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Abstract—Traditional network resource management mechanisms are mainly flow or packet based. Recently, coflow has been

proposed as a new abstraction to capture the communication patterns in a rich set of data parallel applications in data centers. Coflows

effectively model the application-level semantics of network resource usage, so high-level optimization goals, such as reducing the

transfer latency of applications, can be better achieved by taking coflows as the basic elements in network resource allocation or

scheduling. Although efficient coflow scheduling methods have been studied, in this paper, we advocate to schedule weighted

coflows as a further step in this direction, where weights are used to express the importances or priorities of different coflows or

their corresponding applications. We propose the Weighted Coflow Completion Time (WCCT) minimization problem and a

ð2� 2
nþ1Þ-approximate optimal offline algorithm, where n is the concurrent number of coflows. We then design an information-agnostic

online algorithm named IAOA to dynamically schedule coflows according to their weights and the instantaneous network condition.

We also design and implement a coflow scheduling system named FlyTransfer, which can use the online algorithm as its scheduling

method. We test the performance of FlyTransfer by trace-driven simulations as well as real deployment in openstack. Our evaluation

results show that, compared to the latest information-agnostic coflow scheduling algorithms, FlyTransfer can reduce more than

40 percent of the WCCT, and more than 30 percent of the completion time for coflows with above-the-average level of importance. It

even outperforms the most efficient clairvoyant coflow scheduling method by reducing around 30 percent WCCT, and 25- 30 percent

of the completion time for coflows with above-the-average importance, respectively.

Index Terms—DataCenter, coflow, weight, CCT, WCCT

Ç

1 INTRODUCTION

NOWADAYS, low latency [29], [36] and high throughput
[30] are required by data center applications, for exam-

ple, those with map-reduce style data-intensive computing
[20], and those using distributed file storage [21], [32], etc.
To meet these requirements, the data center network infra-
structures have been specially tailored, with a tremendous
amount of effort in topology design, routing schemes, as
well as transport schemes.

Among these efforts, flow level scheduling methods try
to schedule arriving packets according to the characteristics
of the corresponding flows. For example, PDQ [24] and

pFabric [13] approximate the shortest job first (SJF) policy to
let shorter flows preempt the bandwidth of longer ones. As
a result, the average Flow Completion Time (FCT) tends to
be reduced, so does applications’ transport latency. How-
ever, since the communication of an application cannot fin-
ish until all its flows have completed their transmission, the
overall transport performance of an application may not be
effectively improved. Indeed, the performance may be
impaired by scheduling individual flows without consider-
ing their inter-relationship.

Recently, coflow has been proposed as a new abstraction
to capture the communication patterns in a rich set of data
parallel applications. According to [17], a coflow is a collec-
tion of flows between two groups of machines with associated
semantics and a collective objective. Those flows share a com-
mon performance goal, e.g., minimizing the completion
time of the slowest flow in the collection, or ensuring that
flows in the collection meet a common deadline. Coflows
effectively model the application-level semantics of network
resource usage, so high-level optimization goals (i.e., reduc-
ing the transfer latency of applications) can be better
achieved by taking coflows as the basic elements in network
resource allocation or scheduling. Efficient coflow schedul-
ing methods on minimizing average Coflow Completion
Time (CCT) have been studied. Varys [19] proposes the
Smallest-Effective-Bottleneck-First (SEBF) heuristic to deter-
mine the scheduling order of coflows and uses Minimum-
Allocation-for-Desired-Duration (MADD) to compute the
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bandwidth to be allocated. However, Varys is a clairvoyant
method which determines the priority of coflows depend-
ing on flow information (flow size, flow arrival time, etc).
This may limit its applicability since these information may
not be provided beforehand. To solve this problem, non-
clairvoyant methods that are flow information agnostic,
such as Aalo [18], Barrat [22], sunflows [25] and CODA [48]
have also been studied.

In this paper, we advocate to schedule weighted coflows as
a further step in this direction, where weights are assigned
to coflows to express the importance of coflows or their cor-
responding applications. For example, supporting the inter-
nal communication requirement of a search engine with
intense internal computation should be more important
than supporting the file backup on a distributed storage sys-
tem. When scheduling coflows, we would like to take this
difference into consideration. To accomplish this, we assign
different weights to them, i.e., coflows of search engine
have a higher weight, while coflows of file backup have a
lower weight, and try to minimize the Weighted Coflow
Completion Time (WCCT), which is the weighted summa-
tion of the completion time of all coflows.

We formulate an Idealized Weighted Coflow Completion
Time Minimization (IWCCTM) problem, and prove that
one of its special cases is equivalent to minimizing the
weighted job completion time in the concurrent open shop
problem [35], which is known to be NP-hard. We derive
for IWCCTM a non-preemptive scheduling algorithm that is
(2- 2

nþ1Þ-approximate optimal, where n is the concurrent
number of coflows. We convert the non-preemptive sch-
eduling algorithm to an information-agnostic online algo-
rithm, which is named IAOA. IAOA introduces only minor
performance loss, but can schedule coflows online with-
out knowing their size or arrival time a priori. We further
design and implement a scheduling systemnamed FlyTrans-
fer that can readily be deployed in a productional cloud envi-
ronment like openstack.We test the performance of IAOA by
both trace-driven simulations and testbed evaluations. We
then compare it against state-of-the-art coflow scheduling
algorithms such as Varys [19], Aalo [18], Barrat [22], Sincro-
nia [11] and the polynomial-time deterministic algorithm
[42]. The results show that IAOA performs quite effectively
in reducing the average weighted coflow completion time.
Our contributions in this paper are summarized as follows:

� We propose the scheduling of weighted coflows as an
essential network resource management scheme in
data centers hosting multiple kinds of applications.
We collect real application traffic from a medium-
sized data center and make an in-depth analysis to
reveal the importance of weighted coflow scheduling.

� We formulate an IdealizedWeighted CoflowComple-
tion Time Minimization problem, study its hardness,
and derive a non-preemptive scheduling algorithm

and prove it is (2- 2
nþ1Þ-approximate optimal, where n

is the concurrent number of coflows.
� We further design a practical information-agnostic

online algorithm named IAOA and build the Fly-
Transfer system to minimize WCCT in real environ-
ment. FlyTransfer can readily be deployed in a cloud
environment like openstack.

� Evaluation results show that, compared to the latest
information-agnostic coflow scheduling algorithms,
FlyTransfer with IAOA can reduce more than
40 percent of the average WCCT, and more than
30 percent of the completion time for coflows with
above-the-average level of importance. It even out-
performs the most efficient clairvoyant coflow sched-
uling method by reducing around 30 percent WCCT,
and 20-30 percent of the completion time for coflows
with above-the-average emergence, respectively.

The rest of the paper is organized as follows. Section 2
introduces the related work and our motivation. Section 3
formulates the WCCT minimization problem and discusses
its hardness. Section 4 presents the offline algorithm and the
information-agnostic online coflow scheduling algorithm
IAOA in detail. Section 5 shows the design details of
the coflow transfer system FlyTransfer. Section 6 evaluates
IAOA against several coflow scheduling methods, and
Section 7 concludes.

2 BACKGROUND AND MOTIVATION

Data center is now becoming an important facility for hosting
a large number of services and applications. To meet
applications’ demands of high throughput and low latency, a
tremendous amount of research effort has been devoted to
network resource allocation. For example, DCTCP [12], D2

TCP [44], L2 DCT [37], LPD [49], D3 [47], PIAS [14] and PDQ
[24] are flow level rate control or scheduling schemes aiming
to minimize the average Flow Completion Time or to meet
strict flow deadlines. The concept of coflow [17] has recently
been proposed to meet the application performance require-
ment at a higher level, where a coflow is a collection of flows
between two groups of machines with associated semantics
and a collective objective. [45] makes a survey on coflow
scheduling and divides coflow scheduling methods into two
categories: information-aware methods and information-
agnostic methods. Varys computes network bottleneck based
on flow size and applies its Effective-Bottleneck-First heuristic,
while MCS [46], Aalo [18], sunflows [25] and CODA [48] try
to “guess” various characters of coflows in different ways to
help scheduling. The former methods are often called clair-
voyant methods which schedule coflows with the help of
flow information like size and arrival time, while the latter
four are flow information agnostic. D-CAS [33] and Stream
[43] schedule coflows in decentralized manner. Rapier [51]
andOMCoflow [31] consider both routing and scheduling.

