, Single-Register. All clients sent a uniform
mix of read and write requests for the evaluation of multiple
writers. Fig. 5a compares the throughput of a read-heavy
workload (5 percent writes) with a write-heavy workload
(50 percent writes) [33]. Performance degradation caused
by duelling proposers can be observed for both workloads.
The throughput of the read-heavy workload scales up until
four concurrent clients. Afterwards, clients begin to invali-
date each other’s proposals repeatedly. In write-heavy

Fig. 4. Single-writer performance of RMWPaxos with five replicas.

Fig. 3. Comparing the throughput of RMWPaxos with Raft and Multi-Paxos using three replicas.

SKRZYPCZAK ETAL.: RMWPAXOS: FAULT-TOLERANT IN-PLACE CONSENSUS SEQUENCES 2401

workloads, even two concurrent clients are enough to have
a negative impact on the system’s performance. As shown
in the previous experiments, a leader at the application level
helps to handle write concurrency effectively.

Multi-Writer, Multi-Register. All previous measurements
focused on a single register. As highlighted in Section 5.6,
the absence of state management overhead easily allows for
arbitrary many registers to be used. We benchmarked con-
figurations using up to 106 register instances and 512 con-
current clients. The registers were accessed according to a
Pareto distribution [34] with a � 1:16 (80 percent of requests
targeted 20 percent of registers). Figs. 5b and 5c show the
results for read-heavy (5 percent writes) and write-heavy
(50 percent writes), respectively. The results are as expected.
More concurrent clients can be handled without perfor-
mance degradation due to duelling proposers by increasing
the number of parallel registers. The load is evenly distrib-
uted across all replicas, as no leader is used. In addition,
contention is low in settings with a large number of parallel
registers. This results in a higher achievable throughput
than it is possible with the use of a leader (cf. Fig. 3a).

RMWPaxos performs consistently better under read-
heavy workloads, which coincides with the results from the
single-register evaluation. We used the read-write ratios of
YCSB [33], a benchmarking framework that aims to simu-
late real-world use-cases. Studies of large-scale distributed

systems have shown an even higher skew towards reads,
reporting read-write ratios of up to 450:1 [8], [31], [35].

7.3 Impact of Replication Degree and Failures

We investigated the impact of the number of replicas on the
response latency of RMWPaxos, as well as its ability to toler-
ate replica failures. For that, we used different deployment
strategies from our previous experiments: (1) A single regis-
ter accessed by a leader, (2) a single register accessed by a
single writer and multiple readers, and (3) a 10.000 register
setup accessed by multiple writers and readers with the
Pareto distribution used in Section 7.2. We will refer to
them as the leader, single-writer, and multi-register strat-
egy, respectively. All measurements were executed using 64
clients. Clients used a read-heavy workload (5 percent
writes, 95 percent reads) in the leader and multi-register
deployment. The results are shown in Fig. 6.

When using a leader, the number of messages the leader
must process increases with a growing number of replicas.
This results in an increasing response latency as shown in
Fig. 6a. In contrast, the load is distributed evenly among all
node in both the single-writer and multi-register setup.
Assuming a constant throughput, the number of messages
each proposer is sending is independent of the system size.
As only replies from a quorum of replicas is needed, fewer
messages must be received in total by each proposer to
answer all requests. This results in a slightly lower response
latency of these strategies with growing system sizes.

To measure the impact of failures, we let one replica
crash after every three minutes. Overall, all latencies with
the exception of the read latency of the single-writer strat-
egy remained fairly consistent as long as a sufficient num-
ber of replicas is available. We observed only a slight
increase for each new failure, as proposers must potentially
wait for the replies of slower acceptor processes. However,
to ensure that reads can be processed in the single-writer
setup, answers from all replicas are necessary (see single-
writer evaluation in Section 7.2). If a replica fails, proposers
do not always observe a consistent quorum after all remain-
ing acceptors reply. They must therefore retry their request.
This is more likely to happen as more replicas fail.

7.4 Leader Load and Applicability to NVM

Our results show potential for future improvements. First,
we aim to improve the issue of high write contention on a
single register while alleviating the bottleneck caused by a
leader. As a single register is able to handle high read con-
currency (see Section 7.2), only writes have to be forwarded
to the leader. This can be coupled with a dynamic leaderFig. 6. 99th percentile latency comparison using 64 clients.

Fig. 5. Leaderless multi-writer performance of RMWPaxos with five replicas.

2402 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 10, OCTOBER 2020

allocation for only highly contentious registers, which fur-
ther reduces the load placed on the leader.

