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Abstract—Graphics processing units (GPUs) have become extremely important devices for accelerating computing performance in

many applications. However, there have been few accurate models to estimate the performance of such applications running on

modern GPUs. In this paper, we propose a performance model to estimate the execution times for massively parallel programs running

on NVIDIAGPUs, one that takes on-chip resources and cost of data transfer between CPU and GPU into consideration. Four different

GPUs with different architectures were used to evaluate our model. We demonstrated the effectiveness of the proposed model by

applying it to various tasks in medical image registration. Experiments have demonstrated that by capturing on-chip GPU resources

and data transfer time with our model, we were able to obtain a more accurate prediction of the actual running time, compared to the

traditional model. Moreover, by using the optimal value of the block size parameter, estimated by our model, to accelerate the landmark

tracking task on GPU devices, speedups of approximately 80�, 100�, 200� and 800�, on the C2050, K20c, M5000 and P100 can be

achieved, making it possible to track massive numbers of landmarks and thereby improving the registration accuracy.

Index Terms—Performance model, graphics processing unit, on-chip resources, medical image registration

Ç

1 INTRODUCTION

OVER the last few decades, the performance and capabili-
ties of graphics processing units (GPUs) have increased

remarkably. They have evolved to become highly parallel
processors with tremendous computational power and high
memory bandwidth [1]. At present, GPUs are one of the
most important components of high-performance computing
(HPC) systems.High-performance computingwithGPUplat-
forms has gained in popularity for scientific research since
its emergence. By launching thousands of threads to utilize
a large number of cores, GPU programs achieve significant
speedups over a single-threaded program executing on
a CPU.

Applications for GPUs are generally written using soft-
ware development tools provided by GPU device manufac-
turers. For NVIDIA GPUs, NVIDIA provides a parallel
computing platform and programming model called CUDA
(Compute Unified Device Architecture) [2] that allows pro-
grammers to use these massively parallel architectures for
many applications, such as linear algebra [3], [4], neural data
analysis [5], [6], [7], and medical image registration [8], [9],

[10]. However, even though the CUDA programming model
is user-friendly, identifying program bottlenecks and estimat-
ing the benefits of potential optimizations using GPUs is still
complicated by several factors, including resource contention
and the unique GPU memory model. Therefore, to achieve
optimal performance for a scientific application on a GPU
platform, programmers might need to try all combinations of
the variables to find the best configurations.

Thus, there is a significant need for methodologies desig-
ned for predicting the performance of GPU applications to
use them efficiently. In the last decade, a number of studies
have explored this issue. Lopez-Novoa et al. [11] conducted a
survey of GPU performance modeling, which classified exist-
ing performance models for GPUs into four classes based on
the output generated by the model: execution time estimation
[4], [12], [13], [14], [15], [16], [17], [18], [19], bottleneck identifi-
cation [20], [21], [22], [23], power consumption estimation
[24], [25], [26], and simulation [27], [28], [29]. The execution
time estimation model is the most commonly used perfor-
mance model; it aims to predict the execution time of a paral-
lel application on GPU platforms by considering various
characteristics of the GPUs, such as the number of cores,
memory latency, memory access conflicts, cost of computing,
and scheduling. The most cited one is the Hong and Kim’s
model [12], which estimates the actual running time of a pro-
gram based on memory-level and thread-level parallelism.
Kothapalli et al. [13] proposed model estimates the relation-
ships between the various components of the NVIDIA GPU
architecture such as the number of cores, effects of memory
latency, and memory access conflict. Some execution time
models use program skeletons to estimate the potential per-
formance when an application is run on GPUs [15], [16].

� J. Wu, X. Yang, G. Chen, and R. Mao are with the College of Computer
Science and Software Engineering, Shenzhen University, Shenzhen,
Guangdong 518000, China.
E-mail: jacobwuu@foxmail.com, {yangxuan, glchen, mao}@szu.edu.cn.

� Z. Zhang is with the College of Information Engineering, ShenzhenUniversity,
Shenzhen, Guangdong 518000, China. E-mail: 437028792@qq.com.

Manuscript received 28 Mar. 2018, revised 9 Mar. 2019, accepted 11 Mar.
2019, Date of publication 15 Mar. 2019; date of current version 7 Aug. 2019.
(Corresponding author: Junhao Wu.)
Recommended for acceptance by Z. Chen.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2019.2905213

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 9, SEPTEMBER 2019 1947

1045-9219� 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-8284-7421
https://orcid.org/0000-0001-8284-7421
https://orcid.org/0000-0001-8284-7421
https://orcid.org/0000-0001-8284-7421
https://orcid.org/0000-0001-8284-7421
https://orcid.org/0000-0001-7207-3258
https://orcid.org/0000-0001-7207-3258
https://orcid.org/0000-0001-7207-3258
https://orcid.org/0000-0001-7207-3258
https://orcid.org/0000-0001-7207-3258
https://orcid.org/0000-0002-3645-5520
https://orcid.org/0000-0002-3645-5520
https://orcid.org/0000-0002-3645-5520
https://orcid.org/0000-0002-3645-5520
https://orcid.org/0000-0002-3645-5520
mailto:
mailto:
mailto:


Moreover, Machine-learning techniques can also be used to
train data to predict the execution time of a program running
on GPUs [17], [18]. Execution time prediction models for
specific purposes have also been proposed [4], [19]. However,
none of these execution time estimationmodels has attempted
to take into consideration the on-chip GPU resources, such as
the number of registers and the amount of shared memory.
When programs are run on a GPU, each streaming multi-
processor (SM) can execute multiple active warps in a time-
sharing fashion while one or more warps are waiting for
memory data. The parallelismwithwhichwarps accessmem-
ory simultaneously plays an important role in implemen-
tation performance. To maximize the improvement in the
performance of parallel programs running on GPUs, the
warp parallelism should be as high as possible. However,
the warp parallelism is determined by the number of active
warps, which is limited by the GPUs’ on-chip resources.
Although the number of active warps is included in Hong
and Kim’s model, the influence of active warps is counter-
acted in the model when the execution time is dominated by
memory access cost. The result is that the estimated running
timeusingHong andKim’smodel is not sensitive to the usage
of on-chip resources, and thus their model cannot accurately
predict implementation performance.

In this paper, we propose a novel analytical model to esti-
mate the performance of massively parallel programs run-
ning on NVIDIA GPUs. We extend Hong and Kim’s model
[12] to take on-chip GPU resources into consideration. To our
knowledge, this is the first work to propose an execution time
estimation model that considers on-chip resources of the
GPU. Moreover, data transfers between the CPU and GPU
affect the performance of aGPUprogramunder normal usage
[15], [30]; Gregg and Hazelwood [31] demonstrated that data
transfers between CPU and GPU can influence the reported
GPU performance and argued that the reported GPU
speedup should include the cost of data transfer. For this
reason, we also take the cost of data transfer into consider-
ation in our model to obtain a more accurate prediction of the
GPUperformance.

To validate our performance model, we implemented the
following tasks, which related to medical image registration,
on GPU platforms, including landmark tracking, spatial
transformation, and image interpolation. Image registration
is the process of transforming different sets of data into one
coordinate system by estimating an optimal transformation
between different images. However, many of the existing
image registration methods are computationally expensive,
and their registration accuracy is limited by the high compu-
tation cost. GPUs provide a parallel computing platform for
massive data processing,making it possible to accelerate reg-
istration processing. Medical image registration by means of
parallel processing on GPU platforms has been proposed [8],
[9], [32], [33], [34], [35]. An accurate performance model can
help take full advantage of the high performance of GPUs
and eliminate the optimization barrier of image registration
caused by the high computation cost of a single-threaded
program running on CPUs. For example, the number of
landmarks tracked by search algorithms can be increased
considerably as a benefit of efficient implementation on
GPUs, resulting in improved registration accuracy for meth-
ods based on landmark tracking.

