
Massively Parallel Tree Search for
High-Dimensional Sphere Decoders

Konstantinos Nikitopoulos ,Member, IEEE, Georgios Georgis ,Member, IEEE,

Chathura Jayawardena , Student Member, IEEE, Daniil Chatzipanagiotis,

and Rahim Tafazolli, Senior Member, IEEE

Abstract—The recent paradigm shift towards the transmission of large numbers of mutually interfering information streams, as in the

case of aggressive spatial multiplexing, combined with requirements towards very low processing latency despite the frequency

plateauing of traditional processors, initiates a need to revisit the fundamental maximum-likelihood (ML) and, consequently, the sphere-

decoding (SD) detection problem. This work presents the design and VLSI architecture of MultiSphere; the first method to massively

parallelize the tree search of large sphere decoders in a nearly-concurrent manner, without compromising their maximum-likelihood

performance, and by keeping the overall processing complexity comparable to that of highly-optimized sequential sphere decoders.

For a 10� 10MIMO spatially multiplexed system with 16-QAMmodulation and 32 processing elements, our MultiSphere architecture

can reduce latency by 29� against well-known sequential SDs, approaching the processing latency of linear detection methods,

without compromising ML optimality. In MIMO multicarrier systems targeting exact ML decoding, MultiSphere achieves processing

latency and hardware efficiency that are orders of magnitude improved compared to approaches employing one SD per subcarrier. In

addition, for 16�16 both “hard”- and “soft”-output MIMO systems, approximate MultiSphere versions are shown to achieve similar error

rate performance with state-of-the art approximate SDs having akin parallelization properties, by using only one tenth of the processing

elements, and to achieve up to approximately 9� increased energy efficiency.

Index Terms—Sphere decoding, parallel processing, large multiple-input–multiple-output (MIMO), lattice search

Ç

1 INTRODUCTION

THERE is a general consensus that future mobile [2] and
local area wireless communication systems [3], [4] shall

be able to support very high peak user and network rates
as well as very large numbers of connected devices, while
keeping the latency requirements at very low levels. These
needs have triggered a paradigm shift from orthogonal trans-
missions to systems where we intentionally transmit a large
number of mutually interfering information streams, as in the
case of multi-antenna (MIMO) deployments for aggressive
spatial multiplexing. In this direction, and to keep detection
complexity low, large and massive MIMO systems typically
employ linear detection schemes, which however, can
provide near-optimal performance only when the number of
users is much smaller than the number of access-point or
base-station antennas [5], [6]. Thus, typical large/massive
MIMO deployments leave a large portion of the MIMO
channel capacity unexploited, just for coping with the
inefficiency of the linear detection approaches. Alternatively,

maximum-likelihood (ML) detection schemes, allow to effi-
ciently demultiplex asmanymutually interfering information
streams (e.g., spatially multiplexed users) as the number of
the observed signals (e.g., base-station antennas) [5]. Still,
even after translating the ML problem into a tree search,
and solving it by means of sphere decoding [5], [7], [8] the
corresponding processing and latency requirements increase
exponentially with the number of mutually interfering in-
formation streams, substantially exceeding the processing
capabilities of general purpose processors. These processing
requirements, along with the-soon to be reached-plateau in
the speed of microprocessors [9] prevent traditional systems
from supporting large numbers of mutually interfering
streams and, therefore, from scaling the achievable through-
put gains and device connectivity.

At the same time, emerging system-on-chip architectures
promise tens or even hundreds of cores per chip [10], some-
thing already feasible in graphics processing units (GPUs).
In the presence of such multiple processing element (PE)
architectures the complexity problem translates to the
efficient utilization of available PEs or, equivalently, work-
load parallelization. Parallelizing the sphere decoder (SD) is a
challenging task since its computational efficiency is deter-
mined by the ability to prune (i.e., exclude nodes from the
tree search) large parts of the tree at an early stage of the tree
search without compromising its algorithmic optimality.
In order to achieve this, typical SD approaches providing
the exact ML solution are of sequential nature. They start by
finding a “good” candidate solution (i.e., one of relatively

� The authors are with the 5G Innovation Centre, Institute for Communication
Systems (ICS), University of Surrey, Guildford GU2 7XH,United Kingdom.
E-mail: {k.nikitopoulos, g.georgis, c.jayawardena, r.tafazolli}@surrey.ac.uk,
d.chatzipanagiotis@gmail.com.

Manuscript received 30 May 2017; revised 28 June 2018; accepted 16 Sept.
2018. Date of publication 11 Oct. 2018; date of current version 11 Sept. 2019.
(Corresponding author: Konstantinos Nikitopoulos.)
Recommended for acceptance by M. M Hayat.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2018.2874002

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 10, OCTOBER 2019 2309

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-3056-7748
https://orcid.org/0000-0003-3056-7748
https://orcid.org/0000-0003-3056-7748
https://orcid.org/0000-0003-3056-7748
https://orcid.org/0000-0003-3056-7748
https://orcid.org/0000-0002-2644-5230
https://orcid.org/0000-0002-2644-5230
https://orcid.org/0000-0002-2644-5230
https://orcid.org/0000-0002-2644-5230
https://orcid.org/0000-0002-2644-5230
https://orcid.org/0000-0001-7846-548X
https://orcid.org/0000-0001-7846-548X
https://orcid.org/0000-0001-7846-548X
https://orcid.org/0000-0001-7846-548X
https://orcid.org/0000-0001-7846-548X
mailto:
mailto:

small euclidean distance from the received signal) and they
continue searching sequentially for “better” candidates with-
out compromising the ML optimality while applying tree
pruning strategies that become more aggressive any time
a new candidate solution is found. Trivial parallelization
approaches consisting of (nearly) independent parallel sub-
processes, can result in less efficient tree pruning, and in turn,
in highly increased processing requirements.

An “ideal” SD workload parallelization should be scalable
and able to consistently reduce latency given additional
processing power. It should be complexity efficient and not
substantially increase the overall workload when increasing
the number of PEs. For implementation purposes it should be
nearly “embarrassingly parallel” and therefore minimize depen-
dencies and communication overhead, which introduce
latency and can moderate if not obliterate scalability and
parallel efficiency [11]. In order to effectively allocate available
processing power (PEs), an “ideal” parallelization method
should also be adjustable to the transmission conditions. The
methodology should be generic and applicable to all kinds of SDs
including breadth-first and depth-first as well as exact
(guaranteeing the ML solution) and approximate. Finally,
it should be transparent to the choice of the implementation plat-
form. In Many-Processor Systems on Chips (MPSoCs) for
example, a PE can be a designated processor, in FPGA
designs, a specifically allocated part of the chip and in GPU
implementations the PE can be a separate thread.

Many SD implementations involve parallelism, but
without meeting the above characteristics. For example,
both depth-first [8], [12] and breadth-first [13] SDs perform
several euclidean distance calculations in parallel, at each
level of the SD tree, exploiting a limited degree of data
parallelism. However, before the next data set can be proc-
essed in parallel, the necessary sorting operations introduce
significant dependencies. This strategy is highly-dependent
on the specific realization platform, inflexible, and cannot
be efficiently employed to decrease latency in large SDs.
Similarly, [14] proposes a low-dimensional, real-valued SD
of limited degree of parallelism, accelerating the sequential
case by only up to 2� and only in low SNRs.

In GPU implementations, Khairy et al. [15] concurrently
run multiple, low-dimensional (4� 4) SDs without though
parallelizing each SD.Wu et al. [16] and J�osza et al. [17] paral-
lelize a low-dimensional MIMO detection process on GPUs.
However, Wu et al. use a Trellis-decoder-like approximation
of the SD which is not efficient for dense modulations and
large MIMO systems, and J�osza et al. perform aggressive and
nearly exhaustive parallel search ofmultiple subtrees without
accounting for the overall complexity and by exhaustively
trying different partitioning configurations. Hence, their
approach is inappropriate for MPSoC or FPGA implementa-
tions and lacks theoretical reasoning.

Yang et al. [18], [19] propose a multi-core architecture for
parallel high-dimensional SDs i.e., to the best of our knowl-
edge the only other multi-core depth-first SD in the open
literature. To parallelize the tree search, the SD tree in [19] is
partitioned in subtrees consisting of only one node on the
higher levels, and all possible nodes at the lower levels of
the tree. The authors’ SD partitioning starts first by allocating
all the nodes of the higher level to subtrees, and each of
the subtrees is then partitioned using the same principles

provided that there are still available PEs. This partitioning
strategy is very practical in terms of implementation, but
cannot adjust to the transmission conditions [20], [21], [22].
Furthermore, to avoid visiting a node twice and control the
overall complexity, Yang et al. employ an interconnection net-
work to determine which of the nodes will be processed by
which PE and to distribute the most promising solution from
each of the subtrees. This reduces the flexibility of the
approach, and therefore its efficiency when applied to plat-
forms that require SIMD processing, as is the case of GPUs or
implementations on individual processing blocks.

The fixed complexity SD (FSD) [23] sacrifices the ML
optimality to acquire good parallelization properties. How-
ever, to efficiently parallelize such an SD, the available
number of PEs should be a multiple of the order of the trans-
mitted constellation. In addition, the way the FSD determines
the tree paths to process in parallel, is pre-defined and cannot
adjust to the transmission conditions. As shown in Section
3.2.4, our proposed approach can rectify these weaknesses.
Koo et al. [24] propose a parallel version of the FSD, but with
each concurrent set of tasks being followed by sequential
operations. Consequently, their approach is bounded by the
FSD’s error-rate, andwhile the corresponding complexity can
be smaller than FSD’s this comes at the cost of random proc-
essing latency, in contrast to FSD. Moreover, [24] requires
significant synchronization overhead per tree level, which
togetherwith the complex control/data flowof the processing
element makes this approach unsuitable for anything besides
a general purpose processor. This work proposes Multi-
Sphere, the first SD of an “ideally” parallelized SD. As result,
MultiSphere not only claims unexploited throughput in large
MIMO uplink transmissions where traditional precoding
approaches are infeasible, but it also facilitates efficient
MIMO transmission without channel knowledge at the
transmitter side (both in the uplink and the downlink),
enabling high-throughput, and low-latency signal transmis-
sion as envisaged by future ultra-reliable, low latency mobile
communication (uRLLC) systems. MultiSphere’s unique
characteristics originate from its ability to early examine the
candidate vector solutions (i.e, SD tree paths) that are most
likely to include the transmitted vector. We will hereafter
refer to these most promising paths as seeds. The process of
identifying the seeds can take place a priori, (i.e., before any
information is received), and is based on the transmission
characteristics (e.g., MIMO channel and signal-to-noise ratio).
In this direction, in Section 3.1, we first introduce the concept
of the Tree of Promise where the symbols constituting a candi-
date vector solution are described by their relative ordered
distance to the received signal (e.g., kth closest symbol to the
received signal), without though requiring the actual value
of this received signal. Then, to each node in theTree of Promise
we assign a novel Metric of Promise (MoP) which approxi-
mates the actual probability of that node to be part of the
transmitted vector (see Section 3.1.1). As described in Section
3.1.2, MultiSphere then employs a novel tree partitioning
method which, based on the identified seeds and the number
of the available PEs, splits theTree of Promise (and equivalently
the search space) into subtrees while preserving the ML
optimality. In Section 3.1.3, MultiSphere employs a new
method to map the actual transmitted (e.g., QAM) symbols
to each subtree without performing any sorting operations,

2310 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 10, OCTOBER 2019

in order to preserve the complexity and energy efficiency of
the approach. Then, when all subtrees are searched in a nearly
concurrent manner, we propose a new node traversal strategy
and enumeration in Section 3.2.1 that minimizes unnecessary
euclidean distance calculations and applies to both sequential
and the proposed parallel SD; in contrast to existing
approaches ([5], [12], [25]) that only apply to sequential SDs.

In orthogonal multicarrier systems, like OFDM where
there is no mutual interference between the subcarriers one
can perform parallel detection by utilizing an exact, depth-
first SD per subcarrier. However, as we discuss in Section
3.2.3, such a naive parallelization strategy is unable to effi-
ciently reduce latency. On the other hand, as shown in Section
5.1, parallelizing each SD by means of MultiSphere and by
sequentially processing each subcarrier, we can reduce
latency by several orders of magnitude, for the same number
of PEs and while preserving the ML optimality. Furthermore,
in order to effectively exploit a large number of available PEs,
Section 3.2.2 introduces a method that exploits the newly
introduced MoPs to adjust the number of allocated PEs so that
if their utilization is unable to significantly reduce latency, we
can avoid PE redundancy and thus increased complexity.
Then, based on this method, in Section 3.2.3 we propose
a new PE scheduling approach, that allocates a variable number
of PEs to different SD processes, and we show that such a
scheme, is the first able to effectively reduce latency by
increasing the number of PEs, while preserving ML optimal-
ity in amulticarriermultiantenna (MIMO) system.

