
A Compiler for Agnostic Programming
and Deployment of Big Data Analytics

on Multiple Platforms
Beniamino Di Martino , Antonio Esposito , Salvatore D’Angelo,

Salvatore Augusto Maisto , and Stefania Nacchia

Abstract—To run proper Big Data Analytics, small and medium enterprises (SMEs) need to acquire expertise, hardware and software,

which often translates to relevant initial investments for activities not directly connected to the company’s business. To reduce such

investments, the TOREADOR project proposes a Big Data Analytics framework which supports users in devising their own Big Data

solutions by keeping the inherent costs at a minimum, and leveraging pre-existent knowledge and expertise. Among the objectives

of the TOREADOR framework is supporting developers in parallelizing and deploying their Big Data algorithms, in order to develop their

own analytics solutions. This paper describes the Code-Based approach, adopted within the TOREADOR framework to parallelize

users’ algorithms and deploy them on distributed platforms, via the annotation of parallelizable code portions with parallelization

primitives. The approach, which relies on the guidance of Parallel Patterns to implement the parallelization, and on Skeletons

to automatically build execution and deployment templates, is realized through a source-to-source Compiler, also described in the

present paper.

Index Terms—TOREADOR, parallel compiler, skeletons, parallel patterns, parallel primitives, big data analytics

Ç

1 INTRODUCTION

NOWADAYS we hear more and more about the benefits
that a company can derive from the multiplicity, variety

and quantity of data that it can or could access. The spread of
Internet-based technologies and the growing interest in Smart
Sensors, Smart Objects and Internet of Things (IoT) [15] have
created newdata sources, whosemanagement cannot be dealt
with standard IT technologies. Research in new technologies,
such as the Cloud [14], has been carried out to manage IoT
frameworks and deal with the resulting data deluge. There
are, however, issues that make the full exploitation of Big
Data difficult, especially when we intend to carry on data
analysis to lead business decisions. The encountered compli-
cations are essentially: the need to hire experienced, trusted
figures to carry on the analysis and the size of the investment
necessary to hire such experts; the necessity to acquire hard-
ware units suitable to the analysis purposes, in terms of proc-
essing power and memory capability; the selection and

acquisition of the best, suited software to perform such analy-
sis. While a big company can seamlessly sustain the initial
investments, medium or small enterprises (SMEs) can find it a
difficult hurdle to overcome. The European project Toreador
[1] has, among its main objectives, that of overcoming the hur-
dles that SMEs can find in approaching BigData, thus helping
them to take full advantage of the potential of big data analy-
sis. In particular, the project aims at providing suitablemodels
and tools for automation and commoditization of Big Data
Analytics development. In order to support SMEs in develop-
ing their own Big Data applications seamlessly, without the
need to focus on the deployment and execution details, the
project has defined and implemented two interleaved but dis-
tinct approaches:

A Service-Based Approach in which the Toreador frame-
work extracts the requirements expressed by the user from
a Declarative model (which has been defined in [4]) and
then, guided by the user herself, selects, composes and
orchestrates a set of available Big Data oriented services.

A Code-Based Approach, and Compiler that takes as input a
sequential code, annotated with parallelization primitives
(which have been defined within the Toreador project), and
provides a parallel and distributed version of it. The execu-
tion of such distributed version is done according to specific
Parallel Computational Pattern.

This paper focuses on the presentation of the Code-Based
approach and Compiler, by utilizing a reference scenario
taken from real use cases of the project. The approach’s
main objective is to support the Toreador user in developing
and coding her own algorithms and Big Data analytics, and
supporting her in deploying a parallelized and optimized
version of her program onto a selection of platforms.

� B. Di Martino, A. Esposito, and S. D’Angelo are with the CINI - Consorzio
Interuniversitario Nazionale per l’Informatica Roma, Roma, Lazio 00198,
Italy, and also with the Department of Engineering, Universit�a degli Studi
della Campania “Luigi Vanvitelli”, Caserta, CE 81100, Italy.
E-mail: beniamino.dimartino@unina.it, {antonio.esposito, salvatore.dangelo}
@unicampania.it.

� S.A. Maisto and S. Nacchia are with the Department of Engineering,
Universit�a degli Studi della Campania “Luigi Vanvitelli”, Caserta, CE 81100,
Italy. E-mail: {salvatoreaugusto.maisto, stefania.nacchia}@unicampania.it.

Manuscript received 13 Sept. 2018; revised 31 Jan. 2019; accepted 8 Feb. 2019.
Date of publication 12 Mar. 2019; date of current version 7 Aug. 2019.
(Corresponding author: Beniamino Di Martino.)
Recommended for acceptance by C. Krintz.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2019.2901488

1045-9219� 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

1920 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 9, SEPTEMBER 2019

https://orcid.org/0000-0001-7613-1312
https://orcid.org/0000-0001-7613-1312
https://orcid.org/0000-0001-7613-1312
https://orcid.org/0000-0001-7613-1312
https://orcid.org/0000-0001-7613-1312
https://orcid.org/0000-0002-2004-4815
https://orcid.org/0000-0002-2004-4815
https://orcid.org/0000-0002-2004-4815
https://orcid.org/0000-0002-2004-4815
https://orcid.org/0000-0002-2004-4815
https://orcid.org/0000-0001-5228-7865
https://orcid.org/0000-0001-5228-7865
https://orcid.org/0000-0001-5228-7865
https://orcid.org/0000-0001-5228-7865
https://orcid.org/0000-0001-5228-7865
mailto:
mailto:
mailto:
mailto:

In particular, the paper describes the Parallelization Primi-
tives and Patterns utilized to annotate and parallelize the
source code of a Big Data analytics algorithm (Section 4),
which is analyzed and parsed through the Compiler
(Section 5), in charge of applying a set of transformation rules
to fill execution and deployment Skeletons. The structure of
the Compiler and the transformation steps are described, and
a use case, which covers the whole parallelization process
from source code annotation to deployment, is presented in
Section 7, while experimental results are reported in Section 8.
Finally, Section 9 addresses future developments.