Second, we believe that the fine-granular nature of our
approach is a promising fit for the use in combination with
byte-addressable, non-volatile main memory. With the
recent availability of NVRAM, along with the current work
in NVMe over Fabrics [36], we believe that our approach
can leverage these technologies in the future.

8 RELATED WORK

Starting with Lamport’s work on the discovery of the Paxos
algorithm [2], [3], numerous Paxos extensions [7], [37], [38],
[39] have been proposed—most of them following the design
of usingmultiple Paxos instances to learn a sequence of com-
mands. As a notable exception, Generalized Paxos [13] and
its derivatives [40], only use a single Paxos instance but
require keeping track of an ever-growing set of commands
in its messages. In all cases, pruning in some form must be
implemented to prevent unbounded memory consumption,
which introduces a considerable amount of complexity to
the system. This is identified by Chandra et al. [11] as one of
the main challenges for using Paxos-based designs in practi-
cal systems. Despite numerous efforts of making Paxos more
approachable [41], [42], [43], reliable state management with
Paxos is seldom discussed in detail. Only a few practical
Paxos-based systems exist to this date such as Chubby [9],
Spanner [8], Megastore [10], and Scalaris [25].

In recent years, various proposals were made to alleviate
the dependence on a single leader. Mencius [5] evenly shares
the leader’s responsibilities by assigning individual consen-
sus instances to single replicas. In Egalitarian Paxos [7], the
replica receiving a command is regarded as its command
leader. Each replica can act as a leader simultaneously for a
subset of commands. This is achieved by decoupling com-
mand commit and application from each other and making
use of the dependency constraints of each command. In con-
trast, we do not need an explicit leader depending on work-
load and load-distribution.

As of today, few consensus protocols, which are not
Paxos-based, exist. Most prominently Raft [4] and the closely
related Zab protocol [6]. Both are based on the idea of a cen-
tral command log. Furthermore, they require a strong leader,
meaning that at most a single leader is allowed to exist at any
given time. In contrast, we perform updates on a distributed
state in-place and do not need a strong leader.

To the best of our knowledge, we present the first Paxos-
based approach that does not rely on additional state man-
agementwithout requiring a leader to satisfy the safety prop-
erties of consensus by implementing an atomic RMW
register. The register by Li et al. [44] only recasts the original
Paxos without modification and provides a regular write-
once register. The round-based register proposed by Boichat
et al. [42] is not atomic and only write-once. It is similar to the
approach of Li et al. and modular to build several, known
Paxos variants such as Multi-Paxos or Fast Paxos [22]. CAS-
Paxos [45] provides a Paxos-based linearisable multi-reader
multi-writer register by letting clients submit a user-defined
function instead of a value. However, when handling con-
current writes it is not guaranteed that all (or any) writes are
processed by the register due to duelling proposers, which

makes it unsuitable to implement basic primitives like coun-
ters. The key-value consensus algorithm Bizur [46] is based
on a set of single-writer multi-reader registers and therefore
relies on electing a strong leader.

The use of consistent quorums in conjunction with Paxos
is first introduced by Arad et al. [20] in the context of group
membership reconfigurations. In this context, a consistent
quorum expresses a consistent view of the system in terms of
group memberships. Skrzypczak et al. [47] use consistent
quorums to provide linearisable access to CRDTs. While this
approach is similar to the protocol presented here, it heavily
relies on the mathematical properties of CRDTs and can
therefore not be used for general statemachine replication.

Shared register abstractions were first formalized by
Lamport [48]. Among them, the atomic register provides
the strongest guarantees by being linearisable. Numerous
implementations exist today. In particular, the multi-writer
generalisation [49, p. 25ff.] of ABD [50] has the greatest
resemblance to our approach. However, the properties of
atomic registers alone do not suffice to solve consensus, as
not every completed write is necessarily applied to the regis-
ter when being confrontedwith concurrent access.Moreover,
only fixed values can be written. Our register abstractions
provide arbitrary value transformations based on the regis-
ter’s previous value and ensure that completed writes are
applied at-least-once (consensus sequence register) or
exactly-once (RMWPaxos).

9 CONCLUSION

In this paper, we introduced register abstractions that sat-
isfy the safety properties of consensus and allow consensus
sequences. We provided implementations extending the
principles of Paxos consensus, to allow a sequence of con-
sensuses ‘in-place’ using a single set of storage resources,
instead of a separate instance for every consensus decision.