MultiSphere has been evaluated in MIMO, spatially-
multiplexed, multi-carrier systems using both mathemati-
cally modelled channels and actual channel traces collected
in an indoor environment. Several versions of MultiSphere
have been considered, ranging from exact “hard” to app-
roximate “soft-output”. We show that compared to MIMO
systemswhich exploit parallelism on a subcarrier level,Multi-
Sphere can achieve two orders of magnitude reduction in
processing latency at the same degree of parallelism while
it can still exploit any amount of available PEs in order to
further reduce this latency, even if that amount exceeds the
number of subcarriers. Despite MultiSphere’s seemingly
more complex structure (see Section 3.2.1), our novel VLSI
architecture and effective design concepts (Section 4) show
that MultiSphere’s VLSI processing throughput for exact
detection with 32 processing elements for a 10� 10, 16-QAM
system is 29� higher against efficient sequential detect-
ors, thus validating MultiSphere’s efficiency. Similarly, for
approximate soft-output detection our approach achieves
almost an order ofmagnitude increased efficiency.

The rest of the paper is organized as follows. Section 2
introduces sphere decoding fundamentals. Section 3 presents
MultiSphere’s design while Section 4 proposes an efficient
VLSI architecture for both hard and soft-output MultiSphere.
Section 5 extensively evaluates the proposed algorithmic
design and VLSI architecture and Section 5.1 discusses
MultiSphere’s extension to soft-output systems.

2 SPHERE DECODING FOR MIMO SYSTEMS

For a spatially multiplexed MIMO system consisting of nt

transmit and nr receive antennae the received signal vector
is y ¼ Hsþw, where H is the nr�nt MIMO channel matrix,

s is the transmitted symbol vector whose elements belong
to a constellation O of size jOj and w is the additive white
Gaussian noise vector. By QR-decomposing the MIMO
channel matrix as H ¼ QR the ML problem translates
into finding ŝ ¼ argmins2Ont key� Rsk2, with Rij being the
elements of R, and ey ¼ Q�y [5], [7], [8]. Since R is an upper
triangular matrix, finding the ML solution can be trans-
formed into a tree search of height nt and branching factor
jOj. Each node at a level l can be characterized by its partial
symbol vectorsðlÞ ¼ sl; slþ1; . . . ; snt

� �
which describes the path

from the root to that node, as well as from its partial euclid-
ean distance (PD) which can be calculated recursively as
dðsðlÞÞ ¼ dðsðlþ1ÞÞ þ cðsðlÞÞ, where cðsðlÞÞ ¼

��eyl �Pnt
j¼l Rljsj

��2 is
the non-negative cost assigned to each branch. The ML
problem translates then into finding the leaf-node with the
minimum dðsð1ÞÞ. In depth-first SDs with radius update and
Schnorr-Euchner enumeration [5], [8], the initial squared
radius r2 ¼ 1. Any time a leaf node is reached for which
dðsð1ÞÞ < r2, r2 is updated to dðsð1ÞÞ. Uponmeeting a node sðlÞ,
if dðsðlÞÞ�r2 then this node, its children nodes and its siblings
with all their descendants are excluded from the tree search
(i.e., they are pruned). Following the Schnorr-Euchner tree-
traversal [26] for node expansion, the nodes are visited
in ascending order of their PDs. Since depth-first SDs with
radius update and Schnorr-Euchner enumeration have been
shown to be very efficient in practice [5], [8] and capable of
delivering the ML solution, this is the structure that we will
adopt for all our parallel SDs.

3 MULTISPHERE DESIGN

In order to describe all possible solutions, alternatively to
the “traditional” SD tree, MultiSphere introduces the
concept of a Tree of Promise where the symbols constituting
a candidate vector solution (i.e., the SD tree nodes) are
described by their relative ordered distance to the received
signal. Then, MultiSphere introduces a new Tree of Promise
partitioning method, which adjusts to the transmission chan-
nel without compromising the ML optimality (see Section
3.1). The Tree of Promise (and therefore the original SD tree)
is split into subtrees which are processed in parallel by
the PEs. This partitioning can take place offline, based on
the average channel characteristics, or “on-the-fly”, when-
ever the transmission channel changes following each QR
decomposition. This adds preprocessing latency to that of
the QR decomposition. However, the partitioning latency
scales linearly with nt in contrast to the QR decomposition
latency which scales almost cubicly with the number of
transmit antennae. After SD partitioning, MultiSphere
applies a new symbol-to-subtree allocation method (see Section
3.1.3) which, in contrast to other schemes [18], maps nodes
to PEs without introducing dependencies and minimizes
redundant calculations across PEs. Each PE performs
depth-first subtree traversal with Schnorr-Euchner enumer-
ation [26], according to which, nodes are visited in ascend-
ing order of their PDs. Several approaches have been
proposed [5], [8], to avoid exhaustive calculation and
sorting of the PDs. However, they are not applicable to Mul-
tiSphere since their ordering is sequential (finding the kth
smallest PD, requires finding the ðk� 1Þth smallest PD first,
starting from k ¼ 1). To that end, in Section 3.2.1 we

NIKITOPOULOS ET AL.: MASSIVELY PARALLEL TREE SEARCH FOR HIGH-DIMENSIONAL SPHERE DECODERS 2311

introduce a new tree traversal and enumeration method which
meets MultiSphere’s needs.

MultiSphere’s tree searches execute nearly independently.
They interact only once, after they have all reached their first
leaf node. The r2 of each subtree is then replaced by that of the
leaf node with the minimum PD across all parallel SDs.
The search is terminated when all subtrees have been
searched, the detection output being the leaf node with the
minimum PD across all subtrees. The overall processing
latency is determined by the slowest parallel SD.

3.1 MultiSphere’s Preprocessing: SD Tree
Partitioning

MultiSphere’s SD partitioning consists of a) the seeds identifica-
tion, which finds NPE paths (seeds) in the Tree of Promise, the
ones most promising to constitute the correct solution (i.e., to
be the transmitted vector) with NPE being the number of
available PEs and b) the seeds to subtrees expansion, which
assembles subtrees around these seeds so that their union
forms the original SD tree.

3.1.1 Seeds Identification

The relative position vector (RPV) m describes a tree path,
in the Tree of Promise by means of the ordered (in terms of
PDs) position of its nodes to the received observable. If the
lth element of m equals k, then, for the corresponding path,
its node at level l is the kth closest node to the received eyl. If,
for example,m ¼ ½1; 2; 3�T the path consists of the node with
the third smallest PD at the highest level of the tree (i.e.,
mð3Þ ¼ 3), its child with the second smallest PD at the sec-
ond level of the tree, and its child with the smallest PD
at the lowest level of the SD tree.

Finding the exact probability for each path to include the
correct solution is clearly an non-trivial task that would
require difficult integrations with no obvious, closed-form
solutions. In order to avoid such calculations we propose
a Metric of Promise (MoP)M, related to a proposed approx-
imation of the corresponding probability (please refer to the
Appendix for details). In particular, the proposed MoP for
an SD tree path with RPVm is

M mð Þ ¼ �
Xnt
l¼1

ln e
�al ml�1½ � Rllj j2

2s2 � e
�alml Rllj j2

2s2

� �
; (1)

withM mð Þ��ln P xm ¼ sðtÞ
� �� �

, where xm denotes the sym-
bol vector related to pathm and al depends on the minimum
distance dQAM between QAM symbols at level l (e.g., for
dQAM ¼ 2, al ¼ 1:11). Then, the smaller M mð Þ is, the more
likely it is for pathm to include the correct solution.

The MoP in Eq. (1) requires knowledge of the noise
variance s2. However, as shown in the Appendix, if s2 is not
known, we can instead use the following simplifiedMoP

Ms mð Þ ¼
Xnt
l¼1

al ml � 1½ � Rllj j2; (2)

where, provided that the same QAM constellation is used
per transmit antenna, the terms al will be the same for all l
values, and can be ignored as they won’t affect finding the
paths with the smallestMs values. As we show in Section 5,
Ms is equally efficient withM regarding its ability to reduce

decoding latency. However, the lack of knowledge of s2

prevents from using methods similar to the one proposed in
Sections 3.2.2 or 3.2.3 to avoid the unnecessary allocation of
PEs or to efficiently allocate (schedule) PEs in multicarrier
systems. We note that both metrics are independent of any
channel statistics, and independently exploit each channel
realization. The metricMs is an improved yet less complex
version, of the heuristicMoP proposed in our originalwork in
[1]. Since the MoPs are not a function of the actual received
signal they can be pre-calculated before data detection (i.e.,
before sphere decoding). In addition, bothM andMs can be
calculated in a recursive manner, similarly to traditional SDs.
As we explain in the end of this Section, the seeds identifica-
tion does not need to be exact to preserve ML optimality.
Thus, they can be found in a K-Best manner with K ¼ NPE,
requiring latency of the order ofNPE 	nt.

Algorithm 1.MultiSphere’s Seeds to Subtrees Expansion

MultiSphere- Seeds to subtrees expansion
Input: m, jOj, nt,NPE , i // Seeds
Output: Ti // Subtree i
Initialize: l nt, Ti ; // Current level
Initialize: Bðntþ1Þ f1; . . . ; NPEg \ ½i� 1; iþ 1� //
B : ðnt þ 1Þ�NPE non-unique indices buffer

1: for l ¼ nt to 1 do
2: if 9 k; k2Bðlþ1Þ : mi;l ¼ mk;l; 8 k 6¼ i then
3: Bl k // Store non-unique indices
4: else break end if
5: end for
6: splitlevel l
7: for l ¼ splitlevel to nt do
8: findmaxðmk;lÞ; 8 k2Bðlþ1Þ
9: ifmi;l ¼ maxðmk;lÞ � 1 then

Ti Ti [descendants and ancestors ofmi;l

10: break
11: else ifmi;l < maxðmk;lÞ then boundðlÞ mðiþ1Þ;l�1

Ti Ti [all nodes at lwith indices j : j2½mi;l; boundðlÞ�,
descendants and ancestors

12: break
13: else boundðlÞ jOj

Ti Ti [all nodes at lwith indices j : j2½mi;l; boundðlÞ�
and their descendants

14: end if
15: end for
16: return Ti

3.1.2 Seeds to Subtrees Expansion

The Seeds Identification process outputs NPE seeds, each with
its own RPV mi (i ¼ 1; . . . ; NPE) for each of which there is
one node defined per tree level. The subtrees expansion of a
seed is then used to construct a corresponding subtree Ti

(i.e., for each of which there is a range of nodes defined per
tree level) which, similarly to the seeds, is also expressed in
terms of RPVs. These subtrees will later be processed by the
respective PE. Seeds mi are sorted in ascending order of
their indices miðlÞ, starting from l ¼ nt. Seeds with the same
elements from nt until a level l are sorted in ascending order
of elements at level l�1. Then, for each mi the subtrees are
created according to Algorithm 1, so that the union of all Ti

forms the original SD tree, in order to preserve ML optimal-
ity. In the example of Fig. 1, the expansion of T2 starts from

2312 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 10, OCTOBER 2019

the first node that is part of m2 and not part of adjacent
seeds, i.e., m1 and m3 (step 2). The algorithm continues by
allocating sibling nodes and their descendants (step 3), and
continues traversing up the tree and allocating sibling nodes
with greater indices that do not belong to the following seed
(step 5 allocates no such nodes). The algorithm will, in the
worst case, reach level l ¼ 1, and then traverse up to l ¼ nt

allocating nodes in the process, and resulting in a latency
of Oð2ntÞ.