2 BACKGROUND

Research on patterns for parallel and concurrent program-
ming has produced very interesting and immediately appli-
cable results. Remarkable are the patterns presented in [18],
which proposes a set of solutions for parallel programming,
classified and organized according to the specific feature on
which the parallelism is focused. The Organize by Tasks Pat-
terns category includes patterns which organize computa-
tion on the base of the tasks to be executed; Patterns
included in the Organized by Data category are structured on
the basis of characteristic of the data structure to be ana-
lysed; the Organize by Flow category contains patterns which
organize data according to workflows and events

If we want to consider a more practical level, it is possible
to take in consideration another set of patterns, some of which
are described in [20] with their implementations in C and
Visual Basic. Among these patterns: The Bag of Tasks Pattern is
used when the actual load balance is not predictable and the
task executors have different capabilities; the Loop Parallelism
Pattern focuses on source codewheremany loops are present.;
the Fork and Join Pattern is usedwhen the number of tasks to be
executed cannot be predicted. The Map Reduce framework,
originally introduced by Google [10], represents a good solu-
tion to the Data Deluge (or Data Flood) problemwhich affects
many modern companies, since it promotes data locality and
reduces communication overheads. Map Reduce organizes
computation tasks according to data distribution among com-
puting nodes so that storage, not computational resources,
lead the analysis. Data are processed in parallel, executing
Map procedures, performing filtering, sorting and distribu-
tion tasks, while results are summarized by Reduce proce-
dures. Since data locality limits the parallelization, in order to
reduce communications among nodes, the framework gives
best resultswhenworkingwith huge data sets.

Algorithmic Skeletons, also referred to as Parallel Patterns,
are a high-level parallel programming model which can be
used to support applications design and implementation
for parallel and distributed computing. There exist several
definitions of Skeleton, focusing on a specific aspect of such
an instrument. A very good summarization of such defini-
tions can be found in [9]: “An algorithmic Skeleton is paramet-
ric, reusable and portable programming abstraction, modeling a
known, common and efficient parallelism exploitation Pattern”.

Such a definition covers all the aspects for which Skeletons
represent a fundamental component of the Code-based
approach. Skeletons allow the declaration of high order func-
tions as a procedural ‘template’, which specifies the overall
structure of a computation, with gaps left for the definition of
problem specific procedures and declarations [8]. A major
advantage deriving from the use of skeletons is that orches-
tration and synchronization of the parallel activities are

implicitly defined and hidden to the programmer. This
implies that communication models are known in advance
and cannot be modified by programmers who, in turn, are
less prone to introduce errors and bugs since they are
‘guided’ in writing their code. Different frameworks and
libraries have been defined to assist programmers using skel-
etons: a survey of these tools is provided in [16]. Skeletons-
based approaches have been described and successfully
exploited in previous works. In [7] several skeletons have
been defined, with pseudo-code descriptions and implemen-
tation suggestions. In [2] the author describes a skeleton-
based framework called Muskel, which exposes a limited
number of primitives directly implementing Skeletons.

2.1 Parallelization Approaches
Big data analytics requires high programmer productivity
and high performance simultaneously on large-scale clusters.
Many approaches have been proposed to optimize the appli-
cation execution and to ensure a higher productivity. In [4]
the authors propose a new development life cycle for Big
Data, combining exploration and refinement, fast deploy-
ment and controlled execution. While in [13] the authors
present the benefits of applying the “code once deploy
everywhere” approach to clustering of categorical data over
large data sets. In [19] the authors propose a novel auto-
parallelizing compiler approach where they develop a data
flow algorithm that exploits domain knowledge as well as
high-level semantics of mathematical operations to find the
best distributions, but without using approximations such as
cost models. This approach has been used to build the High
Performance Analytics Toolkit (HPAT). HPAT is a compiler-
based framework for big data analytics on large-scale clusters
that automatically parallelizes high-level analytics programs
and generates scalable and efficient MPI/C++ code. Another
approach and related framework presented in [3], which
addresses more specifically the streaming analysis, is Fast-
Flow, a framework delivering both programmability and effi-
ciency in the area of stream parallelism. FastFlow may be
viewed as a stack of layers: the lower layers provide efficiency
via lock-free/fence-free producer-consumer implementa-
tions; the upper layers deliver programmability by providing
the application programmer with high-level programming
constructs in the shape of skeletons/parallel patterns. In [17]
the authors propose a parallel language and application
development and execution system for creating parallel
applications that run on high-performance computers and
clusters; CxC lets you use as many parallel processors as you
want to solve problems by defining your own network topol-
ogy on these processors and a complete multiple-program/
multiple-data (MPMD) model. The communication opera-
tions are one-sided, which makes parallel programming easy
and efficient. Another important data parallel approach is
NESL [5], which is intended to be used as a portable interface
for programming a variety of parallel and vector computers,
and as a basis for teaching parallel algorithms. Parallelism is
supplied through a simple set of data-parallel constructs
based on sequences, including amechanism for applying any
function over the elements of a sequence in parallel and a rich
set of parallel functions that manipulate sequences. UPC [6]
is, on the other hand, a parallel extension of the C program-
ming language intended for multiprocessors with a common
global address space. UPC has two primary objectives: 1) to
provide efficient access to the underlying machine, and 2) to

DI MARTINO ETAL.: A COMPILER FOR AGNOSTIC PROGRAMMING AND DEPLOYMENTOF BIG DATA ANALYTICS ON MULTIPLE PLATFORMS 1921

establish a common syntax and semantic for explicitly paral-
lel programming in C. The quest for high performancemeans
in particular that UPC tries to minimize the overhead
involved in communication among cooperating threads.