Although these coflow level scheduling methods indeed
effectively improve the communication or data transfer per-
formance, they treat different coflows or applications as
equally important. As a result, the difference of performance
improvement between different coflows or applications
depends on the specific scheduling heuristics. For example,
one scheduling scheme may favor short flows, while another
may favor coflowswith larger width, i.e., consisting of a large
number of flows, sometimes even unpredictable or inconsis-
tent. In this sense, we argue that coflows (or applicaitons)
often have priorities or emergency levels, and should be
explicitly taken into consideration when they are scheduled.
For example, supporting the internal communication require-
ment of a search engine with intense internal computation
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should bemore emergent than supporting the file backup on a
distributed storage system. Although in this example the
more emergent coflows mainly consist of short flows and
tend to have a large width, this is not always the case, and in
general emergency is orthogonal to other physical characteris-
tics. Thus, the scheduling methods introduced above lack the
capability to improve the performance of coflows with the
strongest demand.

To make this argument more convincing, we now use
real network traffic from Equinix’s medium-sized data cen-
ter located in Washington, D.C. More than 100 applications
run on about 3000 servers simultaneously in this data cen-
ter. After talking with the network operators and software
development engineers about the emergence of different
applications, we make an in-depth analysis of the traffic col-
lected from 720 servers deployed in 60 racks.1 The traffic
lasts about one month, and the basic statistics of the top ten
network-demanding applications are summarized in
Table 1. There are typically five importance levels, i.e., sig-
nificant, important, normal, unimportant and lax. For exam-
ple, the event application and the vRoute application are
responsible for communication of critical components, and
are of the highest level of importance, while data-backup
and data-dist are applications running in the background
and are of the lowest level of importance. We can see appli-
cations consisting of a larger number of flows or smaller
flows are not necessarily more important. For example, the
average number of flows in Hive (i.e., 7) is larger than that
of Web (i.e., 3), but Hive is less important than Web.
Another example is that, the average flow size of Web (i.e.,
5) is smaller than that of Druid (i.e., 18), but Web is of less
important than Druid. This supports our former statement
that in general, importance is orthogonal to other physical
characteristics of coflows. Table 2 further shows the details
of different coflows in the hadoop application, from which
we can make the similar conclusions.

To illustrate the ineffectiveness of existing coflow schedul-
ingmethods, we plot the average CoflowCompletion Time of
different coflows, grouped by their levels of importance.

Fig. 1a shows the direct measurement result of all applica-
tions, while Fig. 1b shows the simulation result when Varys is
used to schedule them. Comparing the two plots, we can see
that Varys clearly reduces the completion time of less emer-
gent coflows, such as Redies, data-backup and data-dist, at
the expenses of the same of even longer completion time of
more emergent coflows, such as Event and vRouter. A similar
effect can be observed in Figs. 1c and 1d, where the measured
CCTs of Hadoop coflows are compared to the scheduling
results of Varys. To find the reasons for this, we show a small
case where coflow C1 and coflow C2 arrive simultaneously.
From Fig. 2a, we can see C1 has 3 flows andC2 has 2 flows. C2
has higher priority than C1. Fig. 2b shows under the premise
of using TCP, C1’s completion time is 4 and C2’s completion
time is 6. From Fig. 2c, we can see C1’s completion time is 3
and C2’s completion time is 6. C1’s completion time is
reduced by 1 and C2’s completion time remains unchanged,
while C2 ismore important than C1. The reason for this is that
Varys adopts Smallest-Effective-Bottleneck-First (SEBF) but
ignores the importance of coflow. This motivates us when
scheduling coflows, the importance of coflows should also be
taken into consideration.

Importance-Priority-First is also not a good choice since it
ignores the network condition.Assume coflowC1 andC2 con-
tend at port L1, L2, L3. C1 has 3 flows, whose lengths are 5, 1, 2
and C2 has 2 flows, whose lengths are 1, 1, respectively. C1 is
more important than C2. Fig. 3 (a) shows the result of impor-
tance priority first. Fig. 3b shows the result of scheduling with
coflow importance and network condition. With importance
priority first policy, completion time ofC1 is 5 and the comple-
tion time of C2 is 6.When scheduling with coflow importance
and network condition, completion time of C1 is 6 and com-
pletion time of C2 is 1. Comparing the twomethods, C1 slows
down 6�5

5 ¼ 20% and C2 accelerates 6�1
1 ¼ 5�. This motivates

us both the importance of coflow and the network condition
be taken into consideration when scheduling coflows. In this
case, we advocate to optimize the average Weighted Coflow
Completion Time (Weight�CCT), where weight denotes the
importance of coflows, and the important coflows have larger
weight than the unimportant ones.

Since now, some existing literatures [11], [15], [27], [42]
have already considered average weight coflow completion
optimizaiton. However, these methods always try to solve a
convex optimization problem, which may cause long com-
putation time and it is impossible to use in the real world.

3 MODEL AND PROBLEM FORMULATION

In this section, we first introduce the non-blocking fabric
model to reasonably simplify the coflow scheduling

TABLE 1
Applications and Their Levels of Importance

App Name Type width length
(MB)

Importance

Event communication 20 5 significant
vRouter communication 8 3 significant
Druid interactive 6 18 important
Hadoop computation 5 42 normal
Web interactive 3 5 normal
VoltDB background 4 21 normal
Hive background 7 32 unimportant
Redies background 2 30 unimportant
data-backup background 3 124 lax
data-dist background 5 93 lax

TABLE 2
Coflows in Hardoop and Their Levels of Importance

Coflow Type width length (MB) Importance

index-sort 10 3 significant
db-analysis 3 12 important
index-count 6 20 normal
log-analysis 6 31 unimportant
crawler 4 12 unimportant
word-count 3 11 unimportant

1. We developed a questionnaire to rate the applications of the data
center. In the questionnaire, applications can be graded 1, 2, 3, 4, 5,
which denote significant, important, normal, unimportant and lax,
respectively. We sent the questionnaire to all the operations staff, net-
work administrator and engineers. At last, we compute the average
scores of all the applications and get the importance of applications.
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problem in data center networks. Then we formulate an Ide-
alized Weighted Coflow Completion Time Minimization
problem and discuss its hardness.

3.1 Non-Blocking Fabric Model for Data
Center Networks

Recent researches [13], [18], [19], [25] regard a data center net-
work as a big giant non-blocking switch which interconnects
all machines. In this mode, all machines’ ports have the same
normalized unit capacity(1), and flows compete bandwidth
only at these ports, i.e., the ingress and egress ports of the big
fabric. Such an abstraction is reasonable and matches with
the full bisection bandwidth topologies widely used in pro-
ductional data centers, e.g., the non-blocking Clos topology.
In this paper, we use this model and assume congestions
occur only at the ingress and egress ports.

3.2 Problem Formulation and Hardness Proof

We consider the scheduling of n coflows in a data center
network modeled as a non-blocking fabric with m hosts,
i.e., there are m ingresses and m egresses. A coflow is a col-
lection of flows sharing a common performance goal, e.g.,
minimizing the completion time of the latest flow or

ensuring that flows meet a common deadline [18], [19]. We
extend the definition of coflow and the k-th coflow F ðkÞ in
the non-blocking data center network can be defined as:

Definition 1. F ðkÞ ¼ ffk
i;jj1 � i � m; 1 � j � mg, where k is

the sequence number assigned to the coflow, and fk
i;j is the nor-

malized size of the flow (in this coflow F ðkÞ) sent from host i to
host j. If there is no flow from host i to host j, then fk

i;j ¼ 0.

Since in the non-blocking data center, every port has a
unit capacity, so that the transfer time of the flow (i.e., the
time the flow actually occupies the port) fki;j is also fki;j. In
this section, we simply assume all flows arrive simulta-
neously, and we will remove this assumption when design-
ing the online scheduling algorithm in the next section. We
use wk to denote the weight, i.e., the importance of each
coflow F ðkÞ, so that its completion time Ck can be optimized
with regard to its weight. If only non-preemptive schedul-
ing is taken, the completion time of a coflow is the finishing
moment. Main notations used in the paper is shown at
Table 3. Then the Idealized Weighted Coflow Completion
Time Minimization problem is defined as follows:

minimize
Xn
k¼1

wkCk (1)

s:t: 8k; j :
X

8l:Cl�Ck

Xm
i¼1

f
ðlÞ
i;j � Ck (2)

8k; i :
X

8l:Cl�Ck

Xm
j¼1

f
ðlÞ
i;j � Ck: (3)

Our goal is to minimize the sum of the weighted coflow
completion times. The constraints (2) and (3) are due to the
competition on the capacity of each port. For a coflow F ðkÞ

with completion time Ck, consider the set of coflows that
finish before it, i.e., F ðlÞ: Cl � Ck. For any ingress port i

Fig. 1. Normalized Coflow Completion Time, grouped by the level of importance. A1-A10 denote applications (Event - data-dist) in Table 1 and I.S
(index-sort), D.A (db-analysis), I.C (index-count), L.A (log-analysis), C.r(crawler), W.C (word count) are abbreviations of hadoop applications.