Additionally, read operations in RMWPaxos do not inter-
fere with each other (are not serialised with each other) and
do not modify any state in the acceptors when the register is
stable, i.e., no write operation is induced. This improves the
parallel read throughput and saves unnecessary, potentially
costly state changes of persistent storage for reads. When
reads detect ongoing writes, they can either hope the writer
will finish soon andmitigate the chance of duelling proposers
by just retrying the read, or can start to support the writing
themselves as the writer might have crashed. As we show in
our evaluation (Section 7), the trade-off between both strate-
gies and how often one should retry the read before helping
the writer depends on the system deployment, the number of
expected concurrent readers andwriters, etc.

Avoiding the need for costly state management and com-
plex protocols for state pruning, providing fast writing in
two message delays and supporting concurrent readers
without serialisation opens a wide new spectrum of use-
cases for Paxos based fault-tolerance. The protocols we pro-
vide are beneficial and applicable on a more fine-grained
level than Multi-Paxos or similar approaches, as they have
low system overhead and provide good scalability.

Code Availability. The source code for our RMWPaxos
implementation [51] and the protocol scheduler [26] can be
found on GitHub under the Apache License 2.0.

SKRZYPCZAK ETAL.: RMWPAXOS: FAULT-TOLERANT IN-PLACE CONSENSUS SEQUENCES 2403

ACKNOWLEDGMENTS

The authors would like to thank Alexander Reinefeld and
anonymous reviewers for their dedicated comments and
valuable discussions that helped to improve this manu-
script. This work received funding from the German
Research Foundation (DFG) under Grant RE 1389 as part of
the DFG priority program SPP 2037. They would also like to
thank ZIB’s core facilities unit for providing them the
machines and infrastructure for the evaluation.

REFERENCES

[1] F. B. Schneider, “Implementing fault-tolerant services using the
state machine approach: A tutorial,” ACM Comput. Surv., vol. 22,
no. 4, pp. 299–319, 1990.

[2] L. Lamport, “Paxos made simple,” ACM Sigact News, vol. 32, no. 4,
pp. 51–58, 2001.

[3] L. Lamport, “The part-time parliament,” ACM Trans. Comput.
Syst., vol. 16, no. 2, pp. 133–169, 1998.

[4] D. Ongaro and J. K. Ousterhout, “In search of an understandable
consensus algorithm,” in Proc. USENIX Conf. USENIX Annu. Tech.
Conf., 2014, pp. 305–319.

[5] Y. Mao, F. P. Junqueira, and K. Marzullo, “Mencius: Building effi-
cient replicated state machine for WANs,” in Proc. 8th USENIX
Conf. Operating Syst. Des. Implementation, 2008, pp. 369–384.

[6] F. P. Junqueira, B. C. Reed, andM. Serafini, “Zab: High-performance
broadcast for primary-backup systems,” in Proc. IEEE/IFIP 41st Int.
Conf. Dependable Syst. Netw., 2011, pp. 245–256.

[7] I. Moraru, D. Andersen, and M. Kaminsky, “There is more con-
sensus in Egalitarian parliaments,” in Proc. 24th ACM Symp. Oper-
ating Syst. Princ., 2013, pp. 358–372.

[8] J. C. Corbett et al., “Spanner: Google’s globally-distributed data-
base,” in Proc. 10th USENIX Symp. Operating Syst. Des. Implementa-
tion, 2012, pp. 251–264.

[9] M. Burrows, “The Chubby lock service for loosely-coupled dis-
tributed systems,” in Proc. 7th Symp. Operating Syst. Des. Implemen-
tation, 2006, pp. 335–350.

[10] J. Baker et al., “Megastore: Providing scalable, highly available
storage for interactive services,” in Proc. Conf. Innovative Data Syst.
Res., 2011, pp. 223–234.

[11] T. D. Chandra, R. Griesemer, and J. Redstone, “Paxos made live:
an engineering perspective,” in Proc. 26th Annu. ACM Symp. Princ.
Distrib. Comput., 2007, pp. 398–407.

[12] C. Cachin, R. Guerraoui, and L. E. T. Rodrigues, Introduction to
Reliable and Secure Distributed Programming, Berlin, Germany:
Springer, pp. 34–37, 2011.

[13] L. Lamport, “Generalized consensus and Paxos,” Microsoft
Research, Redmond, WA, Tech. Rep. MSR-TR-2005–33, 2005.

[14] M. J. Fischer, N. A. Lynch, and M. Paterson, “Impossibility of dis-
tributed consensus with one faulty process,” J. ACM, vol. 32, no.
2, pp. 374–382, 1985.

[15] M. Herlihy and J. M. Wing, “Linearizability: A correctness condi-
tion for concurrent objects,” ACM Trans. Program. Lang. Syst.,
vol. 12, no. 3, pp. 463–492, 1990.