3 THE CODE-BASED APPROACH

Through the Code-Based Approach, users can express
the parallel computation of a coded algorithm in terms of
parallel primitives, and distribute it among computational
nodes hosted by different platforms/technologies in multi-
platform Big Data and Cloud environments, using State of
the Art orchestrators. The approach requires that the user
annotates her source code with a set of Parallel Primitives,
which are then examined by the compiler. Such primitives
are modeled following a set of Parallel Patterns, and guide a
Skeleton Compiler in the selection of the best suiting Skele-
ton to fill to obtain the desired parallelization.

Fig. 1 provides an overview of the complete workflow
with its three main phases:

Code. In this phase the user, which is supposed to be an
expert programmer and to own a good knowledge of the
sequential algorithm to be parallelized, annotates the origi-
nal code with the provided Parallel Primitives.

Transform. During this phase a Skeleton-Based Code Com-
piler (Source to source Transformer) transforms the sequen-
tial code, annotated with the primitives, into a series of
parallel versions specific to different platforms/technologies,
according to a 3-steps sub-workflow. - Parallel Pattern Selec-
tion: selection of the Parallel Paradigm (based on the used
primitives); - Incarnation of agnostic Skeletons: transformation
of the algorithm coded using the aforementioned primitives,
in a parallel agnostic version incarnating predefined code
Skeletons. The whole transformation happens thanks to a set
of transformation rules which operate on the source code
AST, as further explained in Section 6; - Production of tech-
nology dependent Skeletons: specialization of the agnostic Skele-
tons in multiple versions of the code to be executed, but
specific to the different target platforms/technologies.

Deployment. Production of Deployment Scripts.
The user is supposed to be an expert programmer: she is

well aware of the potentialities (maximum flexibility and cus-
tomizability, full controllability) and limitations (the applica-
tion is developed from scratch) of a fully coded-based
approach and she owns a good knowledge of the program-
ming paradigms and languages involved. The Code Based
Approach guides the user by proposing Parallel Computa-
tional Patterns and Skeleton-based solutions fitted to her
requirements. Through a set of parallelization primitives, the
user can distribute the computation among computational

nodes hosted by different platforms or in multi-platform
environments.

4 THE PRIMITIVES

Within the Toreador approach, Parallel Primitives are con-
structs with a specific meaning, which are used to augment
a standard and widespread language, i.e., Python, to guide
the compiler in the parallelization. Ten different primitives
have been defined.

Skeletons’ filling is obtained bymanipulating the Abstract
Syntax Tree of the source code, following a set of trans-
formation rules which are determined by the adopted Paral-
lel Primitives and corresponding Patterns. Deployment
Skeletons are also produced, according to the target platform
selected by the user.

The primitives used to describe the algorithms will
reflect the parallelization strategy which will be used during
the Skeleton filling phase. A set of Parallel Primitives has
been defined to describe the different parallel decomposi-
tion and execution strategies which can be used to imple-
ment an input algorithm.

In this section the directives’ signatures are expressed in
Python, which has been chosen as the target programming
language to express the algorithms. A total of ten directives
have been defined so far: the first five are used to describe a
Data Parallel approach to problem decomposition and exe-
cution; the other five address a Task Parallel approach.

Among the Data Parallel directives, three are used for
generic, i.e they do not impose a specific execution pattern
explicitly.

4.1 Generic Data Parallel Directives
In this paragraph the Generic Data Parallel Directives’ sig-
nature are listed and described in details.

data_parallel_region(data, func, *params)
The params input represents optional parameters which

can be used both as an additional input to the func function,
beside the data element, or as a flag to modify the function
behavior.

Considering the definition of this directives, the compu-
tation expressed by the func function must be data indepen-
dent that is, it can be performed on a single data element
without the need to know the other elements or the result of
computations executed over them.

So, the general workflow can be described as follows: the
elements of the data input are distributed among the execu-
tion nodes, together with the optional parameters; each exe-
cution nodes executes the function func over the data chunk

Fig. 1. The code-based approach workflow.

1922 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 9, SEPTEMBER 2019

which it has received and passes to result to the caller; the
single results are collected and proposed as output as a list.

The data distribution logic is not embedded into this Par-
allel Primitive, but it depends on the Parallel Computational
Pattern that the user can choose later or that is inferred from
the Declarative Model.

data_parallel_region_with_reduction(data, func, reduce_func,
*params)

This directive describes a situation which is very similar
to the very generic data_parallel_region, as it requires the
data elements composing the data input to be independent,
and it considers such input to have been previously pre-
pared. The difference is represented by the reduce_func,
which is an operation that reduces the different data pro-
duced by the func function to a single output.

data_parallel_region_dependent(data, stencil, func, *params)
This directive describes a situation in which the input

data, expressed as before by the data, has been previously
organized in a list of elements (just as in the previous data_
parallel_region directives). However, the data are not sim-
ply distributed element by element, as they can be grouped
using windows with fixed dimension, which can also over-
lap. This is possible via the stencil parameter, which is com-
posed by a three-element list: - Window_Size sets the
dimensions of the window.