Fig. 2. C1 contains 3 flows, whose lengths are 3, 1, 2. C2 has 2 flows, whose lengths are 2, 4. C2 has higher importance level.

Fig. 3. C1 (black) and C2 (orange) contend at port L1, L2, L3. C1 has 3
flows, whose length are 5, 1, 2 and C2 has 2 flows, whose length are 1,
1. Link capacity is 1.
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(or egress port j), the total flow transfer time of this coflow
on this port is at least

Pm
j¼1 fi;j (or

Pm
i¼1 fi;j, correspond-

ingly), which must be no greater than Ck.
Consider a simplified version of this problem, where we

want to minimize the total completion time of flows compet-
ing a single link. It is well known that shortest job first is the
optimal non-preemptive scheduling policy,while short remain-
ing time first is the optimal preemptive one. However, our
problem for scheduling weighted coflows over multiple links
ismuch harder, as indicated by the following proposition

Proposition 1. If only non-preemptive scheduling is allowed, the
IWCCTM problem is equivalent to the problem of minimizing
the sum of weighted completion times in a concurrent open
shop [35] and it is NP-hard.

Proof. The concurrent open shop problem [35] can be
described as a set of machines M ¼ f1; . . . ;mg, with each
machine capable of processing one operation type. A set of
jobsN ¼ f1; . . . ; ng, with each job requiring specific quanti-
ties of processing for each of itsm operation types. Each job
j 2 N has a weight wj 2 R > 0, and the processing time of
job j’s operation on machine i is pij 2 R � 0. A job is com-
pleted when all its operations are completed. In particular,
operations from the same job can be processed in parallel.
For them�m network fabric, a coflow F ðkÞ has 2m transfer
tasks, each transfer taskL

ðkÞ
l (0� l < 2m) is defined as:

L
ðkÞ
l ¼

Pm
i¼1 f

ðkÞ
i;l 0 � l < mPm

j¼1 f
ðkÞ
l�m;j m � l < 2m:

(
(4)

Eq. (4) describes the lth (0� l < 2m) transfer task of each

coflow, where
Pm

i¼1 f
ðkÞ
i;l ð0 � l < mÞ shows the computa-

tion of the first m transfer task and
Pm

j¼1 f
ðkÞ
l�m;jðm � l <

2mÞ shows the second m transfer task. Each of the first m

transfer task is flows that are aggregated from the ingress

ports, while each of the second m transfer task is flows that

are aggregated from the egress ports. Consider the concur-

rent open shop scheduling problem with 2m machines of

the same capacity and n jobs, where each job has 2m types

of operations on the 2mmachines. There is a one-to-one cor-

respondence between a coflow and a job, and between one
type of operation on a machine and one transfer task on a

port. It has been proved that minimizing the average

weighted job completion time is NP-hard [16], [35], [39],

[40], so the IWCCTMproblem is alsoNP-hard. tu

4 SCHEDULING ALGORITHMS

In this section, we first propose for the IWCCTM problem a
non-preemptive scheduling algorithm. Then we simplify
the algorithm and propose a simple offline algorithm. At
last, we remove the assumption that all coflows arrive at the
same time and flow sizes are known a priori, and derive an
information-agnostic preemptive scheduling algorithm that
can work in an online fashion.

4.1 Non-Preemptive Scheduling Algorithm
for IWCCTM

For minimizing the average weighted job completion time
in the concurrent open shop problem, the best known

theoretical result is a 2-approximation greedy algorithm
[28], [35]. Since our IWCCTM problem has a close relation-
ship with it, we can derive a similar non-preemptive sched-
uler for IWCCTM, as shown in Algorithm 1.

Algorithm 1. 2-Approximate Algorithm for IWCCTM

Input: Coflow List F ¼ fF ðkÞg, Weight List W ¼ fwk ¼ wkg,
1 � k � n;

Output: a permutation g of f1; . . .; ng;
1: P  f1; . . .; 2mg,R f1; . . .; ng;
2: L

ðkÞ
i ¼

Pm
j¼1 f

ðkÞ
i;j for 1 � k � n and i � m;

3: L
ðkÞ
jþm ¼

Pm
i¼1 f

ðkÞ
i;j for 1 � k � n and j � m;

4: Lp ¼
P

1�k�n L
ðkÞ
p for each p 2 P;

5: for i from n to 1 do
6: p� ¼ argmax

p2P
Lp;

7: g½i� ¼ r� ¼ argmin
r2R

wr=L
ðrÞ
p� ;

8: u ¼ wr�=L
ðr�Þ
p� ;

9: R ¼ R n fr�g;
10: wr ¼ wr � u � L

ðrÞ
p� for all r 2 R;

11: Lp ¼ Lp � Lðr
�Þ

p for all p 2 P;
12: return g;

Algorithm 1 takes a list F of n coflows and a list W of n
weights as its input, where the k-th coflow in F is defined
as F ðkÞ ¼ ffk

i;jj1 � i � m; 1 � j � mg, whose weight is wk,
the k-th weight in W, as already explained in Section 3. It
outputs g, a permutation of f1; . . . ; ng that indicates the
scheduling order of the n coflows.

The Algorithm first composes a port list P ¼ f1; . . . ; 2mg,
corresponding to m ingress and m egress ports, and com-
putes the total load on each port (line 1-4). Then its itera-
tively finds the coflow to be scheduled in the i-th round,
nonetheless in a reverse order. In each iteration, it finds the
port (p�) with the heaviest load, chooses the coflow who has
the minimal ratio of coflow weight to its load on that port,
and saves its index (r�) in g½i� (line 6-7). It then updates the
set of coflows remaining to be scheduled as well as their
weights, and the port load (line 8-11), before it goes to the
next iteration.

Different from Varys, Algorithm 1 is a port-based sched-
uling methods. Fig. 4 shows comparison of 2-approximate
algorithm against Varys and TCP. We can see that both
average CCT and average weight CCT for the 2-approxi-
mate algorithm is better than Varys.

Algorithm 1 generates the permutation g as the
scheduling order within Oðnðmþ nÞÞ operations. Indeed
Algorithm 1 is (2- 2

nþ1Þ-approximate optimal, where n is

TABLE 3
Main Notation Used in This Paper

Name Description

m Number of hosts of DC fabric
F ðkÞ The kth coflow
fki;j Normalized size of flow (in coflow F ðkÞ)

sent from host i to j
wk Weight of coflow k
Ck Completion time of coflow F ðkÞ
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the concurrent number of coflows. F denotes id set of
coflows to be scheduled and the kth coflow F ðkÞ’s subtask
denotes as L

ðkÞ
l (0 � l < 2m). L

ðkÞ
l has the following useful

property, first proved by Schulz [41] for other scheduling
problems and used by Mastrolilli [35] to prove the
approximation of minimize total weighted completion
time of jobs.

Lemma 1. For any j � 2m and S 	 F, we have (
P

k2S L
ðkÞ
j Þ2 �

ð2� 2
nþ1Þ 1

2

P
k2SðLðkÞj Þ2 þ 1

2 ð
P

k2S L
ðkÞ
j Þ2

h i
.

Lemma 1 describes the property of L
ðkÞ
l . With the help of

Lemma 1 , we can prove the following theorem.

Theorem 1. Algorithm 1 is (2- 2
nþ1Þ-approximate optimal, where

n is the concurrent number of coflows.