[16] N. A. Lynch,Distributed Algorithms. Burlington,MA, USA:Morgan
Kaufmann, 1996, pp. 244–250.

[17] M. Herlihy, “Wait-free synchronization,” ACM Trans. Program.
Lang. Syst., vol. 13, no. 1, pp. 124–149, 1991.

[18] M. Herlihy, V. Luchangco, and M. Moir, “Obstruction-free syn-
chronization: Double-ended queues as an example,” in Proc. 23rd
Int. Conf. Distrib. Comput. Syst., 2003, pp. 522–529.

[19] T. D. Chandra, V. Hadzilacos, and S. Toueg, “The weakest failure
detector for solving consensus,” J. ACM, vol. 43, no. 4, pp. 685–722,
1996.

[20] C. Arad, T. Shafaat, and S. Haridi, “CATS: Linearizability and par-
tition tolerance in scalable and self-organizing key-value stores,”
SICS, Hyogo, Japan, Tech. Rep. T2012:04, 2012.

[21] J. Skrzypczak, “Weakening Paxos consensus sequences for com-
mutative commands,” ZIB, Tech. Rep. 17–64, 2017. Available:
http://nbn-resolving.de/urn:nbn:de:0297-zib-65741

[22] L. Lamport, “Fast Paxos,”Distrib. Comput., vol. 19, no. 2, pp. 79–103,
2006.

[23] H. Howard, D. Malkhi, and A. Spiegelman, “Flexible Paxos: Quo-
rum intersection revisited,” in Proc. Int. Conf. Principles Distrib.
Syst., 2016, pp. 25:1–25:14.

[24] W. N. Scherer III, M. L. Scott, “Advanced contention management
for dynamic software transactional memory,” in Proc. 24th Annu.
ACM Symp. Principles Distrib. Comput., 2005, pp. 240–248.

[25] T. Sch€utt, F. Schintke, and A. Reinefeld, “Scalaris: Reliable transac-
tional P2P key/value store,” in Proc. ACM SIGPLAN Workshop
ERLANG, 2008, pp. 41–48.

[26] Scalaris, “Implementation of the protocol scheduler,” Last Accessed:
Mar. 2, 2020. [Online]. Available: https://github.com/scalaris-team/
scalaris/blob/master/src/proto_sched.erl

[27] Basho Technologies, “basho-bench: A load-generation and testing
tool for basically whatever you can write a returning Erlang
function for,” Last Accessed: Mar. 2, 2020. [Online]. Available:
https://github.com/basho/basho_bench

[28] Basho Technologies, “riak_ensemble: Multi-Paxos framework in
Erlang,” Last Accessed: Mar. 2, 2020. [Online]. Available: https://
github.com/basho/riak_ensemble

[29] RabbitMQ, “ra: A Raft implementation for Erlang and Elixir that
strives to be efficient and make it easier to use multiple Raft clus-
ters in a single system,” Last Accessed: Mar. 2, 2020. [Online].
Available: https://github.com/rabbitmq/ra

[30] Ericsson AB, “ETS,” Last Accessed: Mar. 2, 2020. [Online].
Available: http://erlang.org/doc/man/ets.html

[31] B. Atikoglu et al., “Workload analysis of a large-scale key-value
store,” in Proc. ACM Sigmetrics/Performance Joint Int. Conf. Meas.
Modeling Comput. Syst., 2012, pp. 53–64.

[32] R. Nishtala et al., “Scaling memcache at facebook,” in Proc. USE-
NIX Symp. Netw. Syst. Des. Implementation, 2013, pp. 385–398.

[33] B. F. Cooper et al., “Benchmarking cloud serving systems with
YCSB,” in Proc. 1st ACM Symp. Cloud Comput., 2010, pp. 143–154.

[34] M. Newman, “Power laws, Pareto distributions and Zipfs law,”
Contemp. Phys., vol. 46, no. 5, pp. 323–351, Sep 2005.

[35] Wikimedia, “Wikimedia statistics,” Last Accessed: Mar. 2, 2020.
[Online]. Available: https://stats.wikimedia.org/#/all-projects

[36] D. Minturn and J. Metz, “Under the hood with NVMe over
Fabrics,” in Ethernet Storage Forum. SNIA, 2015. Available:
https://www.snia.org/sites/default/files/ESF/NVMe_Under_
Hood_12_15_Final2.pdf

[37] C. Wang et al., “APUS: Fast and scalable Paxos on RDMA,” in
Proc. Symp. Cloud Comput., 2017, pp. 94–107.

[38] E. Gafni and L. Lamport, “Disk Paxos,” Distrib. Comput., vol. 16,
no. 1, pp. 1–20, 2003.