Using our performance model, optimal implementation
performance was achieved by predicting performance given
different configuration parameters. For landmark tracking,
thousands of landmarks in 4D CT lung images were tracked
using a structure tensor tracking algorithm [36]. Experiments
showed that less than 1 s of running time is required on the
NVIDIA P100, and 800� speedups are achieved compared
with the single-thread program running on a Xeon E5-2620 v3
CPU. Moreover, more accurate registration results were
obtained compared to existing algorithms because of a mas-
sive number of landmarks was tracked. For spatial trans-
formation, 3D volume data were deformed by a given
transformation, and experiments showed that 150� speedups
are achieved on the NVIDIA C2050, 400� on the NVIDIA
K20c, 500� on the NVIDIAM5000 and 1500� on the NVIDIA
P100. For image interpolation, deformed 3D volumes were
obtained with greater than 50� speedups on the NVIDIA
C2050, 60� speedups on the NVIDIA K20c, 70� speedups on
theNVIDIAM5000 and 250� speedups on theNVIDIAP100.

The contributions of this paper are as follows. (1)Wedevel-
oped a performance model that consists of the computation
cost andmemory cost at the warp level and takes into consid-
eration on-chip GPU resources and the cost of data transfer
between CPU and GPU. The execution times estimated using
the proposed model are closer to the actual execution times
on different GPUs compared to the existing model. Our
model can be used to predict the execution performance of a
program as implemented on GPUs with different architec-
tures. (2) Using the performance model, we estimated the
optimal value of the block size parameter for implementing
landmark tracking, spatial transformation, and image inter-
polation for medical image registration. Using the optimal
parameter value, we optimized the implementation of a land-
mark tracking algorithm, spatial transformation, and image
interpolation on four different GPU platforms and achieved
approximately 80–800�, 150–1500�, and 50–250� speedups,
respectively, over a single-thread program running on a
CPU for these tasks. (3) Benefiting from the optimized
GPU implementation, massive numbers of landmarks were
tracked using GPUs, and more accurate registration results
were thereby obtained for 4DCT lung images.

The remainder of this paper is structured as follows:
Section 2 reviews related work. Section 3 briefly introduces
the architecture of GPUs. Section 4 describes our performance
model in detail. Results of various kinds of experiments are
provided in Section 5 and validate the proposed model
for various individual tasks. Finally, Section 6 provides
conclusions.

2 RELATED WORK

To estimate the performance of GPU-based applications,
many performance prediction models have been proposed.
As our proposed model belongs to the category of execution
time estimation models, we provide details of the past work
related to this kind of performance model in this section.

Hong and Kim [12] proposed a performance model for
the GPU architecture using two key metrics: memory warp
parallelism (MWP) and computation warp parallelism
(CWP). The first one, MWP, estimates the number of parallel
memory requests that can be executed concurrently and is
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calculated by considering the number of running warps and
the memory bandwidth. The second, CWP, represents the
number of warps that can execute instructions, while one
warp is waiting for memory data. Using both MWP and
CWP, thememory cost and computation cost required to run
a kernel can be estimated. Kothapalli et al. [13] proposed a
model outlining the relationship between the various com-
ponents of the NVIDIA GPU architecture, including the
number of cores, effects of memory latency, memory access
conflicts, cost of computing, scheduling, and pipelining. This
model can be used to analyze pseudocode for CUDA and
predict the performance. Baghsorkhi et al. [14] used a control
flow graph to represent the relationship between instruc-
tions, where nodes represent instructions and arcs represent
latencies. They proposed an analytical model based on a
work flow graph (WFG) to predict the effect of control flow
divergence and thememory hierarchy on the performance of
a GPU application.

Instead of using the source code to predict the execution
time, Meng et al. [16] proposed a GPU performance projec-
tion framework on CPU code skeletons that can estimate the
performance benefit of GPU acceleration without needing
any actual GPU programming or hardware. Boyer [15]
extendedMeng et al.’s framework by accounting for the data
transfer time between CPU andGPU.

The functional performance model is another type of per-
formance model; it represents the processor speed as a func-
tion of problem size [37]. The speed is defined as the number
of computation units performed by the processor per unit of
time. Data partitioning algorithms based on functional per-
formance models are designed to balance the computational
workload of heterogeneous multiprocessor systems for
data-parallel applications. Zhong et al. [38] used functional
performance models to optimally partition the workload of
data-parallel applications on heterogeneous multiprocessor
systems with multicore and multi-GPU platforms. They
modeled a multicore and multi-GPU system as a number of
abstract processors to built functional performance models
to measure their performance.

As an alternative to evaluating a number of predefined
formulas and then reporting the execution time quickly,
machine-learning (ML) techniques can be used to train data
to learn the relationship between program features and exe-
cution time [17], [18], [39]. Che et al. [17] proposed a model
based on machine-learning techniques, which can obtain a
very high accuracy level when used to predict the execution
times of applications on the GPUs used to build the model.
However, accuracy is decreased when execution time for a
new GPU is estimated. Kerr et al. [39] used the polynomial
form of linear regression to determine a relationship between
static program metrics and the total execution time of an
application. Dao et al. [18] proposed two GPU performance
models—a sampling-based linear model and a model based
on ML techniques—that are applicable to modern GPUs
with and without caches. The drawback of these machine-
learning-based approaches, however, is that the process
used to calibrate the model has not been described in suffi-
cient detail [11].

On the contrary, models for specific programs have also
been proposed. For example, Li et al. [19] analyzed the
performance of sparse matrix multiplication on a GPU. Their

performance model is based on probability mass function,
which fully reflects the distribution of nonzero elements in a
sparse matrix. When this is combined with the hardware
parameters of the GPU, the performance of matrix multipli-
cation can be estimated. Chen et al. [4] developed a hybrid
parallel lower-upper (LU) factorization approach combining
task-level and data-level parallelism on GPUs. A parametric
performancemodel was presented to analyze the bottlenecks
of the proposed LU factorization approach.

However, existingmodels do not characterize the influence
of on-chip GPU resources, which are related to the number of
warps running concurrently on an SM and the parameter
block size. In this work, we focus on a performance model of
GPUs that considers on-chip resources to accurately predict
the performance.

3 BRIEF INTRODUCTION OF GPU ARCHITECTURE

GPUs are capable of accelerating scientific computing because
of their parallel computing ability. The GPU is designed for
calculation, especially for floating point calculation, without
redundant and complex logical control units. CUDA makes
it possible to solve many complex computational problems
in a more efficient way. CUDA comes with a software
environment that allows developers to use C as a high-level
programming language to implement parallel computing
conveniently. In CUDA, a kernel function is called by the host
and then executes on the GPU. A kernel is executed as a grid,
which is composed of blocks of threads. Each block is
completely independent. A block is composed of threads
that can communicate within this block. Thirty-two threads in
the same block form a warp, which is executed physically in
parallel on a streamingmultiprocessor in the GPU.

The architecture of a typical GPU has a set of SMs and a
DRAM, referred to as global memory, which can be accessed
by any SM. Each SM contains several streaming processors
(SPs) and other on-chip resources, including registers, shared
memory, constant cache, and texture cache. In the CUDA
parallel programming model, each thread has a per-thread
private memory space used for register spills, function calls,
and automatic array variables. Each thread block has a per-
block shared memory space used for inter-thread communi-
cation, data sharing, and result sharing in parallel algorithms
[40]. Data in sharedmemory can be accessed by threads in the
same block.