Proof. According to Chen [16] and the relationship between
IWCCTM and Concurrent Open Shop Problem, IWCCTM
has the following constrains:

minimize
Xn
k¼1

wkCk (5)

s:t: 8j � 2m;S 	 F :
X
8k2S

L
ðkÞ
j Ck

� 1

2

X
8k2S
ðLðkÞj Þ2 þ

1

2

�X
8k2S

L
ðkÞ
j

�2

:

(6)

We call this IWCCTM-C. Based on this, we get
IWCCTM-C’s dual function IWCCTM-D:

maximize
X2m
j¼1

X
S	F

1

2

X
8k2S
ðLðkÞj Þ2 þ

1

2

 X
8k2S

L
ðkÞ
j

!2
2
4

3
5ySj

(7)

s:t: 8k � n :
X2m
j¼1

L
ðkÞ
j

X
S	F

ySj ¼ wk (8)

8ySj � 0: (9)

Let pðiÞ denote the ports that are selected at Line 6,
and uðiÞ denote the computation result of u at Line 8.
wrðiÞ represents adjust weight of i-the iteration that is
computed at Line 10. Let gðiÞ represent the coflow set
that is not scheduled at the start of the i-th cycle and we
have gðiÞ ¼ fr�ð1Þ; r�ð2Þ:::r�ðiÞg, where r�ðiÞ denote
coflow’s id. Define the following solution of problem
IWCCTM-D:

ySj ¼
uðiÞ if j ¼ pðiÞ; S ¼ g ðiÞ; i ¼ 1; 2; 3:::n
0 other:

�
(10)

Eq. (10) satisfies constrains (8), because for any coflow
that is to be scheduled in the ith iteration r�ðiÞ (i = 1, 2,
3...n), we have:

X2m
j¼1

L
r�ðiÞ
j

X
S	F

ySj ¼
ðaÞXn

l¼i
L
r�ðiÞ
pðlÞ y

S
r�ðlÞ

¼ðbÞ
Xn
l¼i

L
r�ðiÞ
pðlÞ uðlÞ

¼ðcÞ wr�ðiÞ � wr�ðiÞ

¼ðdÞ wr�ðiÞ:

(11)

(a) holds since Algorithm 1 loops from n to 1, so the ith
iteration can be computed according to the result from
i to n. (b) holds because the solution (10). (c) holds since
in the ith iteration, weight is adjusted as

wðiÞr ¼ wr �
Xn
l¼k

Lr
pðlÞuðlÞ: (12)

(d) holds because at the end of i-th iteration wr�ðiÞ ¼ 0

Line 7 chooses coflowwith smallestwr=L
ðrÞ
p� , so (9) holds.

As a result, (10) satisfies both constrains (8) and (9), so it is
the solution of problem IWCCTM-D. In Algorithm 1, the
completion time satisfies Cg½1� � Cg½2� � :::Cg½n�. According

to Line 6 and 7, for i = 1, 2,..n, we have Cg½i� ¼
Pi

j¼1 L
r�ðjÞ
p�ðiÞ.

Let ðCCP
k Þk2F be the optimal solution and ðC�kÞk2F be an

optimal completion time vector, we have:

Xn
k¼1

wkCk

¼
Xn
k¼1

 X2m
j¼1

L
ðkÞ
j

X
S	F

ySj

!
Ck

¼
X2m
j¼1

X
S	F

ySj
X
k2S

L
ðkÞ
j Ck

¼
Xn
l¼1

y
gðlÞ
p�ðlÞ

Xl
g¼1

Lg
p�ðlÞCg

¼
Xn
l¼1

y
gðlÞ
p�ðlÞ

Xl
h¼1

L
r�ðhÞ
p�ðlÞ Cr�ðhÞ

�
ðeÞXn

l¼1
y
gðlÞ
p�ðlÞCr�ðlÞ

Xl
h¼1

L
r�ðhÞ
p�ðlÞ

¼ðfÞ
Xn
l¼1

y
gðlÞ
p�ðlÞ

 Xl
h¼1

L
r�ðhÞ
p�ðlÞ
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�
ðgÞ �
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nþ 1

�Xn
l¼1

y
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p�ðlÞ

�
1
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Xl
h¼1

L
r�ðhÞ
p�ðlÞ

h i2
þ 1

2

�Xl
h¼1

L
r�ðhÞ
p�ðlÞ

�2�

�
ðhÞ �

2� 2

nþ 1

�Xn
k¼1

wkC
CP
k

�
�
2� 2

nþ 1

�Xn
k¼1

wkC
�
k :

(13)

(e) holds since for h = 1, 2,...l, we have Cr�ðhÞ � Cr�ðlÞ,
(f) holds since Cr�ðlÞ ¼

Pl
h¼1 L

r�ðhÞ
p�ðlÞ , (g) holds since lemma

1. (h) holds y is the optimal solution for IWCCTM-D.
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As a result, Algorithm 1 is (2- 2
nþ1Þ-approximate opti-

mal, where n is the concurrent number of coflows. tu
However, since IWCCTM makes some idealized assump-

tions, the algorithm cannot be straightforwardly used in real
environment.

Algorithm 2. Coflow Size Based Offline Algorithm

Input: Coflow List F ¼ fF ðkÞg, Weight List W ¼ fwkg,
1 � k � n;

Output: a permutation g of f1; . . .; ng;
1: R f1; . . .; ng;
2: for r 2 R do
3: Lr ¼ maxðmaxi

Pm
j¼1 f

ðkÞ
i;j ;maxj

Pm
i¼1 f

ðkÞ
i;j Þ;

4: for i from n to 1 do
5: g½i� ¼ r� ¼ argminr2Rwr=L

r;
6: R ¼ R n fr�g;
7: return g;

Algorithm 3. Information-Agnostic Online Algorithm
(IAOA)

Input: Coflow list F ¼ fF ðkÞg, weight list W ¼ fwkg,
1 � k � n;

Output: Coflow list v;

1: if a new coflow arrives or a coflow ends or duration since last call
this algorithm > T then

2: update the active coflow list F ¼ fF ðkÞg;
3: n ¼ jFj;
4: for 1 � k � n do

5: update s
ðkÞ
i;j , the cumulative volume of the traffic sent

from i to j, for 1 � i; j � m;

6: L
ðkÞ
i ¼

Pm
j¼1 s

ðkÞ
i;j for 1 � i � m;

7: L
ðkÞ
jþm ¼

Pm
i¼1 s

ðkÞ
i;j for 1 � j � m;

8: lðkÞ=max1�i�2mL
ðkÞ
i ;

9: aðkÞ ¼ lðkÞ=wk;
10: v ¼ sort the list of faðkÞg in nondecreasing order;
11: return v;

4.2 Information-Agnostic Algorithm
for Minimizing WCCT

The key idea of Algorithm 1 lies in line 7, where it tries to
prioritize coflows with large weight but small load on the
most loaded port p�. We regard Algorithm 1 as port-based
method, since it ranks coflows according to the port traffic
load. However, in practice, flow size is rarely known by the
scheduler before it finishes, and flows arrive at any time,

which makes the port-based algorithm unrealistic. On the
other hand, although the load on each port varies with time,
on average, ports will have comparable loads since jobs are
effectively load balanced across a data center (with technol-
ogies such as [20], [22], [23], [26], [34]). With this in mind,
the schedule process does not need to take the load diver-
sity of ports into account. We make a simplification that
ignores the port load difference, and just prioritize coflows
with large weight but small size. By replacing the prioritiz-
ing rule in Algorithm 1 with this heuristic, we get the coflow
size based offline scheduling Algorithm 2.

In the coflow size based Algorithm 2, we first compute the
load of each coflow (line 3). Then every literation, we choose
the coflowwhich has theminimal ratio of coflowweight to its
load (line 4-6). Algorithm 2 can’t be used directly, since it
should know flow size beforehand. In practice, volume can
be measured cumulatively in realtime, so we replace flow
length with the volume of traffic it has sent. This is particu-
larly useful for scenarios where dynamic-sized flows are gen-
erated, for example, in hadoop or some other map-reduce
style applications. Algorithm 3 shows the process of IAOA.