– Backward makes it possible to extend the window of
data sent for elaboration to the n values before the
current examined element of the data list.

– Circular is a boolean value, which states if the list has
to be considered circular. The other assumptions
made previously for data_parallel_region regarding
the independence among the different executions of
the function func still hold.

The distribution logic is once again not defined within
the Primitive, but it is is asserted later by a specific Parallel
Pattern

4.2 Specific Data Parallel Directives
In this paragraph we describe Parallel Directives which
requires that functions for the correct distribution of data
and their elaboration are explicitly provided. Also, such
directives are automatically mapped to a specific Pattern
and do not require further information from the declarative
Model (save from information needed to build the deploy-
ment templates).

map_reduce(data, map_func, reduce_func, *params)
The distribution logic is implicit in the Primitive, as it

strictly implies the application of a Map Reduce Parallel
Pattern: in particular, a Distributed File System is expected
to take care of data distribution and replication

producer_consumer(data, prod_func, cons_func, *params)
This directive implies a Producer Consumer paralleliza-

tion approach.

4.3 Generic Task Parallel Directives
Only one generic task parallel directive has been defined
so far.

task_indipendent_region(data, func_list, *params)
In this directive, the data input is represented by either a

single value or a list of values. In the first case, the functions
defined in the func_list are executed in parallel on the same
data chunk. In the second, each function is executed

separately on the corresponding data chunk, chosen accord-
ing to the function index. A data preparation phase is
expected to be performed before the use of the directive.

A mandatory condition is that the tasks to be executed,
represented by the functions in the list, are independent.

4.4 Specific Task Parallel Directives
A series of Pattern specific directives have been defined to
represent the peculiar parallelization characteristics of the
Patterns which will be used to fill the Skeletons. Such direc-
tives are considered as Task Parallel as they distribute the
functions to be executed among the computing nodes. The
task distribution logic is not embedded in the Primitive, as it
strictly depends on the Parallel Pattern which is selected by
the programmer or inferred through the DeclarativeModel.

divide_and_conquer(data, split_func, func, combine_func,
*params)

This directive implements a Divide and Conquer paralle-
lization approach. The input data are not necessarily pre-
elaborated. All the details regarding the communication
among the nodes and the distribution of data are implicit in
the functions’ definitions and are not limited by the imple-
menting Pattern.

bag_of_task(data, func_list, *params)
The Bag of Task directive defines a Task parallel approach

in which the input functions contained in the func_list are
taken one by one and put into a shared suitable data structure.
One mandatory condition is that the functions to be executed
are completely independent from one another and do not
need to interact to obtain the correct result: indeed, the order
of their execution cannot be ensured, since it depends on the
specific data structure.

pipeline(data, [order_func_list] *params)
This directive describes a task parallel approach in which

the functions to be executed, contained in the order_func_list
input, need to be run in the precise order they appear in
the list.

tree_computation(data, split_func_list, func, combine_func_list,
*params)

Tree Computation is a particular Divide and Conquer
recursive approach, in which the distribution of data and
the elaboration to be carried on are actually separated. In
this way, if a complex logic must be enforced to correctly
distribute the input data, it can be distinguished from the
elaboration phase. The distribution of tasks is implicit in the
spit and combination functions and do not depend on the
implementing Pattern.

5 THE COMPILER ARCHITECTURE AND

COMPONENTS

The filling process of the Skeleton will take place automati-
cally using a Compiler, whose overall structure is shown in
Fig. 2. The current Compiler is an advanced version of the
prototype already presented in [11].

The compiler receives, as a first input, information com-
ing from TOREADOR declarative models, [4], which are
used to identify the best patterns to apply (when one has
not been explicitly selected) and related skeletons to be
filled. A second input is represented by the actual algo-
rithm, annotated with suitable directives to identify data
parallel regions which can be distributed among multiple
executors, by using the selected Skeletons. The output is

DI MARTINO ETAL.: A COMPILER FOR AGNOSTIC PROGRAMMING AND DEPLOYMENTOF BIG DATA ANALYTICS ON MULTIPLE PLATFORMS 1923

composed of both executable skeletons, which represent the
distributed version of the input algorithm, according to a
specific pattern, and deployment templates, which instead
define the Services and related components to be deployed
and their characteristics.

The architecture of the compiler is based on several com-
ponents, namely:

Parser. That analyzes the input represented by the
Algorithm’s Procedural Model, and produces its AST
representation.

Skeleton Filler. That is in charge of modifying the original
AST in order to create a language independent representa-
tion of the final Skeleton to be produced. The transforma-
tions is not hard-coded into the compiler, but they are the
result of a series of rules which are included in the external
configuration files. Such files can be edited and updated
anytime, without modifying the compiler itself.

Un-Parser. That transforms the final AST back into the code
Skeletons, by using the desired programming language.

While this procedure produces executable Skeletons,
there is still the need to configure the target environment,
with information regarding the hosting nodes, their topol-
ogy, supported data structures, but also physical character-
istics tied to the required performances. Such aspects are
considered by Deployment Models. In the following sec-
tions each component is thoroughly explained, trying to
highlight the most important features

5.1 The Parser and Skeleton Filler
The Parser and Skeleton Filler represent the executive core of
the compiler. Fig. 3 provides an overview of the parsing
mechanism. The Parser, as previously mentioned, takes the
algorithm written in python as input and generates its
Abstract Syntax Tree representation. The tree nodes represent
the key aspects of the chosen language for the definition of
the algorithms and are used to define the rules that are at the
base of the compiler. The algorithm is annotated with micro-
functions which are recognized by the Parser and trigger a
separate set of rules, according not only to the specific func-
tion encountered but also to the target Pattern (for the filling
of the Execution Skeletons) and Services/Platform (for the
construction of the Deployment Templates).