Registers are on-chip resources with the highest access
speed and the lowest latency. Variables declared in a kernel
without any qualifier automatically reside in registers,
except for arrays. The shared memory is also on-chip, and
the latency to access shared memory is low, tens of cycles.
However, accessing global memory can take hundreds of
cycles. GPUs hide such latency for global memory access by
having multiple warps running concurrently, called active
warps, on each SM. Whenever a warp is suspended pend-
ing completion of its memory access, an SM can switch to
another warp and continue execution. On early devices, the
latency to access global memory can vary according to data
access patterns. Devices with compute capability 2.0 or
higher, however, such as the Tesla C2050, have an L1 cache
with a 128-byte line size in each multiprocessor, which coa-
lesces global memory accesses by threads in a warp into as
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few cache lines as possible, resulting in a negligible effect of
alignment on throughput for sequential memory accesses
across threads [41].

4 PROPOSED PERFORMANCE MODEL FOR GPUS

To estimate the cost of a GPU implementation strategy, we
propose a performance model that accounts for on-chip
resources. Hong and Kim [12] proposed an analytical model
for the GPU architecture by using memory warp parallelism
and computation warp parallelism. MWP is used to esti-
mate the maximum number of warps that can access mem-
ory concurrently during one memory access period, and
CWP is used to estimate the number of computations that
can be performed during one memory access period. How-
ever, this analytical model does not consider the limitation
of on-chip GPU resources in MWP, such as registers and
shared memory; this results in estimated execution times
that are mostly the same even though the usage of on-chip
resources are different. We extend Hong and Kim’s model
by considering on-chip resources to handle this issue.

Our aim is to fully use GPU resources and accurately pre-
dict the implementation performance of different parallel
computation tasks. In our performance model, the memory
access cost and the computation cost are considered. The
memory cost is evaluated by estimating the execution time of
memory access and the exact number of active warps execut-
ing concurrently. Suppose the total time required for memory
access is t; the number of active warps kw determines the
number ofwarps that are able to accessmemory concurrently,
and thus the real memory access time is proportional to t=kw
when the memory bandwidth is sufficient. This means that
the more active warps there are, the lower is the memory

access time. Aswe know, the on-chip resources onGPUs limit
the number of active warps, which in turn influences the
memory access cost. Therefore, it is necessary to take the
number of active warps as a factor in predicting the memory
access time.

For computation cost, on the other hand, we take the num-
ber of warp schedulers on GPUs into account. The morewarp
schedulers there are, the greater the number of active warps
that can be scheduled, which implies thatmore threads can be
executed concurrently in the same clock cycle when resources
on the GPU are sufficient for these threads. The number of
warp schedulers is different for various GPU architectures,
such as the Maxwell [42] architecture and the Pascal [43]
architecture. Therefore, it is reasonable to consider the num-
ber of warp schedulers as an influencing factor. Moreover,
we also take data transfer time between CPU and GPU into
consideration. Table 1 lists the parameters used in our perfor-
mancemodel.

4.1 Cost of Computation

CUDA splits problems into grids of blocks, each containing
multiple threads. Blocks are allocated to any SM that has free
slots. The SM schedules threads in each block in groups of
32 parallel threads, called warps, and each warp is scheduled
by a warp scheduler for execution. Threads in the same
warp are executed concurrently. Hence, calculating the cost
of computation for a warp is equivalent to calculating the
cost of computation for a thread. For a thread, the key in com-
putation cost prediction is to estimate the number of instruc-
tion cycles for each arithmetic operation.

Hong and Kim used the number of parallel thread execu-
tion (PTX) [2] instructions to calculate the cost of computation
and assumed that each PTX instruction translates to one

TABLE 1
Summary of Model Parameters (“conf” Represents Configuration;

“code analysis” Refers to CUDA Source Code Analysis)

Model parameter Definition Obtained from

Comp_cycles Cost of computation for a warp Code analysis
Comu_bytes Number of bytes transferred between host and device Code analysis
Comu_BW Data transfer bandwidth between host and device Machine conf
Departure_delay Delay between two global memory transactions Machine conf
Freq Clock frequency of the streaming multiprocessors (SMs) Machine conf
Max_B Maximum number of active blocks in each SM Machine conf
Max_R Maximum number of registers in each SM Machine conf
Max_W Maximum number of active warps in each SM Machine conf
Max_SMem Shared memory allocation size per SM Code analysis
Mem_insts_global Number of global memory access instructions in one thread Code analysis
Mem_insts_local Number of local memory access instructions in one thread Code analysis
Mem_insts_shared Number of shared memory access instructions in one thread Code analysis
Mem_L_global Global memory access latency Machine conf
Mem_L_shared Shared memory access latency Machine conf
Nb Total number of blocks running on the GPU Code analysis
Nconf Average bank conflict per shared memory access instruction Code analysis
Nsm Number of SMs on GPU chip Machine conf
Nws Number of warp schedulers in each SM Machine conf
Reg_per_thread Number of registers used by each thread Code analysis
SMem_unit Shared memory allocation unit size Machine conf
SMem_used Shared memory to be used by each block Code analysis
Sync_insts Number of synchronization instructions in one thread Code analysis
Threads_per_block Number of threads per block Code analysis
Warp_size Number of threads per warp Machine conf
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native binary microinstruction. However, some PTX instruc-
tions, such as the sqrt instruction, are expanded as multiple
binary instructions. Furthermore, as a low-level instruction
set architecture, PTX has poor readability. For these reasons,
we use a different method to calculate the cost of computa-
tion. First, we use the kernel code to count the number of each
type of arithmetic operation, such as multiplication opera-
tions or division operations. Then, the latency of each type of
arithmetic operation is estimated using microbenchmarks.
The details of the method used to estimate the latencies are
provided in [44]. Next, the execution time of each arithmetic
operation is represented by its specific latency. Finally, the
cost of computation for a warp, denoted as Comp cycles and
representing the total execution time for all arithmetic opera-
tions, is calculated by summing the execution time of each
arithmetic operation.

4.2 Cost of Memory Access

Benefiting from the hundreds of SPs on GPUs, the time to
execute all instructions of a warp is cheap. However, it is
expensive to access data from memory. When a warp issues
a memory fetch request, it spends many clock cycles waiting
for the requested data. During this period, all threads in this
warp are suspended. Global memory is the slowest memory
in GPUs and is thus the performance bottleneck for parallel
implementation on GPUs. Shared memory is an on-chip
memory resource with a low access cost. However, the size
of shared memory is very limited. Local memory is used to
store local variables spilled from the register. Details of
register spilling will be introduced later. In this section, we
estimate the cost of memory access at the warp level by
modeling these three types of memory access.

4.2.1 Cost of Global Memory Access

On devices with compute capability 2.0 or higher, the device
coalesces global memory accesses by threads in a warp into
as few transactions as possible, resulting in a negligible effect
of alignment on throughput for sequential memory accesses
across threads [41]. For this reason, there is no need to con-
sider misaligned data access in global memory. The cost of
global memory accesses by eachwarp is simplified as

Mem cycles global ¼ Mem L global�Mem insts global;

(1)

where Mem L global is the global memory access latency,
and Mem insts global is the number of global memory
access instructions in each thread, which can be counted
easily using the kernel code.