Algorithm 3 is called by a scheduler when a flow starts or
finishes or duration since last calls the algorithm is larger
than the time threshold T . When a coflow starts or ends,
the active coflow list is updated (line 1-2).2 For each active
coflow in the active coflow list, we update s

ðkÞ
i;j which denotes

the cumulative volume of the traffic sent from i to j and com-
pute the cumulative volume of traffic of port i, j (line 6-7). We
use the cumulative volume of traffic to estimate the length of
coflow (line 8) and compute the priority of coflow (line 9).
Then we update the order of coflow (line 10) of the active
coflow list. For each active coflow, we allocate bandwidth to
flows according to the coflow priority. Algorithm 3 is an
information-agnostic online algorithm that dynamically
schedules coflows according to their weights and the instan-
taneous network condition. Compared to the 2-approximate
algorithm, it inevitably introduces some performance loss,
but our evaluation shows there is only a small gap, as will be
seen in the next part. There are also some other information-
agnostic algorithms such as PIAS [14], L2 DCT [37], FDRC
[50], Aalo [18]. PIAS and Aalo implement Multiple Level
Feedback Queue (MLFQ) to achieve information-agnostic
scheduling, in which a flow gradually demotes from higher-
priority queues to lower-priority queues based on the bytes

Fig. 4. Comparison of 2-approximate algorithm against Varys and TCP. 5 coflows contend at the 4 ingress and 4 egress ports. C1 contains 9 flows,
whose length are all 1. C2, C3, C4, C5 only have 1 flow whose length is 2. Weight of C1, C2, C3, C4, C5 are 1, 2, 3, 4, 5, respectively.

2. A coflow set F and the corresponding schedule order are main-
tained in the whole life of the scheduler. The prioritization procedure is
bypassed, and the schedule order remains unchanged if no new coflow
arrives.
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it has sent. They emulate Shortest Job First with the help of
router and TOS (Type of Service) of IP packets. This method
can provide clear priority level; however, there are only 8 pri-
orities because of the 3-bit width of TOS. FDRC accumulates
flow duration time to estimate flow length and it is also not a
good choice, since flowduration time in data center is always
less than 100 ms [12], which is not easy to measure accu-
rately. Algorithm 3 is similar to L2 DCT, which uses the idea
of using the number of bytes a flow has already sent as an
estimator for its pending data. Different from L2 DCT,
Algorithm 3 is a task-level method, which employs the
longest flow to compute the priority. This approach can pro-
vide abundant and flexible priority choices and doesn’t need
to configure router.

4.3 How Far is IAOA from the Optimal

Two relaxations are adopted in the information-agnostic
online algorithm (IAOA). Simple-offline algorithm assumes
data center generally assigns jobs with load balancing and
ignores load difference of each port. The online algorithm
further assumes that larger coflows that last long time and
have low priority. The two relaxations can absolutely lose
the performance. In this part, we analyze the performance
gap from both theory and simulations.

We use a two coflowmodel to show the performance loss
of IAOA. Assume there are two coflows F1 and F2, and
each coflow has m�m flows, whose length are all L1 and
L2. We further assume all the flows belong to the same
coflow start simultaneously. If L1 < L2 and coflow F1; F2
start at 0. Let W1 and W2 denote the weight of coflow F1
and F2, andW1 > W2.

Lemma 2. CðOPT Þ and CðIAOAÞ denotes the weighted coflow
completion time of the optimal solution and the worst case of
IAOA. For the non-blocking DC fabric, when T < L1 < 2T ,
we have CðIAOAÞ � CðOPT Þ < W1 � T

Proof. As F1 and F2 arrive simultaneously, and W1 >
W2; L1 < L2, so that optimal WCCT is CðOPT Þ ¼W1L1þ

W2ðL1 þ L2Þ. For IAOA, it has two cases, F1 starts earlier
or F2. If F1 starts earlier than F2, then after T , F2 has
higher priority than F1. As IAOA schedules coflows
every T and it priories short and important coflows, so
that in the following T time, F1 has higher priority again.
Indeed, they alternate higher priorities. If F1 starts ear-
lier, CðIAOAÞ ¼W1ðL1 þ T Þ þW2ðL1 þ L2Þ. If F2 starts
earlier, CðIAOAÞ is also W1ðL1 þ T Þ þ W2ðL1 þ L2Þ. The
worst case for IAIA is CðIAOAÞ ¼ W1ðL1 þ T Þ þ
W2ðL1 þ L2Þ. The gap between IAOA and the optimal
solution isW1 � T . tu
We can see the performance gap has positive correlation

with T. In reality, if the network operator sets a small value
of T, the performance of IAOA could be close to the optimal
solution. We now explore the performance gap between
IAOA and the 2-approximate offline algorithm. We consider
100 coflows served by a small-scale cluster consisting of 60
hosts. We write a program [3] to generate coflows as Nar-
row&Short (N-S), Narrow&Long (N-L), Wide&Short (W-S),
and Wide&Long (W-L), where a coflow is considered to be
short if its length is less than 100 MB, and narrow if it
involves at most 20 flows. Type percentage and flow bytes
are shown at Table 4. In our simulation, flow length and
width subject to exponential distribution. Let all the coflows
arrive at t = 0 and set weight within 1, 2, 3, 4, 5 with uniform
distribution. Re-generate all the coflows 100 times and Fig. 5
shows the result. In our experiment, error bar paints the
mean and mean 
 standard deviation value. We use the
improvement in average CCT and WCCT as our primary
metric and the improvement factor is defined as:

Factor of improvement ¼ results with TCP

results with current method
:

Fig. 5a shows that factor of improvement for WCCT of the
online method is 1.6. While that for simple-offline method is
1.7 and for the 2-approximate method is 1.8. Comparing with
the 2-approximate algorithm, the online algorithm has about
10 percent performance loss on minimizing average WCCT.
Note, the gap between the 2-approximate and the online algo-
rithm is small for N-S and W-S coflows, this is because the
online algorithm prefers the short coflows. Fig. 5b shows the
performance for different important level of coflows. We can
see that online method factor of improvement for significant,
important coflows are 2.2 and 2.0 on average. The 2-approxi-
mate methods are about 2.3, 2.2, which indicates that the

TABLE 4
Coflow Types Divided by Length and Width

Coflow Type S-N L-N S-W L-W

Length short long short long
Width narrow narrow width width
% of Coflows 52% 16% 12% 20%
% of Bytes 0.01% 0.65% 0.33% 99.01%

Fig. 5. [Simulation] Comparison between the online and offline algorithms, TCP is selected as the baseline. Note in the picture, L, U, N, I, S are abbre-
viations of Lax, Unimportant, Normal, Important, Significant.
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online algorithmhas less than 10 percent performance loss for
the above-the-average coflows. While for the below-the aver-
age coflows, IAOA has about 30 percent performance loss.
This indicates that IAOA has better performance for the
important coflows. Fig. 5c shows the distribution for CCT.
We can see more than 80 percent CCT for 2-approximate
method is within 20000s, while that for simple-offline and
onlinemethods are 70 and 60 percent. Table 5 shows the com-
parison between the methods. Although the online method
has some performance loss, it is non-clairvoyant method. As
flow size for some applications can not be known beforehand,
so that non-clairvoyantmethod could bemorewidely used in
practice.

5 FLYTRANSFER SYSTEM

To make our scheduling algorithm practical, we design and
implement a scheduling system named FlyTransfer. Fly-
Transfer can be readily deployed in productional cloud
environment like openstack and employs the actor model
[1]. It uses Akka [2] for message transferring and kryo [7]
for object serialization. It consists of about 6000 lines of scala
code, and can be downloaded at [5].

5.1 Coflow Scheduling and Flow Rate Control

FlyTransfer adopts centralized method to schedule coflows.
We use centralized methods, because comparing with
decentralized scheduling method, the centralized method
can decide coflow priority based on the full knowledge of
networks and coflows. To achieve, we implement a system
called FlyTransfer. Fig. 6 shows details of FlyTransfer Sys-
tem. FlyTransfer consists of three types of nodes, i.e., mas-
ter, worker and monitor. The master node is the brain of the
system, which plays the role of controller. It collects coflow
information from workers, performs coflow prioritization
and bandwidth computation. The work nodes run two dae-
mons: interact daemon and rate control daemon. The rate
control daemon is used to throttle flow to the value that is

computed by the controller. The interact daemon communi-
cates with the controller with a set of APIs shown at Table 6.

First, applications should register coflow information to
controller. The register information includes number of flows
in the coflow andweight of the coflow. If the coflow is admit-
ted by the controller, the scheduling module belonging to the
controller computes the priority of this coflow. Then the con-
troller produces an identifier that presents the coflow and
notifies the id aswell as the priority to all the nodes.