The Skeleton Filler, on the other hand, deals with the auto-
matic transformation of the syntactic tree, according to the
triggered rules. The filler transforms the original syntax
tree, by moving/rearranging or creating nodes, which are
then appended to a new tree. At the end, the produced AST
is ready to be un-parsed to obtain the desired Skeletons.
The Skeletons produced by the filler are grouped into three
categories: - Main Scripts represent the entry point of the
execution process managed by the Skeleton. They contain
the code which cannot be distributed and the calls to the
Secondary Scripts; - Secondary Scripts contain the code which
will be executed in parallel on different computational
nodes. The number of produced scripts depends on the
selected Pattern; - Deployment Templates contain information
on the characteristics of the computational nodes the filled
Skeletons will be executed on.

The Skeleton filling rules represent the knowledge base
on which the compiler works to enact the transformations

Fig. 2. Architecture of the compiler.

Fig. 3. The rule based parser.

1924 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 9, SEPTEMBER 2019

of the original Algorithms’ code. The rules are Pattern spe-
cific, as different patterns will require different transforma-
tions and Secondary Scripts. However, they are completely
independent from the algorithm, as the Parser will treat the
same micro-function in the same way whichever is the algo-
rithm in which they are used.

5.2 The Un-Parser: From Technology Independent
to Technology Dependent Realizations

The Skeletons produced by the Parser and Skeleton Filler are
independent from the target platform on which the algo-
rithm will be eventually executed. Specifically, the filled
Skeletons are still parametric, with information like the
number of required executing nodes, or the dimension of
storage volumes, left to the user to specify. Furthermore,
service calls to platform specific services or procedures are
hidden behind agnostic invocations, that do not explicitly
refer to an execution environment.

The Un-Parser is in charge of modifying the Technology
Independent Skeletons into Technology Aware ones, by
replacing parameters and agnostic calls with the ones corre-
sponding to the users’ requirements and the chosen target
platform. The information needed to correctly operate the
substitution are inferred from the Declarative Model, whose
definition and use can be found in [4].

Section 7 will report examples of the transformations
operated by the Compiler.

5.3 The Deployment Phase
The Deployment phase represents the last step in order to
make the desired algorithm able to be executed on the target
platform. Once all the necessary information have been
gathered (i.e., the Target Platform, data location, possible
security features) either from the Declarative Model or by
asking the user directly, the deployment and execution
commands are set up and launched. The Deployment is
transparent to the user, so that her intervention is not
required anymore, unless she wants to monitor and act on
the execution of the algorithm.

Section 7 will report examples of the code produced dur-
ing the deployment phase.

Target deployment environments include a range of dis-
tributed and parallel frameworks, such as Apache Storm,
Spark and Map-Reduce; Cloud platforms such as Amazon
and Azure; container-based systems, in particular Docker.
Regarding the Docker implementation, two different strate-
gies are currently being considered:

A centralized approach, in which the Docker containers
are managed locally, within a self-contained platform which
instantiates and manages them

A distributed approach, in which containers can run on
remote devices, which are selected by a central offloading
algorithm according to the execution schema. This second
approach can be considered an instance of Edge Computing
paradigm, where edge computing nodes are smartphones
or other smart devices near to the data sources.

If the platform allows it, it is possible to exploit an auto-
matic orchestrator for the deployment, as it has been
described in [12], where the ANSIBLE orchestrator has been
used to automatically deploy and manage the execution of a
parallelized algorithm on a target platform provided by
ATOS, a project’s Partner.

6 THE TRANSFORMATION RULES

6.1 Data Parallelism: Generic Rules
In order to fill the Skeleton scripts, the compiler follows a
series of simple steps described by a rule set. Here we report
the core set for the filling of themain script, which is then spe-
cialized according to the chosen pattern. Such rules guide the
Compiler through its visit on the source code’s AST. After
writing the code using the parallel primitives, the algorithm
can be passed to the compiler that will take care of the transla-
tion based on the parallel paradigm and the selected target
platform. The steps that are performed by the compiler are:

� Create the syntactic tree of the algorithm code: in this
phase the AST python module is used for the crea-
tion of the syntactic tree starting from the python
code of the algorithm

� Extract the imports: the tree is analyzed to identify
the leaf nodes belonging to the import class

� Extract the classes: the tree is analyzed to identify the
leaf nodes belonging to the Class Def class

� Extract the function definition: the tree is analyzed to
identify the leaf nodes belonging to the Function Def
class

� Analysis of the __main__ module: all the nodes are
analyzed, when an assignment is found, it is checked
whether the object of the assignment is an input data
for the parallel primitive, in which case we proceed
by adding the nodes necessary for data distribution
or distributed reading

� Replacement of parallel primitives with instructions
from the chosen target platform

� Recursive class analysis: the presence of parallel
primitives is checked, in which case they are replaced
with the nodes necessary for execution on the target
platform

� Recursive analysis of the functions: the presence of
parallel primitives is checked, in which case they are
replaced with the nodes necessary for execution on
the target platform

� The new __main__ file is produced
As for the optional parameters, if these are initialized in the

original algorithm, they are encoded in a JSON file and the
nodeswhich need to read andwrite them are added to the list
of nodes constituting the Body of themain script. The steps for
the completion of themain script and side scripts are repeated
every time the Compiler finds a data_parallel_region.