[39] P. J. Marandi et al., “Ring Paxos: A high-throughput atomic broad-
cast protocol,” in Proc. IEEE/IFIP Int. Conf. Dependable Syst. Netw.,
2010, pp. 527–536.

[40] P. Sutra and M. Shapiro, “Fast genuine generalized consensus,” in
Proc. IEEE 30th Int. Symp. Reliable Distrib. Syst., 2011, pp. 255–264.

[41] J. Kirsch andY. Amir, “Paxos for system builders: An overview,” in
Proc.Workshop Large-Scale Distrib. Syst. Middleware, 2008, pp. 1–6.

[42] R. Boichat et al., “Deconstructing Paxos,” SIGACT News, vol. 34,
no. 1, pp. 47–67, 2003.

[43] R. van Renesse and D. Altinbuken, “Paxos made moderately com-
plex,” ACM Comput. Surv., vol. 47, no. 3, pp. 42:1–42:36, 2015.

[44] H. C. Li et al., “The Paxos register,” in Proc. 26th IEEE Int. Symp.
Reliable Distrib. Syst., 2007, pp. 114–126.

[45] D. Rystsov, “CASPaxos: Replicated state machines without logs,”
CoRR, vol. abs/1802.07000, 2018, Available: http://arxiv.org/
abs/1802.07000

[46] E. N. Hoch et al., “Bizur: A key-value consensus algorithm for
scalable file-systems,” CoRR, vol. abs/1702.04242, 2017. Available:
http://arxiv.org/abs/1702.04242

[47] J. Skrzypczak, F. Schintke, and T. Sch€utt, “Linearizable state
machine replication of state-based CRDTs without logs,” in Proc.
26th IEEE Int. Symp. Reliable Distrib. Syst., 2019, pp. 455–457.

[48] L. Lamport, “On interprocess communication. Part II: Algo-
rithms,”Distrib. Comput., vol. 1, no. 2, pp. 86–101, 1986.

[49] M. Vukolic, Quorum Systems: With Applications to Storage and Con-
sensus. San Rafael, CA, USA: Morgan & Claypool, 2012.

[50] H. Attiya, A. Bar-Noy, and D. Dolev, “Sharing memory robustly
in message-passing systems,” J. ACM, vol. 42, no. 1, pp. 124–142,
1995.

[51] Scalaris, “Implementation of RMWPaxos,” Last Accessed: Mar. 2,
2020. [Online]. Available: https://github.com/scalaris-team/
scalaris/tree/master/src/rbr

2404 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 10, OCTOBER 2020

http://nbn-resolving.de/urn:nbn:de:0297-zib-65741
https://github.com/scalaris-team/scalaris/blob/master/src/proto_sched.erl
https://github.com/scalaris-team/scalaris/blob/master/src/proto_sched.erl
https://github.com/basho/basho_bench
https://github.com/basho/riak_ensemble
https://github.com/basho/riak_ensemble
https://github.com/rabbitmq/ra
http://erlang.org/doc/man/ets.html
https://stats.wikimedia.org/#/all-projects
https://www.snia.org/sites/default/files/ESF/NVMe_Under_Hood_12_15_Final2.pdf
https://www.snia.org/sites/default/files/ESF/NVMe_Under_Hood_12_15_Final2.pdf
http://arxiv.org/abs/1802.07000
http://arxiv.org/abs/1802.07000
http://arxiv.org/abs/1702.04242
https://github.com/scalaris-team/scalaris/tree/master/src/rbr
https://github.com/scalaris-team/scalaris/tree/master/src/rbr

JanSkrzypczak received theMSc degree in com-
puter science from theHumboldt University of Ber-
lin. He is currently a research associate at Zuse
Institute Berlin with the Department of Distributed
Algorithms. His research interests include the
design and implementation of distributed algo-
rithms, fault-tolerance, reliability and consensus
protocols.

Florian Schintke received the PhD degree in
computer science from the Humboldt-Universit€at
zu Berlin. He is currently head of the Distributed
Algorithms Research Department at Zuse Insti-
tute Berlin. His research interests include fault-
tolerance and scalability, distributed protocols
and algorithms, transactional key-value stores,
and distributed data management in general.

Thorsten Sch€utt received the PhD degree in
computer science from the Humboldt University
of Berlin. He is currently a researcher at the Zuse
Institute Berlin with the Department of Distributed
Algorithms. His research interests include P2P
protocols, distributed systems, heuristic search,
and NVRAM.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

SKRZYPCZAK ETAL.: RMWPAXOS: FAULT-TOLERANT IN-PLACE CONSENSUS SEQUENCES 2405

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