Second, after admitting the flow, controller computes the
bandwidth of the flow and sends this back to the sender.
Instead of evaluating rate limit at kernel level, FlyTransfer
extends the OutputStream [9] at the user state to throttle flow
rates. We choose this mode for two reasons. On the one hand,
the user state evaluation mode is easy and has similar effect.
On the other hand, the user state evaluationmode can control
sending rate of both TCP and UDP. However, the kernel state
evaluation mode such as changing congestion window only
applies to TCP. Then data is sent through socket.

Note, when scheduling each coflow, tenant should pass
the coflowId to the driver to tell the controller that flow
has started. After the controller admits the start signal, it
decreases the counter of flows. During the sending process,
tenants can also get the state of flow.

The Backup node in FlyTransfer System backups the
coflow scheduling state of the master node in real time, so
that if the master node crashes, the monitor can restart the
master and restore its state. The Administrator monitors the
system through the web server.

5.2 About Scalability

The system introduced above is a coflow scheduling frame-
work and the controller can choose scheduler with different
scheduling algorithms. Algorithm 1 has the best performance
in theory, however, it needs to know each flow size and
assume all coflows start simultaneously. However, these
flow information are hard to be known beforehand for some
applications (hadoop, spark, etc). Algorithm 2 is also not a
good choice since coflowsmay arrive at any time. FlyTransfer
evaluates Algorithm 3, because it can keep high performance
and doesn’t need to solve the optimization problem.

After deciding the priority of coflows, we should decide
the rate of flows. Algorithm 4 shows the process of flow rate
control. Bandwidth is allocated to flows according to the pri-
ority of coflows (line 3). Then it uses greedy method to allo-
cate bandwidth to flows as much as possible in each ports
(line 4-8). If there is spare bandwidth, it allocates remaining
bandwidth equally to all flows. Recall that, Varys need the
length of each flow and it schedules coflow every s time slot.
Different from Varys, IAOA doesn’t need flow length and it

TABLE 5
Comparison between the Three Algorithms

#Scheme Mode Procedure Performance information

2-approximate offline Complex High clairvoyant
Simple-offline offline simple High clairvoyant
IAOA online simple High non-clairvoyant

Fig. 6. FlyTransfer system.

TABLE 6
Coflow API

Methods Paramters Description

registerCoflow numflows, weight Register a coflow
unregisterCoflow coflowId Remove a coflow
flowPut coflowId Start a flow
flowGet flowId Get a flow information
coflowGet coflowId Get a coflow’s information
schedulerChoose ScheduerId Choose a scheduler
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schedules coflowwhen a new coflow arrives, so that the time-
liness of scheduling can be guaranteed. Besides, IAOA sched-
ules coflow according to network and coflow importance and
the back up node can guarantee the reliability of the system.
Varys suffers from the problem of single point of failure.
Table 7 shows the comparison of scalability.

Algorithm 4. Greedy Flow Rate Control

Input: Coflow list v;
Output: flow rate of each active coflow

1: g ¼ index set of v;
2: initialize the bandwidth to be allocated on each ingress and

egress port: Ip ¼ Op ¼ port physical bandwidth, for
1 � p � m;

3: for ‘ from 1 to n do
4: schedule coflow F ¼ F ðg½‘�Þ;
5: r = min fIp; Oqg, subject to F still need to send traffic to

port p or receive traffic from port q;
6: for each unfinished flow Fi;j in F do
7: allocate bandwith of r to Fi;j;
8: update Ii and Oj by deducting r from them;
9: allocate remaining bandwidth equally to all flows;
10: return flow rate of each active coflow

6 EVALUATION

In this section, we thoroughly evaluate the performance of
IAOA and FlyTransfer. In the evaluation part, default value
of T is 50 ms. We run trace-based simulations using real
traffic trace large scale and medium-sized data centers. We
also conduct experiments on a small scale openstack [8]
testbed, where there are 80 virtual machines (with 2 Cores
and 4 GB Memory) run simultaneously. As the facebook
trace [19] doesn’t contain weight information, we set weight
to coflows within f1; 2; 3; 4; 5g under uniform distribution
by default. The default scheduling algorithm is IAOA. The
main results of our evaluation are summarized as follows:

� For the trace of facebook [19] with random weight
within 1, 2, 3, 4, 5 under uniform distribution, IAOA
improves about 20, 10, 50 percent, 3 � better than
Sincronia, Varys, Approximate method, Barrat on
reducing the average WCCT. For coflows with
above-the-average level of importance, IAOA per-
forms about 20 percent better than Varys.

� For the trace of our data center, compared to Varys,
the best performing one among existing coflow
scheduling algorithms, IAOA reduces about 30 per-
cent of the average WCCT, and reduces about 25-30
percent of the WCCT of the most important coflows.

� The average computation time required by FlyTrans-
fer for each round of scheduling is about about 20
percent smaller than Varys .

� The simulation results match well with the open-
stack testbed results and this verifies the perfor-
mance of IAOA from another view.

6.1 Trace-Driven Simulation Methodology

The simulations are based on two traffic traces. The first one
is collected from a data center of Facebook with a cluster of
3000 machines in 150 racks [19]. The second one is collected
from a medium sized data center where around 100 applica-
tions run simultaneously among 720 servers deployed in 60
racks. The traffic is classified into 5 categories according to
the importance level of different applications, i.e., signifi-
cant, important, normal, unimportant, and lax, with default
weight of 5, 4, 3, 2, and 1, respectively. Since the trace of
facebook does not reveal the types of applications, we ran-
domly assign weights to applications with uniform distribu-
tion. What’s more, we also develop a coflow generator [4] to
generate coflows according to coflow length, coflow width
and coflow arrival time distribution.

We use two metrics to evaluate the effectiveness of differ-
ent scheduling methods. The first metric is the Coflow Com-
pletion Time, while the second is the Weighted Coflow
Completion Time. We consider both the average CCT or
WCCT of all coflows, as well as the CCT or WCCT of spe-
cific categories of coflows. We compare IAOA against three
typical coflow scheduling algorithm Varys [19], Barrat [22],
Approximate method [42], Sincronia [11]. Varys is an clair-
voyant method, so it has the best performance among them.
Barrat works in a distributed fashion, while the Approxi-
mate method [42] and Sincronia [11] try to solve a convex
optimization problem. There are other coflow scheduling
algorithms like sunflows [25] and CODA [48]. However,
sunflows targets a special communication pattern, and
CODA focuses on a learning method, so in general they per-
form no better than Varys. To ease the comparison, we often
use TCP as the baseline, and examine the ratio of improve-
ment, i.e., CCT by TCP

CCT with current method, and
WCCT by TCP

WCCT with current method. For
a thorough comparison, coflows are further classified
according to their length (i.e., the volume of the largest
flow in a coflow) and width (i.e., the number of parallel
flows in a coflow). The types include Narrow&Short (N-S),
Narrow&Long (N-L), Wide&Short (W-S), and Wide&Long
(W-L), where a coflow is considered to be short if its length
is less than 100 MB, and narrow if it involves at most
20 flows. The source code of all our simulations can be
download at [6], so that interested readers can repeat them.

6.2 Simulation by Traces with Facebook Traffic

In this section, we use trace of facebook [19] to test the perfor-
mance of IAOA. As the original facebook trace doesn’t
include weight information, we set random weight within 1,
2, 3, 4, 5 with uniform distribution to present the importance

TABLE 7
Comparison of Scalability

Required knowledge Schedule comparison Schedule frequency Reliability

FlyTransfer No flow length Importance & Network On coflow Arrivals Backup node guarantees
Varys Flow length is needed Network Every s timeslot Single point of failure
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of coflows. Repeat the process 100 times and Fig. 7 shows the
performance of IAOA, Varys [19], Barrat [22], Approximate
method [42], Sincronia [11] and TCP. Note TCP is selected
as the baseline in this group and the Y-axis denote

CCT by TCP
CCT with current method or

WCCT by TCP
WCCT with current method. Repeat the weight

setting process 100 times, where the error bar paints the mean
and mean
 standard deviation value. To eliminate the influ-
ence of extreme value, we remove the top and last 2.5 percent
result of each methods and recompute the factor of improve-
ment, so the 95th cases are also shown in the picture.