6.2 The Map-Reduce Rules
The rules defined are many and different according to the
pattern. To give a concrete example we examine the specific
case of Map Reduce. The pattern requires to distribute the
input data on a distributed file system (DFS), and all the
operations on the data must include a DFS reading, thus
aside from the main file, the compiler automatically produ-
ces the mapper file and the reducer file where all the
instructions for the distribution and reading of data on the
DFS are encapsulated.

A schematic version of the rules is shown in the Fig. 4.
Obviously in the image there are only the most impor-

tant steps, which include several sub-steps within them.
The overall procedure starts with the identification of the
main components of the target algorithm, i.e., the Parallel
region. If the compiler reaches a data_parallel_region during

DI MARTINO ETAL.: A COMPILER FOR AGNOSTIC PROGRAMMING AND DEPLOYMENTOF BIG DATA ANALYTICS ON MULTIPLE PLATFORMS 1925

the analysis of the syntactic tree, the following steps are
performed:

� Manage Inputs
� Manage Optional Parameters
� Manage Function Definition
The Manage Inputs rule is entitled to handle the input

data according to the pattern, in this case it needs to store
them in the DFS, this specific operation is then inserted in
the main script, as it can be seen more specifically in Fig. 5.

The other parallel action performed is the creation of
Data Reading Node operations that are then inserted in the
Mapper and Reducer scripts, as shown in Fig. 6.

The Manage Optional Parameters performs the same steps
as the previous rule, but it handles optional data and
parameters aside from the main data that the algorithm has
to elaborate, as shown in Fig. 7.

Last but not least, as explained in the previous sections, the
data_parallel_region has as input the function, i.e., the basic

operation defined by the algorithm, that must be performed
on the data in a parallel manner. This function is handled in
the Manage Function Definition, this step is entitled to find the
function definition through the program slicing andmove the
function in the Reducer scripts. Finally the compiler creates
the Map Reduce Call in the main script, and the body of the
data_parallel_region ismoved to the Reducer script.

7 APPLICATION TO THE TOREADOR REFERENCE

SCENARIOS

7.1 Reference Scenarios
In this paper we will refer to a scenario that is the simplified
version of a more complex case study, which has been pro-
posed within the Toreador project by the JOT company, part-
ner of the research project. In the general scenario the
companywants to analyze the clicks made by users on online
advice(ads), published on specific web-sites, in order to

Fig. 4. The Map Reduce rules.

Fig. 5. The distributing nodes for the inputs.

1926 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 9, SEPTEMBER 2019

determine the best position for such ads, and identify fake
users who may exploit automatic bots to increase the clicks
and, subsequently, the related revenue. In our specific case,
we focus on the analysis of the IPs retrieved from the click-
stream, and the categorization of such IPs according to a set
of criteria: geographic position and identification of the
source area, population size of the identified areas, available
services, connections, and so on. This can be identified as a
classification problem, which can be addressed through a
series of approaches. In our case, JOT applied K-Means clus-
tering to classify the IPs. However, due to the huge amount
of input data, such a classification is extremely slow. Torea-
dor offered two different possible solutions: to exploit one or
more of the analytic Services made available by the platform
(Service-based approach); or to modify the K-Means algo-
rithm which had already been developed, through paralleli-
zation primitives, and then actually parallelize and distribute
it. This second approach corresponds to the Code-based
approach we are focusing on in this paper. Section 7 reports
the transformation operated on the K-Means code as a result
of the application of the Code-based approach, and shows
the performance boost obtained through the parallelization.

This is not the only scenario on which the compiler
and the approach has been tested. The SAP company

(also partner of Toreador) has proposed her own cluster-
ing algorithm, namely the Rock algorithm, which has
been annotated with parallel primitives to boost its per-
formances through the compiler [13]. Lightsource
(another company partner of the project Toreador) has
instead proposed a scenario in which data regarding the
use of batteries and solar powered cells is gathered by
distributed devices located at customers’ households, and
different calculations are then operated (i.e., to determine
the Mean Time Between Failures). In this case, the code-
based approach has been used to analyze the data coming
from the different devices in parallel, after a conspicuous
batch had been collected. Currently we are running
experiments to determine the feasibility to run part of the
computation locally on tiny computing devices located at
the households, thus following a Cloud-Edge Computing
architectural paradigm.

7.2 Code Implementation
As already stated in Section 7.1, in our reference scenario a
K-means Clustering algorithm has been employed to cate-
gorize users of online web-sites, clicking on ads put on the
site pages, and collect information regarding their prove-
nience, general background, and services they could access

Fig. 6. The reading node in the map and reduce file.

Fig. 7. The distributing node for the optional parameters.

DI MARTINO ETAL.: A COMPILER FOR AGNOSTIC PROGRAMMING AND DEPLOYMENTOF BIG DATA ANALYTICS ON MULTIPLE PLATFORMS 1927

to in their geographical area. Parallel Primitives have been
applied to the code In this section we are going to present
two case studies that employ the K-means Clustering, which
is considered as a very effective, yet simple, algorithm to be
used in a Big Data scenario.

The target platforms for which we are going to produce
the Vendor and Parallel Pattern specific versions are:

1) a Hadoop cluster on which the Map Reduce para-
digm is implemented;

2) an Apache Spark cluster to implement the Producer-
Consumer parallelization paradigm.