4.2.2 Cost of Shared Memory Access

For devices with compute capability 2.0 or higher, shared
memory is arranged in 32 banks that are 32 bits wide. Band
conflicts occurwhen addresses requested bymultiple threads
are mapped to the same memory bank. If n threads within
a warp cause a bank conflict, then nmemory accesses are exe-
cuted serially, resulting in a factor-of-n slowdown on the per-
formance of sharedmemory access. However, if all threads in
a warp access the same memory address, a broadcast is per-
formed and no bank conflict occurs, and thus only one

memory transaction is needed. LetNconf be the average num-
ber of conflicts per shared memory access instruction issued.
Then the cost of sharedmemory access for eachwarp is

Mem cycles shared ¼ Mem insts shared

�Nconf �Mem L shared;
(2)

where Mem L shared is the shared memory access latency,
and Mem insts shared is the number of shared memory
access instructions in a thread. Note that when n threads
access the same shared memory bank, then Nconf ¼ n. An
exception is a case in which all threads in a warp access the
same shared memory address; in this case, Nconf ¼ 1. For a
specific kernel, we can easily count the number of shared
memory access instructions and then analyze the number of
bank conflicts that will occur, thereby obtaining the values
ofMem insts shared andNconf .

4.2.3 Cost of Local Memory Access

In most cases, local variables in a kernel are held in registers,
which consume no clock cycles to access. However, there are
three cases for which the compiler will place variables in
local memory (called register spilling):

1) Arrays whose indexes cannot be determined to be
constant quantities;

2) Large structures or arrays that cannot be held in
registers;

3) Any variables that would require more registers than
the kernel has available.

Local memory is an abstraction to the scope of a thread; it
does not exist physically. Devices with compute capability
2.0 or higher spill registers to the L1 cache, and older devices
spill registers to global memory. Hence, in our performance
model, the cost of accessing local memory is as high as that
for accessing the L1 cache. This means that the latency of
accessing local memory is the same as the latency of access-
ing shared memory without bank conflict and broadcasting.
The cost of local memory access for eachwarp is

Mem cycles local ¼ Mem L shared

�Warp size�Mem insts local;

(3)

whereMem insts local is the number of localmemory access
instructions executed by each thread, which is obtained by
running the compiler report with the ptxas option [2].

4.3 Real Warp Parallelism

TheCUDAparallel programmingmodel guides the program-
mer to partition the problem into coarse sub-problems that
can be solved independently in parallel by blocks of threads.
Each sub-problem is partitioned into finer pieces that can be
solved cooperatively in parallel by all threads within a block
[2]. At the chip level, a global work distribution engine sched-
ules thread blocks to various SMs, while at the SM level, each
warp scheduler distributes warps of 32 threads to its execu-
tion units [40]. The more the number of warp schedulers, the
more the number of warps that can be issued and executed
concurrently. For example, in the Fermi architecture, such
as that of NVIDIA Tesla C2050, each SM features two warp
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schedulers, which allows two warps to be issued and exe-
cuted concurrently [40].

We use real warp parallelism (RWP) to represent the exact
number of warps per SM that can execute concurrently. The
RWP values for computation and memory access are sepa-
rate in our model and are denoted as RWP C and RWP M,
respectively. The RWP for computation is equal to the num-
ber of warp schedulers in each SM, denoted by Nws. How-
ever, when the number of warps in a block is less than
the number of warp schedulers, which means there are not
enough warps in a block to be scheduled, RWP C is less
thanNws. The RWP for computation is formulated as

RWP C ¼ MIN
Threads per block

Warp size
;Nws

� �
: (4)

Furthermore, when a warp issues memory requests, it will
be suspended until all of the memory requests are served.
During this period, the SM can switch to another active
warp so that all computer resources are kept busy. Consider
the delay between two memory transactions, denoted as
Departure delay. There are Mem L global=Departure delay
warps that can access memory concurrently, where
Mem L global is the global memory latency. However, the
number of active warps is also influenced by the resources of
each SM. The more resources each warps occupied, the fewer
warps that can be executed concurrently. For memory access,
we extend the memory warp parallelism proposed by Hong
and Kim [12] to take on-chip resources into consideration and
define theRWP M as follows:

RWP M ¼ MIN
Mem L global

Departure delay
;Warps active

� �
; (5)

where the number of active warps per SM, Warps active,
is dependent on the number of active blocks per SM,
Blocks active, and the block size, Threads per block, and is
calculated as

Warps active ¼ Blocks active� Threads per block

Warp size
; (6)

where the number of active blocks Blocks active is con-
strained by on-chip resources. Limited by on-chip resour-
ces, each SM can accept up to 8 to 32 blocks running
concurrently, depending on the GPU architecture. When a
block is finished, resources used by that block become free.
These resources will then be reallocated to a new block to
make it active. For this reason, the block size is a tradeoff
between the number of active blocks and the amount of on-
chip resources used by each block. This means that the
more resources each block occupies, the fewer blocks can
run concurrently in each SM. Although Hong and Kim pro-
vided the definition of Blocks active, their model is not sen-
sitive to it, and no method for obtaining the value of
Blocks active was provided. Here, we propose an approach
for estimating Blocks active based on SM resources, and
this can be used to optimize GPU implementation. For a
specific number of threads per block, Blocks active is deter-
mined by the limitation of on-chip resources, including
registers and shared memory. The relationship between
Blocks active and on-chip resources is

Blocks active ¼ MINfMax B;Max B W;

Max B R;Max B Sg; (7)

Max B W ¼ Max W �Warp size

Threads per block
; (8)

Max B R ¼ Max R

Threads per block�Reg per thread
; (9)

Max B S ¼ Max SMem

SMem per block
; (10)

SMem per block ¼ SMem used

SMem unit

� �
� SMem unit; (11)

where Max B is the maximum number of blocks per SM,
which is determined by the compute capability of the GPUs;
Max B W is the maximum number of blocks allowed in an
SM constrained by the maximum number of warps per SM
Max W , and Threads per block=Warp size calculates the
number of warps in a block;Max B R is the maximumnum-
ber of blocks allowed by available registers, Max R is the
number of available registers provided by each SM, and
Threads per block�Reg per thread is the number of regis-
ters requested by each thread block, where the value of
Reg per thread can be obtained from the compiler reports of
the kernel runwith the ptxas option [2];Max B S is themax-
imum number of blocks tolerated by shared memory,
Max SMem is the size of shared memory provided by each
SM, and SMem per block is the size of shared memory occu-
pied by each block; SMem used is the amount of shared
memory requested by each block and SMem unit is the size
of the sharedmemory allocation unit. Note that the program-
mer can configure the size of shared memoryMax SMem to
be 16 KB or 48 KB for devices with the Fermi or Kepler archi-
tecture, while the size of shared memory is 96 KB and 64 KB
for devices with the Maxwell and the Pascal architecture,
respectively; clearly, SMem used can also be declared by the
programmer in the kernel.

Besides, the value of memory warp parallelism in Hong
and Kim’s model is also limited by the memory bandwidth
and the bandwidth occupied by all concurrently running
warps, denoted asMWP peak BW . We eliminate the limita-
tion of MWP peak BW , as we found that it has a negative
influence on the model. Details are given in Section 5.3.