Fig. 7a implies that IAOA greatly reduces the average
WCCT across all coflow types. For the 95th of all flows,
IAOA performs about 20, 10, 50 percent, 3� better than Sin-
cronia, Varys, Approximate method, Barrat. Specially, for
the 95th Short-Narrow (S-N) case, IAOA performs about 43,
54, 66 percent, 3.5� better than Sincronia, Varys, Approxi-
mate method, Barrat. IAOA prefers S-N case, because it pri-
ors short coflows. Fig. 7b shows the average CCT of coflows
with different importance. We can see IAOA performs
about 20 percent better than Varys for the coflows with Sig-
nificant and Important level, but for the less important ones,
Varys perform about 10 percent better than IAOA. The rea-
son for this is that Varys schedules coflows only accords to
the network condition, while IAOA considers both network
condition and importance of coflows. Under IAOA, impor-
tant coflows may have higher priority, thus the average
coflow completion time will reduce.

We can see that Varys and Sincronia performs better than
Barrat and the approximate method on minimizing average
CCT and average WCCT. In the following experiment, we
mainly use Varys and Sincronia as the reference method to
show the performance of IAOA.

6.3 Simulation by Traces with Medium-Sized
Datacenter Traffic

In this section, we solve the problem that is proposed at
Section 2. Applications have 5 level of importances in our
data center and we use 5, 4, 3, 2, 1 to present the Significant,
Important, Normal, Unimportant and Lax level of impor-
tance. Run the trace of the medium-sized datacenter and
Fig. 8 shows the result.

Fig. 8a shows average WCCT for all coflows. IAOA per-
forms about 20 percent better than Varys onminimizing aver-
age WCCT. From Fig. 8b, we can see that for vRouter and
event which own significant level importance, Varys per-
forms almost the same as Sincronia, while IAOA performs
about 20 percent better than Sincronia and Varys. ForHadoop
and Druid (Important), IAOA performs about 30 percent bet-
ter than Varys. While other unimportant applications Varys
perform about 10-20 percent better than IAOA. This is
because IAOA takes the importance of coflows into consider-
ation. Fig. 8c shows Hadoop average WCCT and Fig. 8d
shows Hadoop CCT. For index sort and db analysis which
are important in our data center, Varys performs worse
than Sincronia. However, using IAOA, it performs about
30-40 percent better. But for the unimportant and lax coflows,
Varys performs best. For average WCCT, IAOA performs
about 20 percent better than Varys and Sincronia.

6.4 The Effect of Weight Setting

Weight plays an important role in IAOA scheduling algo-
rithm. In the previous experiments, we set weight within
f1; 2; 3; 4; 5g with uniform distribution to present the impor-
tance of coflows. We use 5 importance in the previous
experiments and the weight difference is 1. In this part, we

Fig. 7. [Simulation] Average WCCTand average CCTcomparison for facebook trace, TCP is selected as the baseline.

Fig. 8. [Simulation] Average CCT (Normalized) and Average WCCT for all applications and Hadoop. A1-A10 denote applications (Event - data-dist) in
Table 1 and I.S (index-sort), D.A (db-analysis), I.C (index-count), L.A (log-analysis), C.r (crawler), W.C (word count) are abbreviations of hadoop
applications.
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use the trace of our data center to test the performance of
IAOA under different magnitude of weights.

Fig. 9a shows the performance of IAOA, when weights
are arithmetic progression and the common difference for
the 5 importance level ranges from 1 to 8 (for example, if the
common difference is 2, the weight set is f1; 3; 5; 7; 9g). We
can see that factor of improvement for average WCCT
increases and average CCT decreases when the common
difference becomes larger. This is because when weight dif-
ference becomes larger, the influence of network is smaller
and weight becomes the dominant.

Fig. 9b shows the performance of IAOA, when weights
are set with geometric progression and the common ratio
for the 5 importance level ranges from 2 to 6 (for example, if
the common ratio is 2, weight set is f1; 2; 4; 8; 16g). We can
see that factor of improvement for average WCCT increases
and then stays almost the same when common difference
becomes larger. This is because when weight difference is
large enough, influence of weight becomes the key compo-
nent and network condition is almost useless.

In practice, the number of importance levels can be deci-
ded by the network administrator. In most of our experi-
ments, we use 5 level of importance. It is necessary to explore
the performance of IAOA with different number of weights.
Fig. 9c shows the comparison of different number of weights,
whenweights are arithmetic progression (common difference
is 1 and coflows choose weight with uniform distribution).
We can see factor of improvement for average WCCT incre-
ases and then stays almost the same when there are more
weights choices. This motivates us that we can set more accu-
rate important level for coflowswhen using IAOA in practice.
We think 5 level of importance is good enough for both aver-
age CCT and average WCCT optimization, so that we use the
5 level of importance settings in the following experiments.

Fig. 9d shows the factor of improvement over average
CCT of IAOA and Varys when all weights are the same. On
the whole, Varys performs about 5 percent better than
IAOA. However, IAOA performs better than Varys for short
coflows. This is because IAOA prefers short coflows and
Varys tries to minimize average coflow completion time
according to network condition.

6.5 Other Comparison

It is hard to find the optimal schedule, so that we find an
LP-based solution [38] whose approximation ratio is 67

3 to
compare with. The LP-based solution can not be used
directly, because it has to solve a LP problem, which is
time-consuming. Besides, it should know all the informa-
tion. Run the media size data center traffic and Fig. 10
shows the result. We can see that the gap between IAOA
and the LP-based solution is about 10 percent on average.
However, for the short coflows, IAOA performs about
20 percent better. From the measurement of our media
data center and facebook, we can see that most coflows are
the short ones, so that IAOA is a good choice with only
small performance loss.

After deciding the priority of coflows, Algorithm 4
uses the greedy algorithm to allocate rate to flows. There
are also other rate control methods such as Minimum-
Allocation-for-Desired-Duration and TCP. Use the media
data center trace and set weight with arithmetic progres-
sion and the common difference for the 5 importance
ranges from 1 to 8 (for example, if the common difference
is 2, weight set is 1, 3, 5, 7, 9), then Fig. 11 shows the per-
formance comparison between greedy, MADD and TCP.
We can see the greedy algorithm performs about 10 and
20 percent better than MADD and TCP, with the same
coflow priority settings.

Fig. 9. [Simulation] Performance under different magnitude of weights.

Fig. 10. [Simulation] Performance comparison between the LP-based
solution and IAOA.

Fig. 11. [Simulation] Performance comparison between different rate
control methods.
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6.6 Real Testbed Evaluation

We deploy FlyTransfer at our private openstack platform
which can start at most 80 virtual machines (2 Cores, 4 GB
Mem) simultaneously. Operation system of each virtual
machine is Ubuntu16.04. With the help of Traffic Control
module [10], we constrain the maximum bandwidth of each
VM’s NIC to 1 GB/s. Default coflow importance is set
within 1, 2, 3, 4, 5 with uniform distribution.

We can’t deploy all the applications of the medium size
data center, so we choose 5 common ones in our data center:
Event, Druid, Hadoop, Hive and data-backup. In order to be
as close as possible to the actual scenario, length and width
of coflows are generated with exponential distribution,
whose mean length and width are set according to Table 1.
To ease the comparison, TCP is set as the baseline and
Fig. 12 shows the results. We can see for Event (Significant)
and Druid (Important), IAOA performs about 30 percent
better than Varys and Sincronia. For Hadoop (Normal),
Hive (Unimportant) and data-backup (Lax), IAOA’s per-
forms close to Varys. The results match the simulation.

We then deploy another 5 applications: map-reduce, file-
copy, file-distribute, data-backup, data-distribute in our
platform. Length and width of coflows are generated with
exponential distribution according to Table 8. Coflow

importance is set within f1; 2; 3; 4; 5g with uniform distribu-
tion and coflow starts randomly between 0 s and 20 s. We
repeat the process 100 times and Fig. 13a shows the average
WCCT of applications. We can see IAOA performs about 30
percent better than Varys and Sincronia. Fig. 13b shows the
average CCT with different level of importance. We can see
that for the significant, important, normal and unimportant
applications, IAOA performs better than Varys and Sincro-
nia. However, for the lax applications, IAOA performs
worse than Varys and Sincronia. Fig. 13c shows the average
WCCT of data distribution and Fig. 13d shows the average
CCT. The result is similar to the case of all applications.

Then for the file distribution application, we let each vir-
tual node constantly construct files whose size ranging from
1 KB to 200 MB. Destinations are nodes which are randomly
chosen from the total nodes set. TCP-fair is chosen as the
baseline and Fig. 14 shows performance comparison
between IAOA and Varys. We repeat the process 10 times
and the error bar indicates the max, min and average factor
of improvement. From Fig. 14a, we can see in total,

TABLE 8
Application Information

Coflow Type mean width mean length (MB)

map-reduce 10 300
file-copy 3 800
file-distribute 6 400
data-backup 6 380
data-distribute 4 120

Fig. 12. [Testbed] Performance under 5 common applications in
openstack.