3.1.3 Symbol-to-Subtree Allocation

Tree partitioning provides the nodes to be processed by each
MultiSphere SD as a function of their ordered distance. In
Fig. 1, for example, subtree T3, will consist of the 2nd and 3rd

closest symbols at l ¼ 3 (or the nodes for which m3ð3Þ ¼ 2
and m3ð3Þ ¼ 3) and all their descendants. In high order sys-
tems, finding the actual symbols would require exhaustive
PD calculations and sorting of the correspondingnodesmulti-
ple times across the parallel SDs. To avoid these redundant
calculations, MultiSphere uses an approximate predefined
order to allocate symbols to subtrees, based on calculating
minimum euclidean distances depending on the relative position
of the received point and the constellation geometry. In addi-
tion, it uses a symbolmapping of two-dimensional zigzag coordi-
nates. In one-dimensional symbol constellations, the sorted
order of the symbols in terms of their distance to the received
point can be easily found in a zigzag manner [5], [8] after
finding the closest constellation symbol s

ðcÞ
l to the “equivalent

(in the constellation domain) received point”

yl ¼
ðeyl �Pnt

j¼lþ1 RljsjÞR�1ll ; 1
 l < nteyntR�1ntnt
; l ¼ nt

(
: (3)

Using the zigzag concept each symbol in a two-dimensional
constellation can bemapped in terms of its zigzag coordinates
ðzzx; zzyÞ, as shown in Fig. 2. MultiSphere’s preordering is
based on the relative position of yl to s

ðcÞ
l . In particular, after

finding s
ðcÞ
l , we know that yl (shaded triangle in Fig. 2) will

always lay in a square with one of its edges at s
ðcÞ
l and a side

length equal to the half of the minimum distance dQAM

between QAM symbols. Thus, a minimum euclidean distance
dmin from any constellation point s to yl can be calculated as in
Fig. 2. Then,MultiSphere uses a predefined order that approx-
imates the actual one. In particular, if we want to allocate to
a subtree the kth closest symbol to s

ðcÞ
l , MultiSphere allocates

instead the symbol whose zigzag coordinates are the ones

of the kth smallest dmin. For example, in Fig. 2, if the fourth
closest symbol to s

ðcÞ
l needs to be allocated, we instead allocate

the symbols with the zigzag coordinates (1,1). To precalculate
the dmin values we assumed that s

ðcÞ
l is an inner constellation

symbol. If two ormore symbols have the same dmin but differ-
ent zzx or zzy, the dmin values are sorted in an ascending order
of their corresponding coordinates. We note that despite the
fact that there are four possible squares where yl can lie, all
dmin values, predefined orders and corresponding zigzag
coordinates exploit constellation symmetry, significantly
reducing the architectural overhead compared to the preor-
dering initially proposed in [1].We note that this approximate
ordering does not affect optimality since the union of all con-
structed sub-trees still forms the original SD tree. In addition,
since the relative sequence is stored via zigzag coordinates,
mapping is feasible even if s

ðcÞ
l is an outer constellation

symbol. Then, dmin is still a valid lower limit of the corre-
sponding euclidean distance, since zigzagging from s

ðcÞ
l

will point to a symbol which is even further than what was
initially assumed.

3.2 MultiSphere’s Sphere Detection

3.2.1 Tree Traversal and Enumeration

Upon expanding a node, MultiSphere’s SDs visit children
nodes in ascending order of their PDs (see Section 2). To avoid
calculating and sorting all PDs at each level, enumeration
methods have been proposed [5], [8] which, as discussed, are
not applicable to MultiSphere due to their sequential order-
ing. MultiSphere performs the following enumeration
instead. From the set of potential symbols to be visited at a
specific tree level and for each existing zzx coordinate, we
identify the symbols with the minimum zzy. This results in a
subset of at most

ffiffiffiffiffiffiffi
jOj

p
symbols having unique zzxs. Out of

this subset, we calculate the PD of the symbol with the mini-
mum zzx for which zzy ¼ 0, if such a symbol exists. In addi-
tion, we calculate and store in a buffer Q, of maximum sizeffiffiffiffiffiffiffi
jOj

p
the PDs of the symbols with zzy 6¼ 0. We first visit (and

remove from Q) the symbol with the smallest PD in Q.
If ðzzkx; zzkyÞ are the zigzag coordinates of the kth symbol
removed from Q, then to find the next symbol, we calculate
(and store in Q) the PD of the symbol with ðzzkx; zzky þ 1Þ.
If zzky ¼ 0 then we also compute the symbol with
ðzzkx þ 1; zzkyÞ. Fig. 2 for example shows that if the SD partition
requires examining the 12th to the 16th closest symbols, then
symbols ð1; 3Þ, ð2; 3Þ and ð3; 1Þ are first stored inQ. Since ð1; 3Þ
has the smallest PD in Q, no new symbol is added as ð1; 4Þ
does not exist. We then visit the symbol with the second

Fig. 2. Predefined order example for 16-QAM.Fig. 1. Tree of Promise and expansion of seeds m1 ¼ ½1; 1; 1�T , m2 ¼
½1; 2; 1�T , m3 ¼ ½1; 1; 2�T , (bold) into subtrees T1 (dotted), T2 (solid), T3

(dashed) in (ii). Their union is the full SD tree. Nodes may appear among
several subtrees.

NIKITOPOULOS ET AL.: MASSIVELY PARALLEL TREE SEARCH FOR HIGH-DIMENSIONAL SPHERE DECODERS 2313

smallest PD inQ, i.e., ð3; 1Þ. Subsequently, we add ð3; 2Þ toQ
and the process continues.

As verified in Section 5 by both our software and VLSI
design evaluations, MultiSphere can preserve the ML
optimality due to three reasons: (a) the “Seeds to subtrees”
expansion is such that, independently of the seeds, the union
of all parallel subtrees will include all the nodes of the initial
(sequential) SD tree. As a result, no possible solution
is excluded from the search. (b) While the mapping of nodes
to subtrees is approximate, no node is excluded from the final
search; some nodes may instead be mapped onto different
subtrees. (c) The new enumeration approach ensures that
each parallel tree search visits nodes in ascending PD order as
in the Schnorr-Euchner enumeration, which also preserves
theML optimality.

3.2.2 Adjusting the Number of Allocated PEs

Depending on the channel condition and SNR, allocating
more PEs to an SD tree search can possibly increase
complexity without any further latency reduction. In order
to achieve low latency without unnecessary PE utilization,
MultiSphere can allocate to an SD search only K PEs, K
being the minimum value for which

XK
k¼1

e�Mk � b; (4)

withMk being the kth smallest MoP. Subtrees expansion can
then take place by using only K out of the NPE available
PEs, and their corresponding K seeds. The sum in (4)
approximates the probability that the correct solution lies
among these K seeds. Therefore, when this probability
reaches a predefined value b that we evaluate via simula-
tions in Section 5.1 then no more PEs are employed. Fig. 8
for example shows that by setting b ¼ 0:5 at 16 dB SNR,
allows utilizing 62 PEs to achieve the same average latency
as a 128-PE MultiSphere at half of the latter’s complexity.

3.2.3 PE Scheduling for MIMO Multicarrier Systems

In MIMO multicarrier systems, we can inherently parallelize
the workload by allocating one sequential SD per subcarrier.
However, and as we show in Section 5.1, such a method
is inefficient when targeting the exact ML solution since the
latency of the multi-carrier frame is determined by the
“slowest” SD. As shown in Fig. 9, if we instead use Multi-
Sphere with 8-PEs to parallelize the detection of each subcar-
rier and process each subcarrier sequentially, we reduce
latency by a factor of three compared to allocating one sequen-
tial SD per subcarrier (52 in total). However, as described in
Section 3.2.2,when a large number of PEs is available toMulti-
Sphere, allocating all PEs to a subcarrier may unnecessarily
waste processing power. To efficiently use the available PEs,
we hereby propose a PE scheduling approach according
to which MultiSphere processes the several subcarriers
sequentially, starting from the one demanding the most PEs.
If Eq. (4) is unfulfilled for K PEs with K < NPE we process
the subcarrier using all available PEs. If, on the other hand, (4)
is met, still leaving enough available PEs for more subcarriers
to fulfill (4) for their corresponding MIMO channel, we can
then process these subcarriers in parallel. As shown in Fig. 10,
this allows for efficient PE utilization when there can bemany

more PEs than subcarriers and reduces latency by several
orders of magnitude compared to per-subcarrier paralleliza-
tion strategies.

3.2.4 Approximate, Fixed-Complexity MultiSphere

MultiSphere can provide the exact ML solution at substan-
tially reduced processing latency compared to sequential
SDs. This latency, though, can significantly vary with the
SNR and channel condition. Solutions like the FSD [23]
or breadth-first SDs [13], [27], [28] provide a fixed and pre-
determined processing latency by sacrificing ML optimality.
In the same manner, MultiSphere can be terminated at any
time instant, after each SD finds its first candidate solution.
In such a case, MultiSphere’s latency can be flexibly set to
any value at runtime, in contrast to traditional, approximate
breadth-first approaches which can only set latency at
design time. Consequently, MultiSphere allows for efficient
trade-offs between error-rate performance, latency and NPE

for a given transmission scenario.
From this family of approximate SDs, as discussed in

Section 1, FSD enjoys akin parallelization properties with
MultiSphere. However, while MultiSphere can use any num-
ber of PEs, the FSD requiresNPE to be an integer power of jOj.
In addition, the FSD determines the tree paths to run in paral-
lel in a pre-definedmanner and cannot adjust to the transmis-
sion conditions. In Section 5.1, we compare the FSD against an
approximate, minimum latency version of MultiSphere
(denoted as a-MultiSphere) which only visits the NPE most
promising paths (i.e., seeds) and the SD’s output is the seed
with the minimum euclidean distance. This suboptimal
approach requires neither MultiSphere’s Seeds to Subtrees
Expansion (Section 3.1.2) nor MultiSphere’s Tree Traversal and
Enumeration (Section 3.2.1) enabling high-throughput designs
with a large number of information streams. In Section 5.1 we
show that for a 16� 16 MIMO configuration, a-MultiSphere
performs similar to the FSD with one eighth of the latter’s
PEs, while our VLSI post-synthesis evaluation in Section 5.2
shows that this advantage translates to almost an order of
magnitude higher hardware efficiency.

In soft-output systems, calculating the soft information
requires calculating multiple constrained ML problems [29]
and therefore, MultiSphere is still applicable. However, the
complexity of traditional soft-output SD approaches [29],
[30], [31] becomes impractical when applied to large MIMO
systems and their parallelization would thus require an
impractically large number of PEs. To the best of our knowl-
edge, the only soft detection solution that is applicable to
large MIMO systems is the soft-output version of the FSD
(hereafter referred to as SFSD). Therefore, for soft-output
systems we focus on the approximate version of Multi-
Sphere and compare its performance against the SFSD and
the recent, partial marginalization-based approach of [32].
In Sections 5.1 and 5.2 we show that in a similar 16�16
MIMO scenario and at 0.75 code rate, the soft-output
version of a-MultiSphere achieves a performance advantage
that is consistent with that of the hard-output version.

4 MULTISPHERE: VLSI ARCHITECTURE

The primary challenge in retainingMultiSphere’s algorithmic
advantage in practice lies in the design of a VLSI architecture
which efficiently addresses MultiSphere’s tree traversal and

2314 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 10, OCTOBER 2019

enumeration (Section 3.2.1). Of particular challenge is first,
finding the subset of at most

ffiffiffiffiffiffiffi
jOj

p
nodes which may be

visited at a specific tree level without any taxing sorting oper-
ations, and second, selecting the next sibling node within
the subtree Ti by avoiding sequential or high-complexity
comparisons. In the following, we present the design of a
VLSI architecture which efficiently tackles both challenges at
a minimal area and critical path overhead. We note that our
architecture serves as a proof-of-concept of MultiSphere’s
principles when all PEs are allocated to a single subcarrier.
As we will show in our evaluation, dynamic allocation of PEs
to subcarriers is suitable whenmany PEs are available, neces-
sitating algorithmic co-design and tradeoff study of efficient
dispatchers and interconnection networks and is thus left for
futurework.

4.1 Parallel MultiSphere Detection Engines

MultiSphere’s processing approach maps to the single-
instruction multiple data paradigm, i.e., tree-search is per-
formed in parallel on multiple Tis. Moreover, MultiSphere’s
tree partitioning (Section 3.1) allows for detection with mini-
mal dependencies and data exchange, as during detection
only the radius is exchanged, only once and only in the exact
ML case. To minimize processing latency and to allow
evaluation with arbitrary PEs, our framework is based on
distributed memory storage and de-centralized control units.
Fig. 3 depicts the overview of MultiSphere’s detector as well
as the parallel engines’ architecture, interconnecting an arbi-
trary number of detection engines with minimal overhead.
The R matrices and the y values are broadcast to all engines,
while Tis in the form of validity matrices vm are assigned to
each engine. Exact engines signify having reached the first
leaf on their Tis by a distinct signal which is also used as a
self-disabling latched pulse. All PD values along with their
partial vectors (i.e., keys and labels respectively) are proc-
essed by comparator networks arranged in a binary tree
fashion, i.e., processor arrays denoted as MinTrees (MTeng)
which in essence serve as the engines’ interconnection net-
work. The network’s output i.e., the final partial vector and
partial distance is either broadcast to all detection engines
(exact case) or forwarded to the output (approximate case).
When all exact engines reach their first leaf, they store the out-
put corresponding to the minimum PD, the self-disabling sig-
nal is reset and they resume on the next clock cycle. In the

case of instantiating many detection engines, the critical path
and fanout can be reduced through input storage replication.
Despite MultiSphere’s concurrency, exact-ML depth-first
detection is stochastic and one cannot assume that the PEs
will finish in a sequential order. Thus, employing the efficient
reduction circuits in [33], [34] would increase latency,
particularly in the high SNR range. In the case of the soft-
output a-MultiSphere, each engine’s partial vector and
partial distance pair are concatenated onto a single vector
and forwarded to an LLR processor (Fig. 3) which calcu-
lates the Log-likelihood ratios and whose architecture we
describe in the following section.