Note that in most cases, the number of active warps does
not influence computation-intensive tasks, whose execution
time is dominated by computation. For computation-intensive
tasks, the cost of arithmetic instructions is muchmore than the
cost of memory access and the memory access latency is hid-
den during execution of arithmetic instructions. In these cir-
cumstances, the number of active warps is much greater than
the number that the warp schedulers can schedule. Therefore,
for computation-intensive tasks, it is not necessary to consider
the number of active warps. Memory-intensive tasks, on the
other hand, whose execution time is dominated by memory
access, are not affected by the number of warp schedulers.
For these tasks, the cost of memory access is greater than the
cost of computation and the number of active warps must be
sufficient to hide thememory latency time. Themore the num-
ber of active warps, the more memory latency can be hidden.
Therefore, the memory-intensive tasks are heavily influenced
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by the number of active warps but not by the number of warp
schedulers because there are no delays in switching between
activewarps [2].

It is observed that the number of active blocks defined in
Eq. (7) is related to the resources in an SM, such as the avail-
able registers and sharedmemory, a factor that is not provided
in [12]. To optimize the programming implementation on
GPUs, the resources requested by a program and the available
resources providedbyGPUs should be balanced. The key con-
tribution of our paper is to provide an estimate of the number
of active blocks, which will make the performance prediction
more accurate. Furthermore, an optimized implementation
can be obtained using our performancemodel.

4.4 Cost of Synchronization

Typically, all of the threads in a block are executed asyn-
chronously. However, a barrier is needed when some
threads need to synchronize to share data with each other.
In the CUDA programming model, programmers can spec-
ify synchronization points in the kernel by calling the
syncthreadsðÞ intrinsic function. This function acts as a bar-

rier at which all threads in the block must wait before any
of them is allowed to proceed [2]. In [12], Hong and Kim
demonstrated that the additional delay per synchronization
instruction in a block is the product of Departure delay and
RWP M � 1. Thus, the cost of synchronization for each block
is calculated as

Sync block ¼ Departure delay� ðRWP M � 1Þ
� Sync insts;

(12)

where Sync insts is the number of synchronization instruc-
tions in one thread. We divide Sync block by the number of
warps in a block and obtain the cost of synchronization at
the warp-level as

Sync cycles ¼ Sync block�Warp size

Threads per block
: (13)

4.5 Total Execution Time

As illustrated above, we separate memory access and com-
putations as far as a single warp is concerned. As there are
multiple warps executing concurrently on GPUs, we take
the real warp parallelism into consideration and extend the
definition of cycles per instruction (CPI) from the instruction
level to the warp level, as cycles per warp (CPW). CPW is
used to measure the average cost of computation and the
average cost of memory access for a program at the warp
level, which are denoted as CPW C and CPW M, respec-
tively. CPW C is related to the cost of computation and the
number ofwarps that can execute computation concurrently,
and CPW M is related to the cost of memory access and the
number of warps that can access memory concurrently. The
values of these twometrics are calculated as

CPW C ¼ Comp cycles

RWP C
; (14)

CPW M ¼ Mem cycles

RWP M
; (15)

where Mem cycles is composed of the cycles used by global
memory, shared memory, and local memory, as follows:

Mem cycles ¼ Mem cycles globalþMem cycles shared

þMem cycles local:
(16)

When CPW C > CPW M, the total execution time is
dominated by computation; otherwise, the total execution
time is dominated by memory access. By considering com-
putation cycles, memory access cycles, and synchronization
cycles together, we can calculate the average number of
cycles to execute a warp as

Exec cycles warp ¼ MAXfCPW C;CPW Mg
þ Sync cycles:

(17)

Moreover, a multithread program is partitioned into
blocks of threads that execute independently of each other.
Blocks are scheduled to execute on SMs, and each block must
execute from start to finish on one SM. Let Nb be the total
number of blocks running on aGPUandN blocks be the num-
ber of blocks to be executed in each SM. Then the number of
warps to be executed in each SM is

N warps ¼ N blocks� Threads per block

Warp size
; (18)

where

N blocks ¼ Nb

Nsm

� �
; (19)

and thus the total number of cycles to execute all warps in
each SM is

Exec cycles SM ¼ N warps�Exec cycles warp: (20)

As all SMs on a GPU are running concurrently, the total
execution time for a GPU is the same as the execution time
of one SM. To transform the required number of cycles into
units of time (seconds), Eq. (20) is divided by the clock rate
of the GPU core as follows:

Exec times GPU ¼ Exec cycles SM

Freq
: (21)

To consider the time for data transfer between host and
device, denoted as Tc, we rewrite Eq. (21) as

Exec times GPU ¼ Exec cycles SM

Freq
þ Tc; (22)

where

Tc ¼ Comu bytes

Comu BW
; (23)

in which Comu bytes is the number of bytes transferred
between CPU and GPU, whose value is known for a given
task, and Comu BW is the memory bandwidth between CPU
andGPU,whose value is estimated usingmicrobenchmarks.

For a specific implementation on a particular GPU plat-
form,Nb is constant. There is then a proportional relationship
between Exec cycles warp and the execution time of our
parallel program; see Eq. (20). The value of Exec cycles warp
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is inversely proportional to the realwarp parallelism,RWP C
and RWP M; see Eqs. (17), (14), and (15). For computation-
intensive tasks, RWP C is limited by Threads per block and
the number of warp schedulers Nws (Eq. (4)); for memory-
intensive tasks, asMem L global=Departure delay is constant,
the value of RWP M is determined by the number of
active warps Warps active (Eq. (5)). Since Warps active
is determined by Blocks active, which is also related to
Threads per block, the total execution time of GPUs in our
performance model is indeed a cost function based on the
parameter Threads per block. By selecting an optimal
Threads per block value, the total cost of implementation on
GPUs can beminimized, whichmeans an optimal implemen-
tation strategy can be obtained.

5 EXPERIMENTAL EVALUATION

Three tasks used for medical image registration were imple-
mented to evaluate the performance of our proposed model.
The first is the image registration based on a landmark track-
ing algorithm, the second is the calculation of a spatial trans-
formation for a 3D image using a given transformation
function, and the third is the trilinear interpolation. In our
implementation, the landmark tracking task is memory-
intensive owing to its frequent accessing of global memory.
For spatial transformation, two different kernels were imple-
mented to evaluate the accuracy of our model: one that
accesses global memory, and another that accesses shared
memory, which we used to demonstrate the influence of on-
chip resources on the execution time. Since the trilinear inter-
polation task uses very few on-chip resources, we used this
task to validate the performance of our model for those tasks
that are not influenced by on-chip resources.

To calculate the speedup of our GPU parallel implemen-
tation, the execution time for a single-threaded implemen-
tation running on CPU was used to compare with the
execution time of the multi-threaded implementation run-
ning on GPUs. The single-threaded program was written
using the C programming language and was compiled with
the Microsoft Visual Studio C++ compiler 11.0 without any
acceleration. For comparison, only the execution time for
the portion of the program that was run both on the CPU
and on the GPUs was used to calculate the speedup.

5.1 Experiment Settings

To evaluate the performance of the proposedmodel, four dif-
ferent GPU platforms, the NVIDIA Tesla C2050, the NVIDIA
Tesla K20c, the NVIDIA Quadro M5000, and the NVIDIA
Tesla P100, were employed. The specifications of different
GPUs are listed in Table 2. The test machine ran the 64-bit
Windows 7 and the NVIDIA CUDA toolkit 7.0. Our single-
threaded programs were executed on an E5-2620 v3 CPU,
and the multi-threaded CUDA kernels were executed on the
C2050, the K20c, theM5000 and the P100, respectively.

5.2 Landmark Tracking

Landmark-based image registration is based on finding the
corresponding landmarks in images. To improve the registra-
tion accuracy, a large number of landmarks are required to be
matched or tracked, which could be performed concurrently
onGPUplatforms because of their independent relationships.