Source Code 1. K-Means Without Parallel Primitives

import math,random

def distance(a,b):

return......

def kmeans_init(data,k):

return ...

def kmeans_assign(p,centroids):

comparator=lambda x: distance(x[1],p)

nearest=min(enumerate(centroids),key...

return (p,nearest[0])

def kmeans_centroid(cluster):

csum = map(sum,zip(*cluster))

return [x/len(cluster) for x in csum]

if __name__==”__main__”:

data=...

k=2

centroids=kmeans_init(data, k)

iteration=0

while iteration==0 or previousCentro...

previousCentroids=centroids

assigns = [kmeans_assign(x, centroids) for

x in data]

clusters=[[] for x in centroids]

for x in assigns:

clusters[x[1]].append(x[0])

centroids = [kmeans_centroid(x) for x in

clusters]

iteration+=1

In particular, the Hadoop platform used for the first Use
Case has been set-up using a cluster created on a private
workstation, but it could be easily migrated to any Hadoop
cluster. On the other hand, the Apache Spark cluster has
been created in a completely automatic fashion, by using an
Ansible-enabled platform. Such a platform can be reached
through a Rest API, which allows to request and deploy a
cluster and execute the algorithm compiled for that specific
platform.

The reported code has some specific lines highlighted
with a bold /italic style, these lines represent the code that
has been added and/or substituted. The code reported in
box 1 reports the main parts of the original code (cuts have
been made where the full code was not necessary). The
reported code represents a standard K-means implementa-
tion, with a distance function to calculate the distance among
the clusters’centroids, a set of functions to actually instanti-
ate the clusters and initialize the centroids. The distance
function reported acts on two parameters, which represent
characteristics vectors.

Source Code 2. K-Means with Parallel Primitives

import math,random, toreador as t

def distance(a,b):

return ...

def kmeans_init(data,k):

return ...

def kmeans_assign(p, centroids):

comparator=lambda x: distance(x[1],p)

nearest=min(enumerate(centroids),key...

return (p,nearest[0])

def kmeans_centroid(cluster):

csum=map(sum,zip(*cluster))

return [x/len(cluster) for x in csum]

if __name__==”__main__”:

data=...

k = 2

centroids=kmeans_init(data, k)

iteration=0

while iteration==0 or previousCentro...

previousCentroids=centroids

assigns = t.data_parallel_region(data,

kmeans_assign, centroids)

clusters=[[] for x in centroids]

for x in assigns:

clusters[x[1]].append(x[0])

centroids = t.data_parallel_region(clus-

ters, kmeans_centroid)

iteration+=1

We have therefore re-written the algorithm with parallel
primitives which, as we shall see, does not involve complex
procedures, since it does not require particular constructs or
languages. During the parallelization process of the K-
means algorithm, the data_parallel_region primitive has been
exploited in two different phases. Source Code 2 provides
an excerpt of the algorithm code using such parallel primi-
tives in two different locations: during the assignation of
data points to centroids and during the re-calculation of the
centroids themselves. This two operation are data parallel
tasks, and they can be performed by different nodes at the
same time on different data.

Once the code has been annotated with the parallel primi-
tives, it can be fed as input to the compiler. In the first phase,
the code is analyzed and parallel primitives are identified.

7.3 Production of the Skeletons
In this specific example, we have selected Map-Reduce as
the reference Parallel Patterns and an Hadoop environment,
deployed on a local cluster, as a target platform.

In order to implement the algorithm according to the
Map Reduce Pattern, in our methodology, three different
files are produced starting from empty Skeletons:

1) Main file: this is the main script where the sequential
(not parallelizable) operations of the algorithm are
executed and Map Reduce jobs are launched;

2) Mapper file: it deals with distributing, filtering, and
sorting input data;

3) Reduce file: it deals with operations that “reduce” the
object of evaluation, by gathering the partial results
of the executions operated on the distributed nodes.
A very common operation consists in simply sum-
ming the partial results.

1928 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 9, SEPTEMBER 2019

Source Code 3. Main.py - The Technology Dependent
Realization

importmath,random ,os

LOCAL_INPUT_FOLDER=’/input’

HADOOP_INPUT_FOLDER=’/tmp/hadooptest/’

DISTRIBUTE_COMMAND=’/usr/local/hadoop/hd...

INPUT_COMMAND=’bin/hadoop dfs -copyFromL...

OUTPUT_COMMAND=’/usr/local/hadoop/bin/hd...

CAT_OUTPUT=’cat output’

def file_write(name,data):

...

def kmeans_init(data,k):

return ...

if __name__==’__main__’:

data=...

k=2

centroids=kmeans_init(data, k)

iteration=0

while iteration==0 or previousCentro...

previousCentroids=centroids

file_write(’data.json’,data)

os.system(INPUT_COMMAND)

file_write(’centroids.json’,cent...

os.system(DISTRIBUTE_COMMAND+’ce...

LAUNCH_COMMAND_0=(’/usr/local/ha...

os.system(LAUNCH_COMMAND_0)

assigns=os.popen(CAT_OUTPUT).rea...

clusters = [[] for x in centroids]

for x in assigns:

clusters[x[1]].append(x[0])

file_write(’clusters.json’,clust...

os.system(INPUT_COMMAND)

LAUNCH_COMMAND_1=(’/usr/local/ha...

os.system(LAUNCH_COMMAND_1)

centroids=os.popen(CAT_OUTPUT).r...

iteration+=1

In this specific case, two sets of Mapper and Reducer
have been produced, one for each data_parallel_region

found in the parallelized code, while only one Main file
is necessary.

Source Code 4. Mapper.py - The Technology Dependent
Realization

import sys,json

def read_input(file):

for line in file:

yield json.loads(line.strip(’ n’))

data = read_input(sys.stdin)

for element in data:

print(element)

Also in this section the reported code has some specific
lines highlighted with a bold /italic style, these lines repre-
sent the code that has been retained from the sequential
code and inserted in the final skeletons.