Fig. 13. [Testbed] Performance under different applications in openstack and M.R (Map-Reduce), F.C (File-Copy), F.D (File-Distribute), D.B (Data-
Backup), D.D (Data-Distribute) are abbreviations. L, U, N, I, S denote Lax, Unimportant, Normal, Important, Significant

Fig. 14. [Testbed] Some details of FlyTransfer. R1([0.01,1]), R2([1,10]),R3([10,100]) and R4([100,200]) are size range (MB)
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improvement factor of IAOA is 3.1, while Varys is 2.1.
IAOA improves 30 percent better than Varys. The 95th
result shows IAOA performs 31 percent better than Varys.

In reality, scheduler should be fast enough to compute
out the scheduler order and the rate of coflows. Fig. 14b
shows the overhead comparison between FlyTransfer and
Varys scheduler. We can see for peak load, when active
coflows is 1000, computation time of the scheduler is about
29 ms. We also test the scheduler time for Varys, we can see
that overhead of Varys is about 20 percent larger than Fly-
Transfer. We think the average computation time is fast
enough to get the schedule result.

Fig. 14c shows the result comparison for the simulator and
real testbed. In this experiment, we use the same parameters
just as the file distribution. We can see that the total perfor-
mance gap between the two methods are about 20 percent.
This result shows the credibility of our simulation.

7 CONCLUSION

In this paper, we use weight to quantify the emergence of
applications. We design IAOA the online coflow scheduling
algorithm. We design and implement FlyTransfer, a coflow
scheduling system that aims to minimize the average
weighted coflow completion time.We test its performance by
trace-driven simulations and experiments in real testbed.
Evaluation results show that, FlyTransfer can effectively
reduce the average WCCT. IAOA is non-clairvoyant (or
information agnostic), in the sense that it does not need to
knowflow size beforehand. This makes IAOAusable in prac-
tice. In our experiments, we use 5 levels of importance, how-
ever, in practice, a thiner granularity of importance may be
needed. In the future, we plan to develop formal theories to
investigate howweights can be set most efficiently.
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for coflow schedulingâ �NĘ,” arXiv preprint arXiv:1603.07981, 2016.

[40] T. A. Roemer, “A note on the complexity of the concurrent open
shop problem,” J. Scheduling, vol. 9, no. 4, pp. 389–396, 2006.

[41] A. S. Schulz, “Scheduling to minimize total weighted completion
time: Performance guarantees of lp-based heuristics and lower
bounds,” in Proc. Int. Conf. Integer Program. Combinatorial Optimi-
zation, 1996, pp. 301–315.

[42] M. Shafiee and J. Ghaderi, “An improved bound for minimizing
the total weighted completion time of coflows in datacenters,”
IEEE/ACM Trans. Netw., vol. 25, no. 4, pp. 1–14, Aug. 2018.

[43] H. Susanto, H. Jin, and K. Chen, “Stream: Decentralized opportu-
nistic inter-coflow scheduling for datacenter networks,” in Proc.
IEEE Int. Conf. Netw. Protocols, 2016, pp. 1–10.

[44] B. Vamanan, J. Hasan, and T. Vijaykumar, “Deadline-aware data-
center tcp (d2tcp),” in Proc. ACM SIGCOMM Conf. Appl. Technol.
Archit. Protocols Computer Commun., 2012, pp. 115–126.

[45] S. Wang, J. Zhang, T. Huang, J. Liu, T. Pan, and Y. Liu, “A survey
of coflow scheduling schemes for data center networks,” IEEE
Commun. Mag., vol. 56, no. 6, pp. 2–8, Jun. 2018.

[46] S. Wang, J. Zhang, T. Huang, T. Pan, J. Liu, and Y. Liu, “Multi-
attributes-based coflow scheduling without prior knowledge,”
IEEE/ACM Trans. Netw., vol. 26, no. 4, pp. 1962–1975, Aug. 2018.

[47] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron, “Better
never than late: Meeting deadlines in datacenter networks,” in
Proc. ACM SIGCOMMConf., 2011, pp. 50–61.

[48] H. Zhang, L. Chen, B. Yi, K. Chen, M. Chowdhury, and Y. Geng,
“Coda: Toward automatically identifying and scheduling coflows in
the dark,” inProc. Conf. ACMSIGCOMMConf., 2016, pp. 160–173.

[49] H. Zhang, X. Shi, X. Yin, F. Ren, and Z. Wang, “More load, more
differentiation-a design principle for deadline-aware congestion
control,” in Proc. IEEE Conf. Comput. Commun., 2015, pp. 127–135.

[50] H. Zhang, X. Shi, X. Yin, Z. Wang, and Y. Guo, “Fdrc-flow dura-
tion time based rate control in data center networks,” in Proc.
IEEE/ACM 24th Int. Symp. Quality Serv., 2016, pp. 1–10.

[51] Y. Zhao, K. Chen, W. Bai, and M. Yu, “Rapier: Integrating routing
and scheduling for coflow-aware data center networks,” in Proc.
IEEE Conf. Comput. Commun., 2015, pp. 424–432.

Zhiliang Wang received the BE, ME, and PhD
degrees in computer science from Tsinghua Uni-
versity, China, in 2001, 2003, and 2006, respec-
tively. Currently he is an associate professor with
the Institute for Network Sciences and Cyber-
space, Tsinghua University. His research interests
include formal methods and protocol testing, next
generation Internet, network measurement.

Han Zhang received the BS degree in computer
science and technology from JiLin University and
the PhD degree from Tsinghua University. He is
now working with the School of Cyber Science
and Technology, Beihang University. His research
concerns computer networks, network security
and AI. He is amember of the IEEE.

Xingang Shi received the BS degree from Tsing-
hua University and the PhD degree from The
Chinese University of Hong Kong. He is nowwork-
ing with the Institute for Network Sciences and
Cyberspace, Tsinghua University. His research
interests include network measurement and
routing protocols.

Xia Yin received the BE, ME, and PhD degrees in
computer science from Tsinghua University, in
1995, 1997, and 2000, respectively. She is a full
professor with the Department of Computer Sci-
ence and Technology, Tsinghua University. Her
research interests include future internet archi-
tecture, formal method, protocol testing, and
large-scale internet routing.

Yahui Li received the BS degree in computer sci-
ence and technology from JiLin University. She is
working toward the PhD degree at Tsinghua Uni-
versity. Her research concerns computer net-
works, network security and AI. She is a member
of the IEEE.

Haijun Geng received the BE degree from Yantai
University, in 2008, the ME degree from Capital
Normal University, in 2011, and the PhD degree
from Tsinghua University, in 2015. He is now
working in the School of Software Engineering,
Shanxi University. His research interests include
future Internet architecture and largescale inter-
net routing.

Qianhong Wu received the PhD degree in cryp-
tography from Xidian University, in 2004. Since
then, he has been with Wollongong University
(Australia) as an associate research fellow, with
Wuhan University (China) as an associate profes-
sor, and with Universitat Rovira i Virgili (Spain) as a
research director. He is currently a professor with
Beihang University in China. His research interests
include cryptography, information security and pri-
vacy, VANET security and cloud computing secu-
rity. He has been a holder/co-holder of 10 China/

Australia/Spain funded projects. He has authored 30 patents and more
than 130 publications. He has served as associate/guest editor in several
international ISI journals and in the program committee of dozens of inter-
national conferences. He is amember of IACR IEEE and ACM.

Jianwei Liu received the BS and MS degrees in
electronic engineering from Shandong University,
China, in 1985 and 1988, and the PhD degree in
communication engineering from Xidian University,
China, in 1998. He is currently a professor and
dean of School of Cyber Science and Technology,
Beihang University. His current research interests
include cryptographic protocol design, security on
wireless and mobile network, computer network
security, and cryptography. He has published six
books and nearly 200 papers in his research fields.

He is a senior member of the Chinese Institute of Electronics and director of
the Chinese Association for Cryptologic Research. He has been awarded
the first prize of technological invention of China.

WANG ETAL.: EFFICIENT SCHEDULING OF WEIGHTED COFLOWS IN DATA CENTERS 2017



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