In this experiment, a landmark tracking algorithm for 4D CT
lung images, the spatially extended structure tensor (SEST)-
based landmark tracking algorithm [36], was implemented
onGPUplatforms to accelerate its performance.

5.2.1 The SEST Landmark Tracking Algorithm

To illustrate the GPU implementation of the SEST landmark
tracking algorithm in detail, we first give a brief introduction
of the SEST landmark tracking algorithm in this section.
Details of SEST can be found in [36].

The basic idea of SEST is to extract tensor features from
the local region centered at a landmark in an image at a given
point of time and to search for the corresponding landmarks
in images taken at other times based on the similarity of
the tensor features. For 4D CT landmark tracking, the 4D
CT image acquired with N phases is denoted as Itjt ¼f
0; 1; . . . ; N � 1g, and It is supposed to be the image for phase

t. We extract k landmarks p0j , j ¼ 1; 2; . . . ; k, from I0 and track

their corresponding positions ptj in target images It. Given a

3D local patch P 0
j centered at p0j , the local patch is uniformly

partitioned into eight sub-patches P 0
j;i, i ¼ 1; . . . ; 8. Let SPj;i

be the structure tensor of the ith sub-patch P 0
j;i; then

SPj;i ¼
X
m2P0

j;i

ST ðmÞ; ST ðmÞ ¼ VmV
T
m ;

Vm ¼ ½I0ðmÞ; I0;xxðmÞ; I0;yyðmÞ; I0;zzðmÞ;
I0;xyðmÞ; I0;xzðmÞ; I0;yzðmÞ�;

(24)

where I0ðmÞ is the image intensity of coordinate m, and the

others are the second partial derivatives in different direc-

tions at m in image I0. The structure tensor SESP ðp0j Þ
is defined as SESP ðp0j Þ ¼ ½SPj;1; SPj;2; . . . ; SPj;8�. SPj;i can be

decomposed as SPj;i ¼ UiU
T
i , i ¼ 1; . . . ; 8, by Cholesky

decomposition [45]; each Ui is a lower triangular matrix
with real entries and is represented as a vector ai. All ai are

cascaded as a long vector to represent the structure tensor,

denoted as sa ¼ ½aT1 ; aT2 ; . . . ; aT8 �. The euclidean distance

between different vectors sa is the measure of similarity

between different structure tensors. The most similar point
in the search area is the one tracked for p0j .

To improve image registration accuracy, any land-
mark with a displacement that is not consistent with the
average displacement of surrounding landmarks is elimi-
nated. The relaxed thin-plate spline algorithm [46] was
employed to ensure the topology preservation of the
deformation field.

TABLE 2
The Specifications of Different GPUs (“Nsp” Represents

the Number of Streaming Processors)

Specification C2050 K20c M5000 P100

Nsm 14 13 16 56
Nsp 448 2496 2048 3584
Processor Clock (MHz) 575 706 861 1190
Memory Size (GB) 3 5 8 16
Memory Bandwidth (GB/s) 144 208 211.6 732.2
Memory Clock (MHz) 750 1300 1653 715
Computing Version 5.1 3.5 5.2 6.0
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5.2.2 CPU–GPU Implementation Strategy

The CPU–GPU cooperative processing model for the SEST
tracking algorithm is described in Fig. 1. In the CPU, we
uploaded the reference image I0, the target image It, and
the position of each landmark in I0. Once all the data that
we needed were prepared, SESP ðp0j Þ and saðp0j Þ of each
landmark in image I0 were computed in the CPU. After
that, we transferred fsaðp0j Þ; j ¼ 1; . . . ; kg from CPU (host)
to GPU (device). Simultaneously, the feature vector of each
point in target image, denoted as Vt, and the center position
of the search area for p0j were also transferred to the device.

In the GPU, for each candidate landmark ptj, j ¼ 1; . . . ; k,
SESP ðptjÞ and saðptjÞ were computed. The euclidean dis-

tance between saðp0j Þ and saðptjÞ is denoted as similarity

DðptjÞ. All values fDðptjÞ; j ¼ 1; . . . ; kg were transferred from
GPU to CPU to find the tracked position of p0j .

As the computation of DðptjÞ for each candidate ptj in
image It is data independent, our strategy was to invoke
thousands of threads to compute fDðptjÞg, with each thread

performing the computation of SESP ðptjÞ and saðptjÞ for a
candidate point ptj in the search area. Furthermore, each
thread implemented the computation of the euclidean dis-
tances between saðp0j ) and saðptjÞ, including the computation
of SPi, Ui, and ai ði ¼ 1; . . . ; 8Þ.

In CUDA, we used a 2D grid and 1D block model for this
task, each line of blocks in the grid corresponding to a track-
ing landmark ptj, j ¼ 1; . . . ; k, and each thread in these
blocks corresponding to one candidate point matching this
landmark. Therefore, the total number of blocks in the grid,
Nb, was

Nb ¼ sl � sw � sh
Threads per block

� �
� k; (25)

where sl, sw, sh are the size of the search region.

In our implementation of landmark tracking, the cost of
memory access was much more than the cost of computation
for each thread. Therefore, it was necessary to optimize mem-
ory access to the extent possible. For the GPU, our input data

were Vt, fp0jg, and fsaðp0j Þg, and output data were fDðptjÞg.
Considering that fp0jg and fsaðp0j Þg are accessed frequently,
and all threads in the sameblock correspond to the same land-
mark, which means that they are required to access the same
element in fp0jg and fsaðp0j Þg, we stored these two variables in
shared memory. However, for each thread, a local patch cen-
tered at a specific point is needed for the computation of
SESP . Each element of the local patch is a seven-dimensional
vector obtained from the feature vector Vt. Suppose the patch
size is 11� 11� 9, and Vt is stored in 32-bit single-precision
floating-point format. Then it takes approximately 11� 11�
9� 7� 32 bits � 29:8 KB of memory space to store one
patch. Moreover, as each block contains at least 32 threads
(a warp), and each thread accesses adjacent patches, it
requires at least ð11þ 31Þ � 11� 9� 7� 32 bits � 113:7 KB
of memory space to store all patches for a thread block. Since
the maximum size of shared memory is 48 KB for devices
with the Fermi or Kepler architecture, storing all patches for
the threads in the same block in shared memory space is
impossible. Therefore, we stored the data for all patches—the
feature vector Vt—in global memory space.

5.2.3 Performance Estimation and Comparison

To evaluate our performance estimation model, ten individ-
ual patients’ lung CT images provided in the DIR-Lab data-
set [47] were used in our experiments. Each case includes
the set of five phases of CT 16-bit integer images from T00
to T50, which were acquired in the inspiratory period. For
each case, 75 corresponding landmarks from T00 to T50 are
provided by experts, and 300 landmarks in the maximum
inhalation and the maximum exhalation are also provided

Fig. 1. CPU–GPU model for spatially extended structure tensor (SEST) tracking algorithm.
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by experts, which can be used to evaluate image registration
accuracy.

In our experiment, we extracted thousands of landmarks
from I0, the image at the maximum inhalation, listed in the
T00 column in Table 3, and tracked these landmarks in It,
t ¼ 1; . . . ; 5, to evaluate the performance of our parallel
implementation strategy. Columns T10–T50 in the table list
the number of landmarks remaining after mistracked land-
marks were eliminated. Note that we extracted the regions
of interest that contained the lung regions from the original
images provided in the DIR-Lab dataset; therefore, the
image sizes listed in the table are not consistent with the
original image sizes in DIR-Lab.