4.2 The MultiSphere Sphere Detector Engine

Exact Multisphere. In this section, we describe the internal
design of the exact MultiSphere SD engine, which is based on
a generalization of the folded one-node-per-cycle architecture
first defined in [8] with additional node replacement and
enumeration logic, following similar principles as [8]-ASIC-II.
Despite the various SD approaches [8], [13], [18], [28], [35],
[36], [37], this is, to the best of our knowledge, the most
efficient design for depth-first SDs that can find the exact ML
solution while visiting one node per clock cycle. We employ
integer arithmetic and present a VLSI architecture which
enables MultiSphere’s efficiency via bit-parallel operations
also supporting traditional decoding and is also scalable to
denser constellations as our evaluation shows.

4.2.1 Tree-Traversal Processor (TTP)

The TTP (Fig. 4-left) selects
ffiffiffiffiffiffiffi
jOj

p
nodes to be visited on the

current tree level l and computes their PDs. To avoid dividing
by Rll, (Eq. (3)), we multiply all constellation point values by
Rll. The processing datapath of a-MultiSphere’s branch
(Fig. 4, middle) is almost identical MultiSphere’s TTP exclud-
ing the node collector described below.

Low-Complexity Multiple Constant Multipliers (MCMs).
Due to the large number of multiplications required for
detection, designing efficient constant coefficient multi-
pliers is critical. Our designs employ a multiplier which
stores only the positive integer constellation values in affiffiffiffiffi
jOj
p

2 	 ðlog 2ð
ffiffiffiffiffiffiffi
jOj

p
Þ þ 1Þ

 �
-bit lookup table (Fig. 4-right). In

order to map constellation points, we employ binary indices
that also address the lookup table while the most significant

Fig. 3. MultiSphere’s Sphere Detection engines and parallel framework.

NIKITOPOULOS ET AL.: MASSIVELY PARALLEL TREE SEARCH FOR HIGH-DIMENSIONAL SPHERE DECODERS 2315

binary index bit adjusts both the multiplication result and
the final lookup address (for negative constellation values.)
We also considered two additional multipliers: a) in which
we store positive and negative integer constellation points
in a ð

ffiffiffiffiffiffiffi
jOj

p
	 ðlog 2ð

ffiffiffiffiffiffiffi
jOj

p
Þ þ 1Þ�-bit lookup table (full-depth,

denoted as MCM-F), and b) the flexible multiplierless
approach of [20] for up to 64-QAM. Due to the exact ML
nature of MultiSphere, we employ two’s complement
arithmetic (i.e., “2sC” in Fig. 4-right) instead of negation via
NOT gates as in [20]. In Section 5.2 we present a thorough
efficiency evaluation of multipliers via synthesis.

Slicer. Following the computation of y 	Rll, the engine
determines s

ðcÞ
l via its slicer. To employ the aforementioned

low-complexity multipliers, slicing relies on intermediate
integer boundaries scaled by Rll. We then compare the
received symbol with the scaled boundary and directly
map it to a constellation point index. Additionally, we
detect the received symbol’s relative position (i.e., left or
right) to the selected closest point for subsequent employ-
ment by our “Zigzag to index Mapper”. We determine the
relative position via two comparators and one “2sC” mod-
ule for 16-QAM (six comparators and three “2sC” modules
for 64-QAM).

Subtree Node Collector (SNC). One of MultiSphere’s main
architectural novelties, the SNC collects at most

ffiffiffiffiffiffiffi
jOj

p
nodes

which the detectorwill visit on a particular level, by efficiently
avoiding complicated, sorting operations which would
adversely affect the critical path. Our proposed approach is
based on the MTni comparison processors (Figs. 4 and 5)
which operate in parallel to the y 	 Rll calculation and the
Slicer. To define and store the Ti for each engine, we consider
the nodes per level arranged in ascending order of their
zigzag coordinates, first by zzx and then by zzy, i.e.,
ð0; 0Þ ð0; 1Þ . . . ð

ffiffiffiffiffiffiffi
jOj

p
;

ffiffiffiffiffiffiffi
jOj

p
Þ. In this manner, we only need a

single bit to denote a node’s presence in Ti and therefore
defining the latter in a detection engine through a validity
matrix (vm) requires nt 	 jOj bits. For every unique zzx, we
employ a singleMTni processor which outputs the minimum
valid zzy. Note that the arrangement of theMTni processors is
a function of the constellation size and thus the actual zzxs
need not be processed by the MTni network. Thus, the MTni

comparators’ width is just log 2

ffiffiffiffiffiffiffi
jOj

p
bits. Next, we generate a

binary mask of
ffiffiffiffiffiffiffi
jOj

p
bits which signifies (via zeroes) the

nodes (among the
ffiffiffiffiffiffiffi
jOj

p
chosen) for which zzy ¼ 0. In parallel,

a single, more complexMTz processor processes both coordi-
nates to denote the minimum zzx for which zzy ¼ 0 (Fig. 4).
We then decode the index into a

ffiffiffiffiffiffiffi
jOj

p
-bit vector and OR the

result with themask to get the final valid nodes.
Zigzag to Index Mapper (ZIM). This mapper employs the

closest point index, the single-bit relative position of the
received symbol (left or right) and the zigzag coordinates
from the SNC to generate the indices of the nodes selected at
the current level. Mapping is based on an optimized lookup
table tomaintain a low area and critical path overhead.

4.2.2 Node Enumeration Processor (NEP)

The NEP determines the next sibling and stores the current
search state per tree level (i.e., the node attributes). The state
normally consists of the node’s partial vector sðlÞ, its PD,
and a single bit flag which verifies validity. In the case of
MultiSphere, the proposed 2D enumeration (Section 3.2.1)
requires additional storage of zzx; zzy per node. The current
tree-search state also involves storing the euclidean distance
dðsðlþ1ÞÞ and y 	Rll, both of which the TTP has already com-
puted. Each storage unit, organized as a register bank,
stores

ffiffiffiffiffiffiffi
jOj

p
elements of: a) log 2

ffiffiffiffiffiffiffi
jOj

p
bits for the partial

vectors, b) parameterized width for the PDs, c) single bits
for validity and d) 2 	 log 2jOj

2 bits for zzx; zzy. Additionally,
we employ jOj bits per level to store the level’s current
validity matrix vmðlÞ.

Node Storage. Our proposed storage solution adopts a par-
allel load/store register file. To reduce switching activity, we
employ fine-grained clock enabling on all SD registers. While
MultiSphere traverses down the tree, its control unit ensures
through a level write signal that only a single storage unit will
be active. We notice (Fig. 2) that the order of the node indices
per level depends on the received symbol (i.e., we cannot
directly map the node’s constellation index to its location in
the buffer). We thus address our storage via zzx to avoid
expensive permutations.

Node Replacement Processors. Depending on zzy, Multi-
Sphere can replace each node with up to two siblings (Section
3.2.1). To efficiently find the replacements and maintain the
one-node-per-cycle processing rate, we introduce two distinct
modules of similar functionality, the Horizontal Node Replace-
ment Processor and the Vertical Node Replacement Processor
(HNRP and VNRP, Fig. 5). They consist of the Replacement
Discovery Processor (RDP) that computes the attributes of a sib-
ling and forwards these attributes to the PD / partial vector
processor. The RDP’s slicer and multiple constant multiplier

Fig. 4. MultiSphere’s Tree-Traversal Processor (left) illustrating task par-
allelism for finding the closest symbol and collecting the nodes within Ti.
Consequently, the subtree node collector unit and Zigzag to Index Map-
pers incur a minimal overhead to the critical path. The a-MultiSphere
branch (middle): pipeline registers are depicted via red parallelograms.
Integer MCMs (right): multiplier-based and multiplierless.

Fig. 5. Architecture of MultiSphere’s Node Replacement Processors
(left) realizing enumeration, PD calculation and partial vector generation.
Right side:MinTree processors’ architecture.

2316 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 10, OCTOBER 2019

(MCM) recompute the closest node’s indices and their relative
position to the received symbol.1 As MultiSphere explores
potentially a subset of the constellation at each Ti level, incre-
menting zzy by one i.e., a simple vertical zigzag and then
sequentially checking if each resulting node is part of Ti

(or the constellation), is indeed one solution albeit an ineffi-
cient one.We instead employ a

ffiffiffiffiffiffiffi
jOj

p
-bit vector (valid bits from

buffer in Fig. 5) corresponding to the current subconstellation
state from the validity matrix vmðlÞ as selected via zzx. This
stored part of the array is XOR-ed with the binary decoded
zzy and the result is used as: a) a validity vector for theReplace-
ment Discovery Processor’sMTni to select the minimum among
all remaining valid zzys and b) the new validity vector which
will replace the corresponding part of vmðlÞ. Once all subcon-
stellation nodes have been visited, the new validity vector con-
sists of zeros and the visited all nodes signal is generated.
The SD will then avoid storing the VNRP’s result, invalidate
the buffer location corresponding to the selected subconstella-
tion and bypass PD calculation. Similarly, the HNRP’s valid
bits from buffer signal denotes instead the remaining valid
nodes for which zzy ¼ 0. To avoid storage conflicts, only the
VNRP invalidates buffer locations. Notice that now theVNRP
and HNRP node attribute outputs have to be written to the
storage unit’s register file. The outputs’ real indices are by
definition different and this is exploited to establish conflict-
free storage access. The node attribute vectors generated by
each replacement unit are de-multiplexed into a specific loca-
tion of the

ffiffiffiffiffiffiffi
jOj

p
-element register file and the two de-multi-

plexed vectors are then merged into one by an OR operation.
The merged vector is then employed for storage. When the
replacement is invalid, decoding of the index is disabled and
nothing gets stored.

Approximate Multisphere (a-Multisphere): a-MultiSphere’s
fixed processing complexity allows for a pipelined parallel
VLSI architecture where we consider a processing element
as the fully-instantiated logic required to process a single
SD path across all tree levels. a-MultiSphere’s processing
datapath is almost identical to that of MultiSphere’s
(Fig. 4) TTP except for the Subtree Node Collector. Compared
with the FSD, a-MultiSphere incurs a minor overhead,
mainly involving the ZIM and the additional pipeline.
In the nt ¼ 16 case, a-MultiSphere’s initial latency is
219þ log 2ðNPEÞ clock cycles, corresponding to a pipelined
MTeng array.

MinTree (MT) Processor Trees: MultiSphere’s VLSI archi-
tecture relies on trees of MinTree processors (Fig. 5): a) MTni

that output the minimum valid zzy per zzx, employed also
inside the RDP, b) MTz that output the minimum zzx for
which zzy ¼ 0, and c) MTeng interconnecting the engines
and used within each detector. Fig. 5-right shows the archi-
tecture of each MinTree processor. Each processor outputs
a valid word containing the actual value (key), the corre-
sponding rank (label) of each key and its validity bit, based
on combinational (CMB) and comparison (< >¼) circuits.
Notice that MTeng and MTni are almost identical apart from
the unused label in the latter. In Section 5.2 we assess the

complexity of each processor, its contribution in the total
cost of MultiSphere and in tree arrangements.

LLR Processor. For calculating the log-likelihood ratios,
instead of the MTeng processor tree, the partial vectors and
distances are initially processed by a streaming parallel
bitonic sorting network (i.e., SN1 in [38]), modified to
wholly or partly employ each vector as the sorting key. We
chose this particular architecture as it features the lowest
latency while requiring the least amount of resources [38].
Apart from the sorted partial distances, the sorting network
outputs NPE partial vectors of nt�log 2jOj bits, i.e., equal to
the number of LLRs that need to be calculated. The partial
vectors are then regrouped into nt�log 2jOj vectors of NPE

bits each, where the first NPE-bit vector contains the left-
most bit from each “sorted” partial vector (i.e., correspond-
ing to the sorted partial distances) and so on. Hence,
the leftmost bits (hereafter referred to as the ML bits) of the
regrouped vectors correspond to the minimum partial
distance. Each of these ML bits along with each regrouped
NPE-bit vector are input to a Flipped Bit Index Processor
which computes the index of the first bit inside this vector
that is non-equal to the ML bit. This selects one partial dis-
tance out of NPE , which, along with the minimum partial
distance and 1

2s2
are used to compute the final LLR after

clipping. We note that the proposed LLR processor can be
flexibly (e.g., sorting network size, number of index and
clipping processors) instantiated to meet specific device
requirements; for the purpose of exploration, our evaluation
assumes a fully parallel sorting network of up to NPE keys
and an expansion of up to 16�log 2ð64Þ LLRs.

5 PERFORMANCE EVALUATION

Here we jointly assess MultiSphere’s, exact and approxi-
mate, algorithmic and VLSI architecture performance.
MultiSphere’s algorithmic performance is evaluated via
simulations in terms of processing latency2 and overall com-
plexity.3 For our architectural comparisons, we implement
the software and VLSI versions of the sequential approach
for which we replace the exhaustive SE enumeration with
the PAM-based enumeration in [12] (hereafter referred to as
our Sequential PAM SD) since it a) scales better with dense
QAM constellations and b) expands a subset of

ffiffiffiffiffiffiffi
jOj

p
nodes

on each level, similarly to MultiSphere’s bound (Section
3.2.1) Unless specifically stated otherwise, all euclidean dis-
tance calculations employ the exact l2 norm. For consistency
and fairness, we compare a-MultiSphere against our own
flexible FSD VLSI architecture for hard and soft informa-
tion-based detection. All of our VLSI architectures follow
the design principles of Section 4. For our evaluations the
seeds have been identified via aK-Best SD, withK ¼ NPE .