To evaluate the performance of our model, first, we esti-
mated the execution time of the SEST landmark tracking
algorithm using our performancemodel and using Hong and
Kim’s model. Next, the actual execution times for landmark
tracking were recorded and compared to the estimated times.
Fig. 2 illustrates the actual execution times and estimated
times for landmark tracking. As mentioned above, the total
execution time estimated using our model is a cost function
based on the parameter Threads per block. Here, different val-
ues for Threads per block are employed to show its influence
on the execution time.

As shown in Fig. 2, even though the numbers of threads
in a block are different, the execution times estimated using
Hong and Kim’s model are almost the same because the
Threads per block parameter is neutralized in the model. As
we know, Threads per block is closely related to the on-chip

resources, which means Hong and Kim’s model cannot rep-
resent the influence of on-chip resources. In contrast, the
times as estimated by our model and the actual times are
approximately equal to each other on different platforms,
thus confirming the accuracy of our performance model.
Moreover, by using the optimal Threads per block value,
the best implementation performance can be achieved using
our performance model.

The speedups of the landmark tracking, calculated using
the optimal Threads per block for the C2050, K20c,M5000 and
P100, are shown in Fig. 3. Here, both the estimated speedups
using our performance model and those using Hong and
Kim’smodel have presented aswell as the actual speedups. It
can be seen that the speedup ratio of our parallel implementa-
tion for the SEST landmark tracking algorithm is approxi-
mately 80, 100, 200 and 800 for the C2050, K20c, M5000 and
P100, respectively.Moreover, it is observed that our estimated
speedups are closer to the actual speedup compared to Hong
and Kim’s model, illustrating the accuracy of our proposed
model.

Using the parameters illustrated above, we also compare
the speedup ratios calculated for different numbers of
tracked landmarks on different platforms to demonstrate the
influence of data transfers on the speedup. Here, all ten cases
were employed to track 300 landmarks and thousands of
landmarks. The experiment results are shown in Fig. 4. It is
observed that the speedup ratio for thousands of tracked

TABLE 3
Image Sizes and Number of Landmarks Extracted (T00)

and Remaining (T10–T50)

Case Image size T00 T10 T20 T30 T40 T50

1 256� 256� 94 2602 2288 1926 2045 2081 2045
2 256� 256� 112 4053 3298 3228 3075 3073 3059
3 256� 256� 104 3055 2390 2348 2274 2230 2129
4 256� 256� 99 2128 1736 1456 1383 1356 1340
5 256� 256� 106 2771 1971 1944 1967 1823 1834
6 325� 325� 128 2246 1832 1452 1428 1260 1326
7 325� 325� 136 2779 2188 1981 1840 1747 1672
8 325� 325� 128 4288 3283 2989 2913 2744 2636
9 325� 325� 128 1489 1122 1092 1055 1001 909
10 325� 325� 120 2454 1910 1616 1478 1467 1491

Fig. 2. Actual execution times and execution times estimated using our
model and Hong and Kim’s model for landmark tracking.

Fig. 3. Comparison of the actual and estimated speedups for landmark
tracking.

Fig. 4. Speedup ratios for tracking 300 landmarks and thousands of
landmarks.
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landmarks is greater than that for the 300 tracked landmarks
for the all ten cases, on different platforms, because Tc is con-
stant for a specific case. When the number of landmarks
increases, the ratio between computation cost and communi-
cation cost increases as well, resulting in an increase in
speedup. In addition, when the number of landmarks is
fixed, the speedup ratio differs because of the differing quan-
tities of data to be transferred (note that the data quantities
for cases 6 to 10 aremuch larger than those for cases 1 to 5).

In addition, we analyze the theoretical performance of
memory access in GPUs to explain the reason for our results.
TheCPUXeonE5-2620 runs single-threaded programs,which
accesses a single data point per instruction and no memory
access instruction can be issued during the memory waiting
period. By contrast, the NVIDIA GPU architecture is built
around a scalable array of SMs, each of which can access the
memory simultaneously during one memory warp waiting
period. Moreover, benefiting by coalescing access to global
memory, DRAM bandwidth required by a warp can be mini-
mized by 32 times. Thus, the C2050, K20c, M5000 and P100
can achieve up to 32� 14 ¼ 448, 32� 13 ¼ 416, 32� 16 ¼ 512
and 32� 56 ¼ 1792 times data throughput, respectively, com-
pared to the single-threadmemory access by a CPU.

To evaluate the registration accuracy, the euclidean dis-
tance between the landmark positions marked by experts and
the tracked results, commonly known as the target registration
error (TRE) [48], was used. The lower the TREs, the better the
registration accuracy. For comparison with the tracking accu-
racy of the GPU implementation of SEST, various methods
were employed, including the methods of Castillo et al. [49],
Wu et al. [50], Metz et al. [51] (who provided results for only
five cases), andHeinrich et al. [52], as well as the original SEST
results [36]. In the SEST algorithm, the patch size and search
area size are 11� 11� 9 and 25� 13� 17, respectively.
Table 4 lists the registration errors as evaluated using 300
expert points.

As listed in Table 4, the SEST tracking algorithm outper-
forms other methods for most cases, particularly for cases 5 to
8, which have large deformations. Moreover, by comparing
the tracking results for the different numbers of landmarks, it
can be seen that image registration accuracy can be consider-
ably improved if a large number of landmarks is tracked. This
implies that a major benefit for landmark-based image regis-
trationmethods can be had by implementing them effectively
onGPUs; that is, when the average execution time for tracking
a single landmark is substantially decreased, a large number

of landmarks can be tracked. As a result, a more accurate
transformation can be estimated based on dense correspond-
ing relationships between landmarks, and the registration
accuracywill subsequently improve aswell.

5.3 Spatial Transformation of Images

In spatial transformation, the coordinates of a source image
are mapped to the coordinate system of a reference image
using a givenmapping function. For 3D images, the mapped
positions of voxels can be calculated concurrently because
they are independent of each other.

The transformation function we employed is as follows:

fðmÞ ¼ r1 þ r2xþ r3yþ r4zþ
Xk0
j¼1

wjkp0j � mk; (26)

which maps the coordinate m ¼ ðx; y; zÞ to fðmÞ. ½r1; r2; r3;
r4; w1; . . . ; wk0 � is the transformation coefficient vector, which
was estimated using the relaxed thin-plate spline algorithm,
and k0 is the number of landmarks remaining, as listed in
Table 3. Then, we used the transformation function fðmÞ to
map all coordinates of a 3D image to the coordinate system of
another image.

We used a 3D block grid to implement the 3D spatial
transformation. Each thread has a 3D index ðx; y; zÞ, corre-
sponding to a 3D coordinate position m. When thousands of
landmarks are tracked, the transformation coefficients
r1; r2; r3; r4; w1; . . . ; wk0 and the coordinates of each landmark
p0j , j ¼ 1; . . . ; k0, will consume a large amount of memory
space. Shared memory is allocated per thread block. If we
store these data in shared memory, the amount of shared
memory requested by each block will be very large, and the
number of active blocks will be very small (Eq. (7)). There-
fore, we stored the transformation coefficients and the land-
mark coordinates in globalmemory space.