5.1 Algorithmic Performance Evaluation

We first evaluate MultiSphere’s exact version in an
uncoded, 16-QAM modulated 10�10 MIMO multi-carrier
system assuming sorted QR decomposition (SQRD) as in
[39]. We mathematically model each sub-channel between a

1. Note that the TTP has already computed these and they can be
stored at the expense of increased area requirements in large antenna
setups. This would slightly reduce node replacement delay only, as it
lies outside the critical path (i.e., the TTP).

2. Via the number of visited nodes, assuming that one node is vis-
ited among those examined at every time instant [5], [8], [18], [20], [37].

3. Via the number of partial distance calculations performed,
depending on the SD algorithm [5], [8], [12].

NIKITOPOULOS ET AL.: MASSIVELY PARALLEL TREE SEARCH FOR HIGH-DIMENSIONAL SPHERE DECODERS 2317

transmit-receive antenna pair as a 5 tap i.i.d. Rayleigh chan-
nel (in the time domain). We also evaluate MultiSphere via
actual channel traces, measured4 in indoor conditions. For
our evaluations the channel is static over the transmission
of a packet, i.e., it is assumed that one packet is transmitted
per channel coherence time. As a result, preprocessing (i.e.,
channel estimation, QR decomposition, Seeds Identification)
takes place once, at the beginning of each packet.

Single-Carrier Latency and Complexity. Fig. 6 verifies that
MultiSphere’s ML optimality in all cases. Fig. 7 depicts Multi-
Sphere’s latency and complexity for several NPE cases
in comparison with the state-of-the-art Sequential PAM and
Geosphere [5] SDs, for both MoPs (M andMs, Section 3.1.1).
We note that our algorithmic evaluation does not consider the
latency overhead of finding and distributing the minimum r2

across the NPEs. Fig. 7 validates that MultiSphere can consis-
tently decrease latency when NPE increases; for NPE ¼ 16,
MultiSphere reduces latency bymore than an order of magni-
tude compared to sequential SDs. Moreover, as Fig. 7-bottom
shows, MultiSphere reduces latency without substantially
increasing complexity. In particular, the overall complexity
can be even smaller than that of the highly-optimized, state-
of-the-art sequential SDs examined. In addition, Fig. 7-top
shows that both of the the proposed MoPs i.e., M and
Ms attain a very similar latency reduction performance.

Moreover, Fig. 7-top verifies that the latency advantage of
MultiSphere is consistent for both mathematically modelled
channels and actual channel traces. Fig. 7 also displays the
latency and complexity for NPE ¼ 32, when, instead of using
the proposed method (Section 3.1.1), we always include
the most promising seed and randomly choose the rest.
Compared to the sequential SD, this reduces latency only by
approximately 20 percent though also increases complexity
by 50 percent. For the sameNPE , our proposed seeds identifica-
tionmethod reduces latency by 29� and has a lower complex-
ity compared to the sequential SD.

Adjusting the Employed PEs. Fig. 8 highlights the efficiency
of our method in Section 3.2.2 that adjusts the number of
utilized PEs (K) and therefore complexity, as a function of b,
without affecting the achievable latency. We note that for
b ¼ 1 all available PEs are used (K1 ¼ NPE), which, as shown
in Fig. 8, results in excessive overall complexity in the high
SNR region, whereas adopting a very small b leads to under-
utilization of the available PEs and a processing latency
“floor”. By setting b ¼ 0:5, a good trade-off between latency,
complexity and number of utilized PEs is accomplished.
Then, compared to allocating all PEs (b ¼ 1), we can reduce
complexity by 50 percent without a noticeable latency
increase, and with the ML solution still being guaranteed. Via
extensive simulations we have validated that the approach
is insensitive to the exact selection of b. Setting b to 0:5�0:1
practically leaves latency and complexity unaffected.

Multi-Carrier Performance and Scheduling. Figs. 9 and 10
compare MultiSphere to a straightforward scheme adopting
per-subcarrier parallelization according to which, one exact,

Fig. 6. MultiSphere’s symbol error rate (SER) in actual and mathemati-
cally modelled channels (10� 10, 16-QAM).

Fig. 8. MultiSphere when we adjust the number K of employed PEs
(NPE¼128, 16-QAM 10�10 MIMO). Presented results involve the M
MoP and actual channel traces. Similar results hold for mathematically
modelled channels.

Fig. 7. MultiSphere’s latency (top) and complexity (bottom) versus the
Sequential PAM and Geosphere SDs for 10�10 16-QAM MIMO. We
evaluate via both mathematically modelled channels (dashed lines) and
actual channel traces (solid lines). Fig. 7-top considers both MoPs, while
Fig. 7-bottom only MoPMs.

Fig. 9. MultiSphere’s multi-carrier block latency versus per subcarrier
parallelization (16-QAM, 10�10 MIMO, NSC¼52). Results shown for
actual channel traces and Ms. Similar results hold for mathematically
modelled channels.

4. A 20 MHz, 52 subcarriers MIMO-OFDM system was realized via
WARPv3 radios and WARPLab software [40], in the 5 GHz ISM band.
Channel traces for single antenna users from 10-antennae Access Points
(APs) were measured separately and combined for each 10� 10
channel realization. To emulate simple user selection strategies, the
SNR of jointly scheduled users does not differ by more than 3 dB.

2318 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 10, OCTOBER 2019

sequential SD processes each subcarrier. Fig. 9 displays
results using actual channel traces consisting of 52 active
subcarriers for the purpose of more realistic comparisons.
We see that conventional, per-subcarrier parallelization,
fails to efficiently reduce latency despite the large number
of employed PEs (52), since the subcarrier with the highest
latency determines the multi-carrier block’s latency as well.
On the other hand, sequentially processing the subcarriers
via an 8-PE MultiSphere, results in a 3� latency reduction
compared to per-subcarrier parallelization via sequential
SDs (16 dB SNR). Moreover, in the high SNR range and
with a 32-PE MultiSphere we reduce latency by more than
an order of magnitude. Fig. 10 displays latency when target-
ing exact ML detection, for a varying number of subcarriers
NSC , and multiple configurations and NPE values. We show
that straightforward, per-subcarrier parallelization is inca-
pable of efficiently reducing latency while preserving ML
optimality. On the other hand, Fig. 10 shows that for the
same degree of parallelism (NPE ¼ NSC) MultiSphere com-
bined with the PE scheduling of Section 3.2.3, and b ¼ 0:5,
can provide a latency reduction of more than two orders of
magnitude, compared to per-subcarrier parallelization
(for NSC ¼ 512). In addition, we show that MultiSphere,
in combination with the proposed scheduling, is the first
method that can exploit any number of PEs (e.g., NSC � 32)
and consistently reduce processing latency, while still pro-
viding the exact ML solution. Without scheduling, even
if the PEs are enough for MultiSphere to reach the minimum
exact SD latency (i.e., 2nt � 1 nodes), due to the sequential

subcarrier processing, the overall minimum processing
latency will be of the order of Oð2 	 nt 	NSCÞ.

Approximate Detection. Fig. 11 compares a-MultiSphere
(Section 3.2.4) with FSD and the K-best sphere decoder [13].
For fairness, a-MultiSphere, FSD and K-best decoder employ
the sorted QR decomposition tailored to the FSD [23]. For the
K-best detector we find the K-best siblings via a geometri-
cally-based enumeration [28], [41]. Fig. 11 shows that since a-
MultiSphere can focus its processing power on the most
promising paths to include the correct solution, it consistently
outperforms FSD for the same number of PEs, both for coded
and uncoded systems, and with the gains increasing when
smaller error-rates are targeted. Then, depending on the SNR,
and for a 16� 16, 64-QAMmodulated system, a-MultiSphere
can provide a similar error-rate performance to the FSD by
utilizing less than one tenth of the PEs (384 instead of 4,096).
In addition, as discussed in Section 1, FSD requires NPE to be
a multiple of the order of the transmitted constellation, which
makes FSD inefficient for very-dense constellations. On the
contrary, a-MultiSphere can efficiently utilize any number
of available PEs. Notice that for SNRs of practical interest, the
K-best SD can achieve a similar error-rate as a-MultiSphere,
albeit at a much higher complexity premium i.e., requires
14,400 nodes, or equivalently, 900 a-MultiSphere paths (3,592
forK ¼ 64).

MultiSphere for Soft-Output Systems. In Fig. 12 we compare
the soft version of a-MultiSphere (where soft information is
approximated by only exploiting the NPE seeds), to the soft-
output version of the FSD (i.e., SFSD) [42], and to the partial
marginalization-based AIR-PM detector [32] for its minimum
complexity, where one layer is fully expanded, and 448 paths
are visited. To the best of our knowledge, these are the only
approaches that can practically apply to largeMIMO systems.
Fig. 12 shows that, similarly to the hard-output case, the num-
ber of required PEs for a-MultiSphere to achieve the same
error-rate performance with SFSD can be nearly an order of
magnitude fewer. Moreover, for the same number of visited
paths, MultiSphere substantially outperforms AIR-PM in
terms of error-rate. In contrast to MultiSphere, AIR-PM is not
as flexible, hence in order to further improve the latter’s error-
rate performance, an impractical number of approximately
3 	 104 nodeswould need to be visited.

5.2 VLSI Architectures Evaluation

In order to explore scalability, we first assess the area and
delay of the exact and a-MultiSphere PEs as well as the
LLR processor’s for jOj 2 f16; 64g-QAM modulation and

Fig. 10. MultiSphere’s multi-carrier block latency v. PE/subcarrier proc-
essing with respect to NSC (simulated channels,M MoP, 10�10 MIMO,
16-QAM, 16 dB SNR).

Fig. 11. Error rate of a-MultiSphere, FSD and K-best SDs in mathemati-
cally modelled channels for both uncoded and coded systems (64-QAM,
16�16MIMO, 0.5 rate ð133=171Þ8 convolutional code) and varyingNPE .

Fig. 12. Soft a-MultiSphere v. SFSD: BER performance with 0.5 and
0.75 rate LDPC channel code (jOj¼64; 16�16MIMO).

NIKITOPOULOS ET AL.: MASSIVELY PARALLEL TREE SEARCH FOR HIGH-DIMENSIONAL SPHERE DECODERS 2319

nt 2 f4; 8; 16g. We initially employ 24-bits for dðsðlÞÞ, 16-bits
for R and 18-bits for the noise variance, in order to assess the
worst case impact of scaling nt and jOj (i.e., to reach ML per-
formance at nt ¼ 16; jOj ¼ 64). Next, we jointly evaluate area
requirements, performance anddynamic power consumption
based on our algorithmic results (Section 5.1) using a 16-bit
datapath for 16-QAM and retaining the 24-bit dðsðlÞÞ for
a-MultiSphere at 64-QAM. The detectors’ highly modular
and parametric Verilog RTL code is synthesized using the
Synopsys Design Compiler and TSMC 45 nm standard cell
libraries at 25�C and 0.9V. We apply the actual channel traces
to simulate the gate level netlist and generate the correspond-
ing switching activity files. We then estimate the worst-case
(i.e., the channel changes with every new subcarrier) average
dynamic power consumption for the SNRvalues of Section 5.1
using Synopsys’ Power Compiler and respectively evaluate
hardware and energy efficiency (denoted asHeff and Eeff) via
the bps/GE and Joules/bit (J/bit) figures of merit.5 We also
compare our post-synthesis results via technology scaling6

with the exact, and the approximate le1 enumeration SDs in
[43], the approximate method in [44] (which supports only
up to QPSK) and the high-throughput SDs in [45], [46].
We note that our designs can instantiate arbitrary NPEs; hith-
erto presented results are only indicative due to workstation
memory limitations.7

Single-Engine Scalability. Here we show that Multi-
Sphere’s relative architectural overhead can be kept at low
levels and decreases in large antenna setups (which consti-
tute this work’s main focus). We compare area requirements
and maximum achievable frequency of the MultiSphere,
Sequential PAM SD, a-MultiSphere and FSD PEs. Post-syn-
thesis results in Fig. 13 show that the exact and a-Multi-
Sphere’s respective gate count overhead is reasonable at 26
and 10 percent for nt ¼ 4, reducing to 13.9 and to 7.3 percent
in the nt ¼ 16, 16-QAM case (45.5, 18.9 and 20, 11 percent
respectively for 64-QAM). Increasing nt to 8 from 4 roughly

doubles the exact architectures’ area which then becomes
2.3� larger for nt ¼ 16 (in the approximate case the average
factor is 3.5�). Frequency-wise, the Sequential PAM SD’s
advantage is less than 4 percent at 16-QAM for nt ¼ 8 (i.e.,
389 v. 377 MHz) and less than 8 percent at 64-QAM (345 v.
322 MHz), while it is diminishing for larger nts. Similarly,
a-MultiSphere achieves 1.176 GHz (jOj ¼ 16) and 1 GHz
(jOj ¼ 64) for nt ¼ 8 (the FSD respectively achieving 1.250
and 1.030 GHz). Fig. 13-right shows that setting NPE ¼ jOj
and for 16-QAM modulation the sorting network accounts
for up to 46 percent of the LLR processor’s area (nt ¼ 4).
Increasing nt to 16, expands the sorting network’s gate
count by up to 2.14� due to the increase in the partial vector
width and also increases the size of the LLR sub-processing
arrays (Fig. 3), which account for up to 30.3 percent of the
total LLR processor’s gates (i.e., the flipped bit index pro-
cessors). When jOj ¼ NPE ¼ 64, the sorting network domi-
nates the total gate count (i.e., 63.5 up to 72.4 percent for
nt ¼ 16 and nt ¼ 4 respectively). In all of the displayed sort-
ing network cases and due to pipelining,NPE does not affect
the critical path as much as nt does; thus the LLR processor
achieves 1.25 GHz for nt ¼ 4 and up to 833 MHz for nt ¼ 16.

Multi-Engine Scalability and Detection Performance. For
NPE2f8; 16; 32g at 16-QAM, the average maximum (i.e., at
16 dB SNR) algorithmic speedup of exact detection based on
the number of visited nodes is 4� up to 36� (Fig. 7-top).
MultiSphere’s VLSI post-synthesis processing throughput
speedup for NPE ¼ 32 is close to the algorithmic speedup,
i.e., approximately 29� against the Sequential PAM SD and
30� against a single MultiSphere processing element. Table 1
displays the maximum energy efficiency (Eeff) involving
dynamic power consumption and the area required per exact
and approximate PE at the maximum achievable frequency.
Based on the above, we can configure the parallel engines
for NPE2f8; 16; 32g to respectively operate at 96.15, 20.45
and 10.68 MHz for which MultiSphere’s dynamic power
consumption decreases up to 27.4� (i.e., to 1.09, 0.26 and
0.11 mW per engine forNPE2f8; 16; 32g respectively at 25� C
and 0.9 V). Additional power consumption savings can be
achieved through voltage scaling. Note that even though the
exact SD in [43] has a lower area footprint due to a PSK-based
enumeration, the proposed architectures achieve higher
clock frequencies (Table 1).

In multi-carrier detection (Figs. 9, 10 and 14-left), Multi-
Sphere is significantly more efficient than conventional par-
allelization via sequential SDs, and its efficiency increases
with NPE . When processing a frame with NSC ¼ 52, a single
MultiSphere VLSI detector can achieve a speedup of 2.5�
(NPE ¼ 8) to 15� (NPE ¼ 32) over 52 Sequential PAM detec-
tors operating in parallel. This translates to a 7.4� higher
energy efficiency (NPE ¼ 8, 10 dB SNR) which can increase
up to 31.1� (NPE ¼ 32, 16 dB SNR). Moreover, MultiSphere
features a notably smaller area footprint; at 752 (NPE ¼ 8) to
2,891 KGE (NPE ¼ 32), compared with 4,766 KGE for the
Sequential PAM, 4,293 KGE the sequential PSK and 3,382
KGE the approximate sequential le1 SDs of [43]. Thus, Multi-
Sphere’s hardware efficiency is higher than all efficient
sequential architectures: 6� (NPE ¼ 8, 10 dB SNR) up to
25� (NPE ¼ 32, 16 dB SNR) against our Sequential PAM and
even 3� up to 13� against the very low complexity le1 SD of
[43]. Figs. 14-left and 10 show that further increasing NSC

Fig. 13. Detection engine scalability and overhead with respect to nt

and jOj: area (GE) breakdown at maximum frequency for MultiSphere,
the Sequential PAM SD, a-MultiSphere and FSD (left plots). The right
plots depict the LLR processor’s scalability and overhead when setting
NPE¼jOj.

5. Calculated as ThroughputðbpsÞ
AreaðGEÞ and dynamicPowerðWÞ

ThroughputðbpsÞ . Throughput given

by nt 	log2ðjOjÞ
L	tmin

, tmin being the minimum clock period and L the clock cycles

required for symbol detection (L equals to the average number of vis-

ited nodes in the exact and to paths
NPE

in the approximate design).

6. Frequency scaling from T nm via multiplication by T45, power scal-
ing from VDD via multiplication by ð 0:9VDD

Þ2 	45T .
7. We finally note that input to the detection engines is assumed to

be managed externally in line with the literature [8], [13], [18], [21], [28],
[43], [44] and is beyond the scope of this work.

2320 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 10, OCTOBER 2019

also increases total latency in all cases. Still, for NSC ¼ 512, a
single MultiSphere detector with NPE ¼ 32 at 16 dB SNR
maintains approximately constant efficiency, at 280 pJ/bit
and 124 bps/GE, while all sequential SDs are up to two
orders of magnitude less efficient. Even the very low area
footprint, approximate le1 SD of [43], achieves only 1.02
bps/GE in this case.8 Note that aforementioned results do
not take into account the additional logic which would be
required in order to distribute/collect themultiple subcarriers
to/from the sequential SDs andwhichwould procure an even
more favourable result for MultiSphere. Fig. 14-right com-
pares a-MultiSphere’s and the FSD’s energy and hardware
efficiency at 500 MHz (well-below the frequency of Table 1 in
order to allow performance projections for large NPE values)
forNPE2f1; . . . ; 128g in the case where the FSD expands two
levels (i.e., 4,096 paths). Requiring just 512 paths to reach the
same ML-approaching error rate (Fig. 11), a-MultiSphere
achieves 8.72� higher energy efficiency and 9.63� higher
hardware efficiency when taking into account the pipelined
minimum search unit. The soft-output a-MultiSphere can
have up to 7.04� higher area efficiency and 6.76� higher
energy efficiency (for 4,096 v. 512 paths as in Fig. 12). A-Multi-
Sphere’s energy efficiency advantage can decidedly escalate
when assuming a statically instantiated LLR processor capa-
ble to process the required number of paths in parallel
(Fig. 14). Against the recent state-of-the-art, such as the 16�16

MIMO in [44] (only supporting up toQPSK), our 16-PE a-Mul-
tiSphere is an order ofmagnitudemore hardware efficient and
6�more energy efficient. A 12-PE a-MultiSphere architecture
attains a similar error-rate performance to the K-best SD in
[45] (K ¼ 10), yet achieves 4� higher hardware and 12�
higher energy efficiency. Finally, a 24-PE a-MultiSphere is of
similar error-rate to the non-constant (K2½1; 16�) K-best SD in
[46] and slightly more hardware but less energy efficient. We
note though that we target a flexible proof-of-concept using
complex enumeration, not a specifically optimized case; we
also assume that the channel changes with every subcarrier
while [46] does not detail power estimation assumptions.

TABLE 1
MultiSphere’s Per-engine Area, Power, Energy Efficiency and Speedup at Maximum

Frequency Against the State-of-the-art

Detector
T

(nm)
NPE

f

(MHz)

Areaa

(KGE)

Powera

(mW)b
Eeff

c

(pJ/bit)
Speedup

jOj¼16; nt¼10 Sequential PAM 45 1 385 91.66 3.8303 249.97 1.00i

Sequential PSK [43] 250 1 332d 82.56e N/A N/A 0.86i

MultiSphere 45

1 368 106.9 3.9403 268.66 0.95i

8 333 751.7 27.416 415.56 3.47i

16 322 1,473 54.967 234.12 15.8i

32 307 2,891 99.747 256.07 28.7i

FSD (jOj¼64; nt¼16)

45

1 893 1,175 401.28 299.62 1.00j

4 833 3,171 880.73 176.14 3.73j

a-MultiSphere (jOj¼64; nt¼16) 1 877 1,305 452.32 343.76 0.80j

4 666 3,542 1,096.71 226.65 2.98j

soft FSD (jOj¼64; nt¼16)

45

1 833 1,647 479.79 383.83 1.00j

4 741 3,685 973.30 218.99 3.56j

soft a-MultiSphere (jOj¼64; nt¼16) 1 666 1,742 423.50 423.50 0.80j

4 666 4,059 1,024.67 256.71 3.20j

Detector
T

(nm)
NPE

f

(MHz)

Areaa

(KGE)

Powera

(mW)

Heff

(bps/GE)

Eeff

(pJ/bit)

a-MultiSphere jOj¼4; nt¼16g 45 16 1,136 6,256 2,915.5 5,812.6 80.176

[44] TASERg 40 1 404d 1,428 162.67d 226.19 503.62d

a-MultiSphere jOj¼64; nt¼4f,g 45 12 1,111 653.6 240.79 40,800 9.0295

[45] Complex K-Best,K ¼ 10f,g 130 1 1,205d 340.0 331.01d 8,497.1 114.57d

a-MultiSphere jOj¼64; nt¼8f,h 45 24 1,111 3,823 1,519.2 13,950 27.531

[46] Real K-Best f,h 90 1 364d 665.0 143.00d 13,154 16.346d

Listed architectures without a citation are synthesized from Verilog RTL via TSMC 45nm libraries, at 25�C and 0.9V. aHierarchical synthesis (multiple
engines). bAveraged circuit activity via channel traces (SNR: 10-16 dB-jOj¼16, 17-23 dB-jOj¼64). cAt 16 dB (jOj¼16) and 23 dB SNR (jOj¼64).
dScaled to 45 nm. eScaled to 10�10 by 2.4. fl1 norm. g16-bit datapath. h12-bit datapath. iExact detection (footnote 5). jApproximate detection,
64 paths (footnote 5).

Fig. 14. MultiSphere (leftmost plots): energy and hardware efficiency when
single detectors sequentially process multiple subcarriers (NPE¼32)
against multiple sequential SDs one per subcarrier. a-MultiSphere (right-
most plots): energy and hardware efficiency v.NPE . In this case, we extrap-
olate performance by instantiating the parallel framework at 2 ns, in order to
develop a power and areamodel at 100 percent utilization.

8. The le1 SD in [43] visits 5 percent fewer nodes than SE
enumeration.

NIKITOPOULOS ET AL.: MASSIVELY PARALLEL TREE SEARCH FOR HIGH-DIMENSIONAL SPHERE DECODERS 2321

Complexity Assessment-MCMs and MT Processors. To pro-
vide a clearer perspective to the reader, we conduct a com-
plexity assessment of MultiSphere’s main arithmetic
modules i.e., the MCMs and the MT processors. Due to the
folded design and its exact nature, MultiSphere requires
fewer MCMs but more MT processors (Table 2). a-Multi-
Sphere on the other hand features more computationally
intensive yet simpler operations. We also assess the effi-
ciency of the proposed MCMs against those in [20] via the
area-delay and energy-delay products assuming 16-bit
input for all cases. Note that [20] defines a single flexible
MCM for jOj 2 f16; 64g. For fairness, we employ distinct,
optimized versions per modulation. By “2sC” and “neg” we
respectively distinguish between two’s complement and
negation units (Fig. 4). Results show that for hierarchy-pre-
serving synthesis, [20] with two’s complement is slightly
more efficient at 16-QAM. At 64-QAM both of the proposed
solutions are more efficient even against the simple nega-
tion of [20]. Notice that when the synthesis tool aggressively
optimizes the design (retiming strategy), the proposed
MCMs are more efficient in all cases. We chose the MCM-H
due to the exploration scope of the paper, in line with hier-
archy-preserving synthesis. Regarding the MT processors,
MTz is the most complex, but intentionally also the one least
employed. Notice (Section 4) that the tree size inside the
detectors has Oð

ffiffiffiffiffiffiffi
jOj

p
Þ complexity, while the interconnec-

tion whereMTeng is employed hasOðNPEÞ complexity. Utili-
zation of the MT processors in trees displays a close to linear
behavior while the area and power of the tree are almost
negligible compared to that of the rest of the PE (i.e., 3.6 and
3.1 percent of total respective area and power at 100 percent
utilization for a tree of 64 MTeng processors and NPE ¼ 1 for
a-MultiSphere). We note that the MT results for Table 2
employ i/o registers in every processor and thus more
closely reflect the a-MultiSphere case. MultiSphere’s MTs

exhibit a very similar relative cost, though a single processor
can have up to 79 percent lower area compared to Table 2.
MultiSphere’s critical path lies within the TTP and even a
512 MTeng interconnection achieves below 3.26 ns delay.
Moreover, theMTeng tree attributes a small fraction to Multi-
Sphere’s dynamic power consumption i.e., 0.85 mW for
NPE ¼ 32 at 16 dB. Note that the LLR processor employs
generic multipliers as the ones used for l2 norm calculation;
thus soft-a-MultiSphere retains the same MCM count. The
additional processors are attributed to a) the sorting net-
work (i.e., 12	log 2ðNPEÞ	½log 2ðNPEÞþ1� stages of NPE

2 , MTeng-type
processors per stage) and b) the LLR clipping processors
(nt 	log 2ðjOjÞ,MTni-type processors).