Fig. 5 shows the actual execution times and the execution
times estimated using our model and Hong and Kim’s
model, for the spatial transformation task. Note that the
times estimated using our model are approximately the
same as the actual execution times on different platforms,
which confirms the accuracy of our performance model. On
the C2050, K20c and M5000, this task is mainly dominated
by computation. When Threads per block is small, the value
of warp parallelism for computation (RWP C) is limited by
the value of Threads per block; otherwise, the value of

TABLE 4
Mean (and Standard Deviation) of Target Registration Errors (mm) for the 300 Landmark Points
between Maximum Inhalation (MI) and Maximum Exhalation (ME) Phases of the DIR-Lab Dataset

Case Initial Castillo
et al.

Wu et al.
(without super-resolution)

Metz
et al.

Heinrich
et al.

Original SEST Our method

1 3.89 (2.78) 0.97 (1.02) 0.85 (0.82) 1.02 (0.50) 0.97 (0.5) 0.94 (1.33) 0.76 (0.94)
2 4.34 (3.90) 0.86 (1.08) 0.79 (0.65) 1.06 (0.56) 0.96 (0.5) 0.78 (0.94) 0.67 (0.85)
3 6.94 (4.05) 1.01 (1.17) 0.92 (0.54) 1.19 (0.66) 1.21 (0.7) 0.92 (1.11) 0.87 (1.07)
4 9.83 (4.86) 1.40 (1.57) 1.12 (0.82) 1.57 (1.20) 1.39 (1.0) 1.43 (1.49) 1.32 (1.23)
5 7.48 (5.51) 1.67 (1.79) 1.43 (0.96) 1.73 (1.49) 1.72 (1.6) 1.49 (1.53) 1.28 (1.45)
6 10.89 (6.97) 1.58 (1.65) 6.95 (4.06) – 1.49 (1.0) 1.31 (1.41) 1.30 (1.20)
7 11.03 (7.43) 1.46 (1.29) 3.64 (2.15) – 1.58 (1.2) 1.15 (1.76) 1.24 (1.08)
8 14.99 (9.01) 1.77 (2.12) 4.05 (2.64) – 2.11 (2.4) 1.68 (1.81) 1.41 (1.32)
9 7.92 (3.98) 1.19 (1.12) 3.96 (1.85) – 1.36 (0.7) 1.10 (0.99) 1.21 (1.06)
10 7.30 (6.35) 1.59 (1.87) 3.25 (2.68) – 1.55 (1.6) 1.29 (1.32) 1.22 (1.10)
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RWP C is limited by the number of warp schedulers, which
is a constant, as shown in Eq. (4). However, Hong and Kim’s
model does not consider the influence of Threads per block
on the execution time when the execution time is dominated
by computation. As a result, Hong and Kim’s model cannot
predict performance accurately when Threads per block is
small. However, on P100, the execution time of this task is
dominated by memory, due to the architecture of P100, and
the value of warp parallelism is not limited by on-chip
resources. Therefore, both the execution times estimated
using our model and those using Hong and Kims model are
approximately the same as the actual execution times.

Fig. 6 displays the speedup ratios of our parallel imple-
mentation for spatial transformation on different GPU plat-
forms. As in the case of the landmark tracking task, speedups
estimated by our performance model are closer to the actual
speedups than are those of Hong and Kim’s model for the
spatial transformation task.

Furthermore, to demonstrate the performance of our
model using shared memory, we re-implemented spatial
transformation by storing the transformation coefficients and
the landmark coordinates in shared memory. In this experi-
ment, 300 landmarks provided by experts were tracked to
ensure enough active blocks. For each block, we used the first
thread of the block to load the transformation coefficients
and the landmark coordinates from global memory and
stored them in shared memory. After that, all threads in the

same block could use the data in shared memory for com-
putation. As a result, for this implementation, the cost of
memory access is greater than the cost of computation, and
thus the execution times in this experiment were dominated
bymemory access.

As shown in Fig. 7, the execution times estimated using our
model are approximately the same as the actual execution
times ondifferent platforms,whereas the execution times esti-
mated usingHong andKim’smodel vary considerably owing
to the lack of consideration of on-chip resources. Note that the
execution times estimated using Hong and Kim’s model are
smaller than the execution times estimated using our model
on the C2050 because the number of active warps estimated
using Hong and Kim’s model is greater than that estimated
using our model. Similar results can be observed on the
M5000 and P100when the value of Threads per block is small.
In addition, on K20c, when Threads per block > 96, the value
of warp parallelism in Hong and Kim’s model is constant,
limited byMWP peak BW ; when 96 < Threads per block <
192, the value of warp parallelism in Hong and Kim’s model
is greater than the one in our model; in contrast, when
Threads per block > 256, the value of warp parallelism in
Hong and Kim’s model is smaller than the one in our model.
Compared with the actual execution times, the value of warp
parallelism estimated by our model is more accurate than
Hong andKim’smodel.

Fig. 5. Actual execution times and execution times estimated using our
model and Hong and Kim’s model for spatial transformation without
using shared memory.

Fig. 6. Comparison of the actual and estimated speedups for spatial
transformation.

Fig. 7. Actual execution times and execution times estimated using our
model and Hong and Kim’s model for spatial transformation with shared
memory.

Fig. 8. Actual execution times and execution times estimated using our
model and Hong and Kim’s model for trilinear interpolation.
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5.4 Trilinear Interpolation

After spatial transformation, the coordinates of the source
image aremapped to non-grid positions, and then an interpo-
lation technique is needed to estimate the pixel intensities at
the grid positions. To accomplish this, trilinear interpolation
[53] is employed. In the GPU implementation, we launched
thousands of threads to compute the pixel intensities, each
thread calculating a pixel value at ðx; y; zÞwith very little com-
putation cost. However, each thread accesses the image inten-
sities of eight pixels located on a unit cube in an image, which
results in globalmemory access. In this experiment, the execu-
tion time was dominated by memory access. Here, very few
local variables are declared and no shared memory access is
required, meaning that the execution time is not limited by
on-chip resources. This experiment was used to evaluate the
performance of our model for predicting memory-intensive
tasks not influenced by on-chip resources.

The actual execution times and the execution times esti-
mated using our model and Hong and Kim’s model are
shown in Fig. 8. Note that both the execution times estimated
using our model and those using Hong and Kim’s model are
approximately the same as the actual execution times, which
confirms the accuracy of our model when on-chip resources
are not influenced. The speedup ratios of our parallel imple-
mentation for trilinear interpolation are shown in Fig. 9. It
can be observed that both the speedups estimated using our
model and those usingHong and Kim’s model are very close
to the actual speedups.

6 CONCLUSIONS

In this paper, we have proposed a novel performance esti-
mation model to predict the execution time of applications
running onGPUplatforms.We take the on-chipGPU resour-
ces into consideration to improve the accuracy of the perfor-
mance prediction. Moreover, the cost of data transfer
between CPU and GPU is also captured in our model. Using
the performance model, the optimal parameters for imple-
menting an application onGPUs can be estimated.We evalu-
ated our performance model on four NVIDIA platforms, the
C2050 (Fermi architecture), the K20c (Kepler architecture),
the M5000 (Maxwell architecture) and the P100 (Pascal
architecture). For performing this evaluation, the following
tasks in medical image registration, including landmark
tracking, spatial transformation, and image interpolation,

were implemented. The experimental results demonstrate
that the execution times estimated using our performance
model and the actual execution times are closer to each other
compared to the existing model. For landmark tracking,
speedups of 80� for the C2050, 100� for the K20c, 200� for
the M5000 and 800� for the P100 were achieved when track-
ing thousands of landmarks for all ten cases of data from the
DIR-Lab dataset. Moreover, as a benefit of efficient imple-
mentation on GPUs, massive numbers of landmarks can be
tracked for methods based on landmark tracking, thereby
increasing the registration accuracy.
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