6 CONCLUSIONS

This work proposes MultiSphere, the first method to consis-
tently and massively parallelize large sphere decoders, and
consequently the fundamental ML detection problem, in a
nearly-“embarrassingly” parallel manner, while accounting
for the transmission channel. Joint algorithmic/VLSI evalua-
tion shows that MultiSphere is the first approach able to
substantially and consistently reduce latency at a small com-
plexity overhead. Our efficient VLSI architecture performs
close to the algorithmic bound and in multi-carrier detection
is up to two orders of magnitude more efficient than conven-
tional parallelization employing the most efficient SDs in the
literature. Moreover, a-MultiSphere’s algorithmic perfor-
mance enables our flexible VLSI framework to be up to an
order of magnitude more efficient than highly optimized,
state-of-the-art approaches. Besides large MIMO systems,
MultiSphere enables the practical realization of a plethora
of theoretical concepts the implementation of which is con-
sidered impractical. Such concepts include aggressive non-
orthogonal multiple access (NOMA) schemes [47], [48], as

TABLE 2
Isolated MCM and MT Module Complexity Per Detector, Type and MT Tree Size (TSMC 45nm, 25�C, 0.9V)

MCM: Complexity per detector Complexity per MCM typec

Detector MCMs
jOj Figure of

merit

[20]d

(neg)

[20]d

(2sC)
MCM-H MCM-F

MultiSphere NPE 	 ð4ntþ2
ffiffiffiffiffiffiffi
jOj

p
þ6Þ 16

ADPe,a 186.39 218.75 252.90 230.86

ADPe,b 244.96 324.00 229.80 212.00

EDPf,a 0.039 0.049 0.055 0.055

EDPf,b 0.099 0.131 0.081 0.079

a-MultiSphere (hard/soft) NPE 	 ð2n2
t Þ 64

ADPe,a 309.04 488.37 279.48 264.6

ADPe,b 309.76 369.84 308.22 246.18

EDPf,a 0.062 0.092 0.062 0.063

EDPf,b 0.120 0.132 0.097 0.089

MT: Complexity per detector Node complexity per tree sizea,i,j,k

Detector MT Type MT Processors 1 8 16 32 64

MultiSphere
MTeng

NPE 	½ð
ffiffiffiffiffiffiffi
jOj

p
�1Þnt�þNPE�1 Areag 741 5428 11326 23121 46714

a-MultiSphere (hard/soft) Paths�1/NPE
4 	log 2NPE 	½log 2NPE þ 1� Powerh 0.1575 1.0503 2.1706 4.4022 8.8889

MultiSphere
MTni

NPE 	ðjOjþ
ffiffiffiffiffiffiffi
jOj

p
�2Þ Areag 529 4317 9023 18408 37200

a-MultiSphere (hard/soft) -/nt 	log 2jOj Powerh 0.1086 0.8016 1.6555 3.3634 6.7961

MultiSphere
MTz

NPE 	ð
ffiffiffiffiffiffiffi
jOj

p
�1Þ Areag 765 5634 11768 24036 48572

a-MultiSphere (hard/soft) - Powerh 0.1584 1.0540 2.1768 4.4166 8.9159

aHierarchical Synthesis. bRetiming Synthesis. c16-bit input. dOptimized for jOj¼16 or jOj¼64. eGE 	ns. fmW 	ns2. gGE. hmW.
i16-bit key, 8-bit label. jUsing i/o registers and 2ns period. kTotal power assuming 100% utilization.

2322 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 10, OCTOBER 2019

well as “Faster than Nyquist” transmissions, including
the promising Spectrally Efficient Frequency Division
Multiplexing (SE-FDM) scheme [49], [50].

APPENDIX

MULTISPHERE’S METRICS OF PROMISE (MOPS)

Here we first calculate an MoP that approximates the proba-
bility of an SD path to constitute the correct solution sðtÞ.
Then, a simplifiedMoP is given that does not require the prior
knowledge of the noise variance s2 but, as shown in Section 5,
it is equally efficient with the original MoP in terms of its
ability to reduce sphere decoding processing latency.

As described in Section 3.1, each tree path can be described
by its relative position vector (RPV) m, with elements ml.
Denoting as xm the symbol vector related to the path m, and
with its lth element being xml

, our target is to find an MoP
that approximates the probability P xm ¼ sðtÞ

� �
. Using Bayes’

chain rule, this probability can be expressed as

P xm ¼ sðtÞ
h i

¼
Ynt
l¼1

~Pl ml½ �; (5)

with

~Pl ml½ � ¼ P xml
¼ s

ðtÞ
l

���� \nt
q¼lþ1

xmq ¼ sðtÞq

" #
; (6)

and

~Pnt mnt

� �
¼ P xmnt

¼ sðtÞnt

h i
: (7)

We first calculate the probability ~Pnt mnt

� �
for the highest SD

tree level. This equals the probability that sðtÞnt is the symbol
with the mnt th smallest PD, or equivalently it is the mnt th
closest QAM constellation symbol to the equivalent
received observable ynt (see Eq. (3)),

ynt ¼ sðtÞnt þ wnt ; (8)

where wnt represents the equivalent additive white Gauss-
ian noise of variance s2

nt
¼ s2= Rntnt

�� ��2. Calculating ~Pnt mnt

� �
is a non-trivial task that would require complicated integra-
tions with no obvious closed-form solutions. In order to

simplify this task, the corresponding probability is approxi-
mated by using the pre-calculated minimum distance val-
ues that have been used in Section 3.1.3. By d

ðsÞ
minðkÞ (with

k ¼ 1; . . . ; jOj) we denote the kth sorted dmin value. Then, as
shown in Fig. 15, we observe that the ordered d

ðsÞ
minðkÞ values

can be well approximated by the function

d
ðsÞ
minðkÞ � DminðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðk� 1Þ

p
; (9)

with a depending on the minimum distance between the
QAM constellation symbols. For a minimum constellation
distance of two (where each QAM symbol dimension can
take the values �1;�3; . . .) a value of a ¼ 1:11 is chosen,
which minimizes the mean-squared-difference between
d
ðsÞ
minðkÞ andDminðkÞ for a 64-QAM constellation. Since, in con-

trast to d
ðsÞ
minðkÞ,DminðkÞ is a strictly increasing function of the

parameter k, we can approximate the probability ~Pnt mnt

� �
as

~Pnt mnt

� �
� P DminðmntÞ
 wnt

�� �� < Dminðmnt þ 1Þ
� �

: (10)

Since the norm of the noise is Rayleigh distributed, and by
applying the approximation in (9), the above probability
can be easily calculated as

~Pnt mnt

� �
� e

�
a mnt�1ð Þ Rntntj j2

2s2 � e
�
amnt Rntntj j2

2s2 : (11)

Fig. 16 shows the simulated and the analytically approxi-
mated ~Pnt for an inner QAM constellation symbol and veri-
fies the validity of the proposed approximation. After
approximating ~Pnt mnt

� �
in (7), the probability ~Pl ml½ � in (5)

needs to be calculated to get P xm ¼ sðtÞ
� �

. For all the SD tree
layers l with l < nt, the received observable after the QR
decomposition is

eyl ¼ Xnt
j¼lþ1

Rljs
ðtÞ
j þRlls

ðtÞ
l þ wl: (12)

Thus, under the assumption imposed by (5) that xmq ¼ sðtÞq
for all tree levels higher than l (i.e, that the corresponding
symbols belong to the correct vector solution), the received
observable at any level l, for any path, can be expressed as

Fig. 16. Simulated and the analytically approximated ~Pnt as a function
ofmnt .

Fig. 15.Dmin and d
ðsÞ
minðkÞ values for 64-QAM constellation with minimum

distance of two between symbols.

NIKITOPOULOS ET AL.: MASSIVELY PARALLEL TREE SEARCH FOR HIGH-DIMENSIONAL SPHERE DECODERS 2323

yl ¼ s
ðtÞ
l þ wl similarly to (8), with s2

l ¼ s2= Rllj j2. By using a
similar reasoning with when calculating ~Pnt mnt

� �
, ~Pl ml½ �

can be generalized as

~Pl ml½ � � e
�al ml�1½ � Rllj j2

2s2 � e
�alml Rllj j2

2s2 ; (13)

for any l ¼ 1; . . . ; nt, and with the total probability

XOj j
k¼1

~Pl ml½ � � 1� e
�al Oj j Rllj j2

2s2 ; (14)

asymptotically, for large Oj j, tending to the value of one as it
should for the total probability. We note that the parameter
a can, in general, differ with l, since different QAMmodula-
tion can be used per transmit antenna. Since the logarithmic
function is monotonic, finding the most promising paths is
equivalent to finding the paths for which the logarithm of
their probability P xm ¼ sðtÞ

� �
is minimized. Therefore, an

MoP for an SD tree path with RPVm can be given by

M mð Þ ¼ �
Xnt
l¼1

ln e
�al ml�1½ � Rllj j2

2s2 � e
�alml Rllj j2

2s2

� �
: (15)

with

M mð Þ � �ln P xm ¼ sðtÞ
h in o

: (16)

The MoP of (15) requires the prior knowledge of the s2

value. If, for any reason, this is not available, a simplified
metric can be calculated instead. Since the exponential
terms in (13) are exponentially decreasing withml, an upper
bound of ~Pl ml½ � can be calculated as

~Pl ml½ �
 e
�al ml�1½ � Rllj j2

2s2 ; (17)

and therefore, an approximate MoP can be defined as

~M mð Þ ¼ 1

2s2

Xnt
l¼1

al ml � 1½ � Rllj j2; (18)

with

~M mð Þ
 �ln P xm ¼ sðtÞ
h in o

: (19)

From (18) it can be easily seen that finding the paths with
the smallest MoPs, does not really require the knowledge of
s2, or even of the parameter a when the same QAM constel-
lation is used from all transmit antennae. Therefore, the fol-
lowing simplified MoP can be used instead

Ms mð Þ ¼
Xnt
l¼1

al ml � 1½ � Rllj j2: (20)

ACKNOWLEDGMENTS

The research leading to these results has been supported
from the UKs Engineering and Physical Sciences Research
Council (EPSRC Grant EP/M029441/1). The Authors would
also like to thank the members of University of Surrey 5GIC
(http://www.surrey.ac.uk/5GIC) for their support and
C. Husmann for his assistance. Part of this work has been
presented in IEEE GLOBECOM 2016 [1]. The work is related
to the filed patent, Parallel Processing of Sphere Decoders
and Other Vector Finding Approaches using Tree Search,
UKIPO: 1509910.4, PCT/GB2016/051675.

REFERENCES

[1] K. Nikitopoulos, D. Chatzipanagiotis, C. Jayawardena, and
R. Tafazolli, “MultiSphere: Massively parallel tree search for large
sphere decoders,” in Proc. IEEEGlobal Commun. Conf., 2016, pp. 1–6.

[2] Technical Specification Group Radio Access Network, “Study on
scenarios and requirements for next generation access tech-
nologies,” 3GPP, Tech. Rep. TR 38.913, Sep. 2016.

[3] “IEEE standard for information technology, part 11: Wireless
LAN medium access control (MAC) and physical layer (PHY)
specifications, amendment 4: Enhancements for very high
throughput for operation in bands below 6 ghz,” IEEE Std
802.11ac-2013, Dec. 2013.

[4] “IEEE standard for information technology, part 11: Wireless
LAN medium access control (MAC) and physical layer (PHY)
specifications,” IEEE Std 802.11–2012, Mar. 2012.

[5] K. Nikitopoulos, J. Zhou, B. Congdon, andK. Jamieson, “Geosphere:
Consistently turning MIMO capacity into throughput,” in Proc.
ACMConf. SIGCOMM, 2014, pp. 631–642.

[6] Q. Yang, X. Li, H. Yao, J. Fang, K. Tan, W. Hu, J. Zhang, and
Y. Zhang, “BigStation: Enabling scalable real-time signal processing
in large MU-MIMO systems,” ACM SIGCOMM Comput. Commun.
Rev., vol. 43, no. 4, pp. 399–410, 2013.

[7] E. Viterbo and J. Boutros, “A universal lattice code decoder for
fading channels,” IEEE Trans. Inf. Theory, vol. 45, no. 5, pp. 1639–
1642, Jul. 1999.

[8] A. Burg, M. Borgmann, M. Wenk, M. Zellweger, W. Fichtner, and
H. Bolcskei, “VLSI implementation of MIMO detection using the
sphere decoding algorithm,” IEEE J. Solid-State Circuits, vol. 40,
no. 7, pp. 1566–1577, Jul. 2005.

[9] R. Courtland, “Transistors could stop shrinking in 2021, ” IEEE
Spectrum, vol. 53, no. 9, pp. 9–11, Sep. 2016.

[10] G. Fettweis, “5G–what will it be: The tactile internet,” Keynote
Presentation, in Proc. IEEE Int. Conf. Commun., 2013.

[11] D. A. Patterson and J. L. Hennessy, Computer Organization and
Design, Fifth Edition: The Hardware/Software Interface, 5th ed. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2013.

[12] C. Hess, et al., “Reduced-complexity MIMO detector with close-to-
ML error rate performance,” in Proc. ACM Great Lakes VLSI Symp.,
2008, pp. 200–203.

[13] Z. Guo and P.Nilsson, “Algorithm and implementation of the k-best
sphere decoding for mimo detection,” IEEE J. Sel. Areas Commun.,
vol. 24, no. 3, pp. 491–503,Mar. 2006.

[14] H. W. Liang, W. H. Chung, H. Zhang, and S. Y. Kuo, “A parallel
processing algorithm for Schnorr-Euchner sphere decoder,” in
Proc. IEEE Wireless Commun. Netw. Conf., Apr. 2012, pp. 613–617.

[15] M. S. Khairy, C. Mehlfhrer, and M. Rupp, “Boosting sphere
decoding speed through graphic processing units,” in Proc. Eur.
Wireless Conf., Apr. 2010, pp. 99–104.

[16] M. Wu, S. Gupta, Y. Sun, and J. R. Cavallaro, “A GPU implemen-
tation of a real-time MIMO detector,” in Proc. IEEE Workshop Sig-
nal Process. Syst., Oct. 2009, pp. 303–308.

[17] C. M. J�ozsa, G. Kolumb�an, A. M. Vidal, F.-J. Mart�ınez-Zald�ıvar, and
A. Gonz�alez, “New parallel sphere detector algorithm providing
high-throughput for optimal MIMO detection,” Procedia Comput.
Sci., vol. 18, pp. 2432–2435, 2013.

[18] C.-H. Yang and D. Markovi�c, “A multi-core sphere decoder VLSI
architecture for MIMO communications,” in Proc. IEEE Global
Telecommun. Conf., 2008, pp. 1–6.

[19] C. H. Yang and D. Markovi�c, “A 2.89mW 50GOPS 16x16 16-core
MIMO sphere decoder in 90nm CMOS,” in Proc. Eur. Solid State
Circuits Conf., Sep. 2009, pp. 344–347.

[20] C.-H. Yang and D. Markovic, “A flexible DSP architecture for
MIMO sphere decoding,” IEEE Trans. Circuits Syst. I: Reg. Papers,
vol. 56, no. 10, pp. 2301–2314, Oct. 2009.

[21] M. Y. Huang and P. Y. Tsai, “Towardmulti-gigabit wireless: Design
of high-throughput MIMO detectors with hardware-efficient
architecture,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 61, no. 2,
pp. 613–624, Feb. 2014.

[22] L. G. Barbero and J. S. Thompson, “Afixed-complexityMIMOdetec-
tor based on the complex sphere decoder,” in Proc. IEEE 7th Work-
shop Signal Process. AdvancesWireless Commun., Jul. 2006, pp. 1–5.

[23] L. G. Barbero and J. S. Thompson, “Fixing the complexity of the
sphere decoder forMIMOdetection,” IEEE Trans.Wireless Commun.,
vol. 7, no. 6, pp. 2131–2142, Jun. 2008.

[24] J. Koo, S. Y. Kim, and J. Kim, “A parallel collaborative sphere
decoder for a MIMO communication system,” J. Commun. Netw.,
vol. 16, no. 6, pp. 620–626, Dec. 2014.

2324 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 10, OCTOBER 2019

http://www.surrey.ac.uk/5GIC

[25] K. Nikitopoulos, A. Karachalios, and D. Reisis, “Exact max-log
MAP soft-output sphere decoding via approximate Schnorr–
Euchner enumeration,” IEEE Trans. Veh. Technol., vol. 64, no. 6,
pp. 2749–2753, Jun. 2015.

[26] C. Schnorr and M. Euchner, “Lattice basis reduction: Improved
practical algorithms and solving subset sum problems,” Math.
Program., vol. 66, no. 2, pp. 181–191, 1994.

[27] S. Chen, T. Zhang, and Y. Xin, “Relaxed-best MIMO signal detec-
tor design and VLSI implementation,” IEEE Trans. Very Large Scale
Integr. Syst., vol. 15, no. 3, pp. 328–337, Mar. 2007.

[28] M. Shabany, K. Su, and P. Gulak, “A pipelined scalable high-
throughput implementation of a near-ML K-best complex lattice
decoder,” in Proc. IEEE Int. Conf. Acoust. Speech Signal Process.,
2008, pp. 3173–3176.

[29] C. Studer, A. Burg, and H. B€olcskei, “Soft-output sphere decoding:
Algorithms and VLSI implementation,” IEEE J. Sel. Areas Commun.,
vol. 26, no. 2, pp. 290–300, Feb. 2008.

[30] B. Mennenga, A. von Borany, and G. Fettweis, “Complexity
reduced soft-in soft-out sphere detection based on search tuples,”
in Proc. IEEE Int. Conf. Commun., Jun. 2009, pp. 1–6.

[31] E. P.Adeva andG.P. Fettweis, “Efficient architecture for soft-input soft-
output sphere detection with perfect node enumeration,” IEEE Trans.
Very Large Scale Integr. Syst., vol. 24, no. 9, pp. 2932–2945, Sep. 2016.

[32] S. Hu and F. Rusek, “A soft-output MIMO detector with achievable
information rate based partial marginalization,” IEEE Trans. Signal
Process., vol. 65, no. 6, pp. 1622–1637,Mar. 2017.

[33] L. Zhuo, G. R. Morris, and V. K. Prasanna, “High-performance
reduction circuits using deeply pipelined operators on FPGAs,”
IEEE Trans. Parallel Distrib. Syst., vol. 18, no. 10, pp. 1377–1392,
Oct. 2007.

[34] M. Huang and D. Andrews, “Modular design of fully pipelined
reduction circuits on FPGAs,” IEEE Trans. Parallel Distrib. Syst.,
vol. 24, no. 9, pp. 1818–1826, Sep. 2013.

[35] L. G. Barbero and J. S. Thompson, “Rapid prototyping of a fixed-
throughput sphere decoder for MIMO systems,” in Proc. IEEE Int.
Conf. Commun., 2006, pp. 3082–3087.

[36] C. Studer andH. B€olcskei, “Soft-input soft-output sphere decoding,”
inProc. IEEE Int. Symp. Inf. Theory, 2008, pp. 2007–2011.

[37] A. Burg, M. Wenk, and W. Fichtner, “VLSI implementation of
pipelined sphere decoding with early termination,” in Proc. IEEE
Eur. Signal Process. Conf., 2006, pp. 1–5.

[38] M. Zuluaga, P. Milder, and M. P€uschel, “Streaming sorting
networks,” ACM Trans. Des. Autom. Electron. Syst., vol. 21, no. 4,
pp. 55:1–55:30, May 2016.

[39] D. W€ubben, R. B€ohnke, J. Rinas, V. K€uhn, and K.-D. Kammeyer,
“Efficient algorithm for decoding layered space-time codes,” IEEE
Electron. Lett., vol. 37, no. 22, pp. 1348–1350, Oct. 2001.

[40] Rice Univ. Wireless Open Access Research Platform (WARP),
(2006). [Online]. Available: http://warp.rice.edu/trac

[41] M. Shabany andP.Gulak, “Scalable vlsi architecture for k-best lattice
decoders,” in Proc. IEEE Int. Symp. Circuits Syst., 2008, pp. 940–943.

[42] L. G. Barbero and J. S. Thompson, “Extending a fixed-complexity
sphere decoder to obtain likelihood information for turbo-MIMO sys-
tems,” IEEETrans. Veh. Technol., vol. 57, no. 5, pp. 2804–2814, Sep. 2008.

[43] C. Studer, M. Wenk, and A. Burg, VLSI Implementation of Hard- and
Soft-Output Sphere Decoding for Wide-Band MIMO Systems. Berlin,
Germany: Springer, 2012.

[44] O. C. neda, T. Goldstein, and C. Studer, “Data detection in large
multi-antenna wireless systems via approximate semidefinite
relaxation,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 63, no. 12,
pp. 2334–2346, Dec. 2016.

[45] M. Mahdavi and M. Shabany, “Novel MIMO detection algorithm
for high-order constellations in the complex domain,” IEEE Trans.
Very Large Scale Integr. Syst., vol. 21, no. 5, pp. 834–847, May 2013.

[46] M. Y. Huang and P. Y. Tsai, “Toward multi-gigabit wireless: Design
of high-throughput MIMO detectors with hardware-efficient
architecture,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 61, no. 2,
pp. 613–624, Feb. 2014.

[47] M. Vameghestahbanati, E. Bedeer, I. Marsland, R. H. Gohary, and
H. Yanikomeroglu, “Enabling sphere decoding for SCMA,” IEEE
Commun. Lett., vol. 21, no. 12, pp. 2750–2753, Dec. 2017.

[48] R. Hoshyar, R. Razavi, and M. Al-Imari, “LDS-OFDM an efficient
multiple access technique,” in Proc. IEEE 71st Veh. Technol. Conf.,
May 2010, pp. 1–5.

[49] T. Xu and I.Darwazeh, “M-QAMsignal detection for a non-orthogo-
nal systemusing an improved fixed sphere decoder,” in Proc. 9th Int.
Symp. Commun. Syst. Netw. Digital Sign, Jul. 2014, pp. 623–627.

[50] J. Mazo, “Faster-than-nyquist signaling,” The Bell Syst. Tech. J.,
vol. 54, no. 8, pp. 1451–1462, 1975.

Konstantinos Nikitopoulos (M’07) is an associ-
ate professor with the Institute for Communication
Systems, Electrical and Electronic Engineering
Department, University of Surrey, Guildford, United
Kingdom. He is a member of the 5G Innovation
Centre, where he is leading the Proof-of-Concept
and mm-Wave Solutions work area. Before joining
the University of Surrey, he has held research posi-
tions with RWTH Aachen University, with the Uni-
versity of California at Irvine, Irvine, and with the
University College London. He has also been a

consultant for the Hellenic General Secretariat for Research and Technol-
ogy, where he also served as a National Delegate of Greece to the Joint
Board on Communication Satellite Programs of European Space Agency.
He is a recipient of the prestigious First Grant of the UKs Engineering and
Physical Sciences Research Council. He is amember of the IEEE.

Georgios Georgis received the BSc degree in
physics from the Aristotle University of Thessalo-
niki, and the MSc and PhD degrees in computing
from theUniversity of Athens,Greece. His research
interests include the design of parallel algorithms
and architectures for real-time multi-dimensional
signal processing, artificial intelligence and expert
systems. He is currently a research fellow in the 5G
InnovationCentre, University of Surrey inGuildford,
United Kingdom. He is amember of the IEEE.

Chathura Jayawardena received the BEng
degree in electronic engineering and the MSc
degree in mobile communications from the Univer-
sity of Surrey, Guildford, United Kingdom, in 2014
and 2015, respectively. He is currently working
toward the PhD degree in electronic engineering at
Institute for Communication Systems, University of
Surrey. His research interests include signal proc-
essing for communications, with an emphasis on
detectionmethods for non-orthogonal transmission
schemes. He is a student member of the IEEE.

Daniil Chatzipanagiotis received the BEng
degree in electronic engineering and the MSc
degree in mobile communications from the Univer-
sity of Surrey, Guildford, United Kingdom, in 2015
and 2016, respectively. His research interests
include signal processing for communications, with
an emphasis on detection methods for non-orthog-
onal transmission schemes.

Rahim Tafazolli is the professor of Mobile and
Satellite Communications since April 2000, director
of ICS since January 2010 and the founder and
director of 5G Innovation Centre, University of
Surrey, United Kingdom. He has more than 25
years of experience in digital communications
research and teaching. He has authored and co-
authored more than 500 research publications.
He is regularly invited to deliver keynote talks and
distinguished lectures to International conferences
and workshops. He is co-inventor on more than 30

granted patents, all in the field of digital communications. He is regularly
invited by many governments for advice on 5G technologies. He was advi-
sor to the Mayor of London in regard to the London Infrastructure Invest-
ment 2050 Plan during May and June 2014. He has given many interviews
to International media in the form of television, radio interviews and articles
in international press. In 2011, he was appointed as fellow of Wireless
World Research Forum (WWRF) in recognition of his personal contribu-
tions to the wireless world as well as heading one of Europes leading
research groups. He is a senior member of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

NIKITOPOULOS ET AL.: MASSIVELY PARALLEL TREE SEARCH FOR HIGH-DIMENSIONAL SPHERE DECODERS 2325

http://warp.rice.edu/trac

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