Source Code 5. Reducer.py - The Technology Dependent
Realization

import json, math ,sys

def distance(a,b):

return...

def kmeans_assign(p, centroids):

comparator=lambda x: distance(x[1],p)

nearest=min(enumerate(centroids),key...

return (p,nearest[0])

def file_read(name):

fp=open(name,’r’)

data=json.loads(fp.read())

fp.close

return data

centroids=file_read(’centroids.json’)

for x in sys.stdin:

print(kmeans_assign(x, centroids))

The Source Code shown in 3 reports the Main file which
has been created with information relative to the target plat-
form. Commands stored in local variables, together with

Fig. 8. The web interface for the compiler.

DI MARTINO ETAL.: A COMPILER FOR AGNOSTIC PROGRAMMING AND DEPLOYMENTOF BIG DATA ANALYTICS ON MULTIPLE PLATFORMS 1929

data location information, are added to an empty Skeleton
by the compiler, to adapt it to a specific target.

The Mapper and Reducer files are indeed very simple: as
it can be seen in code boxes 4 and 5 respectively, the Mapper
is in charge of distributing the incoming data, exploiting the
Standard Input and Standard Output of the Python pro-
gram running on the Hadoop Cluster, while the Reducer
calculates the result of the function passed through the
Primitive (a distance in our case). The other two Mapper
and Reducer files have not been reported for brevity.

7.4 The Compiler Web Interface
A web graphical interface, available online, has been pro-
vided to interact with the compiler. When the modified
source code is presented to the Web Compiler, it is analyzed
and transformed, according to the specific Parallel Pattern
which has been chosen for the parallelization. As it can be
seen from Fig. 8, the code can be pasted in the central area,
while the Pattern and the Deployment Platform can be
selected from the menu just below the code area.

8 RESULTS

The experimental results (speed-up figures) shown in Fig. 9
have been obtained by running the Kmeans example
illustrated in previous sections, parallelized according to the
Producer-Consumer pattern, targetted on a Docker executing
environment, and ran on a workstation (based in our labora-
tory) equipped with one node / 4 cores (8 threads). The
elapsed time figures have been averaged from 4 independent
runs. Thefigure shows satisfactory speedup, up to 3 consumer
containers running on distinct cores (the fourth one dedicated
to the Producer and queue-manager containers. With more
than 3 consumer containers, the speed-up slows down, due to
the fact that some of the cores are shared by the different con-
tainers. We have used a docker-compose.yml version 2, which
allows to allocate the containers on specific cores (thus allow-
ing to control the execution of dockers on dedicated cores).

Fig. 10 reports the speed-Up results obtained on the real use
case (LightSource’s MTBF analytics) illustrated in Section 7.1,
parallelized according to the Producer-Consumer pattern, tar-
getted on a Docker executing environment, and ran on a
workstation (based at LightSource premises) equipped
with 2 nodes, 4 cores each. The speed-up scalability
behaviour is here again satisfactory until the consumer
containers run on distinct cores (that is, up to 6 cores,
the remaining 2 cores utilized by the producer and
queue-manager containers).

9 CONCLUSIONS AND FUTURE WORK

In this paper the Code Based Approach and Compiler,
developed within the TOREADOR project, has been pre-
sented. The article has focused on a Key-means algorithm
applied in a simplified scenario, but several other algo-
rithms have been considered during experimentation, taken
from the top 10 most used one in Data Mining and Big Data
analytics: C4.5, APriori, Support vector machines, Pag-
eRank, k-NN, Nayve Bayes.

The supported deployment platforms have been briefly
listed in Section 5.3 but, also in this case, we plan to further
extend the support to platforms which can offer Stream
analysis capabilities. Research is being carried on the possi-
ble composition of Apache Kafka and Spark, as a target
environment, to support data Streaming.

In the future, it has been planned further experiments that
will be run to determine the performance improvement
obtained with different configurations of the execution
parameters (number and power of the execution nodes, data
distribution paradigms). The acquired data, and the instru-
ments that will be used to collect them, will become part of
the parallelization suite which will be offered to the final
user, in order to support her in the optimization of the code.

ACKNOWLEDGMENTS

This work has received funding from the European Union’s
Horizon 2020 research and innovation programme under
the TOREADOR project, grant agreement Number 688797.

REFERENCES

[1] [Online]. Available: http://www.toreador-project.eu/. Accessed
on: Feb. 2019.

[2] M. Aldinucci, M. Danelutto, and P. Dazzi, “MUSKEL: An expand-
able skeleton environment,” Scalable Comput.: Practice Exp., vol. 8,
no. 4, pp. 325–341, 2007.

[3] M.Aldinucci,M.Danelutto, P.Kilpatrick, andM. Torquati, “FastFlow:
High-level and efficient streaming on multi-core, ” in, Programming
Multi-Core and Many-Core Computing Systems. Hoboken, NJ, USA:
Wiley, 2014.

[4] C. A. Ardagna, V. Bellandi, P. Ceravolo, E. Damiani, B. Di Martino,
D. Salvatore, andA. Esposito, “A fast and incremental development
life cycle for data analytics as a service,” in Proc. IEEE Int. Congr. Big
Data, 2018, pp. 174–181.

[5] G. E. Blelloch, “NESL: A nested data-parallel language (version
3.1),” School Comput. Sci., Carnegie-Mellon Univ., Pittsburgh,
PA, USA, Tech. Rep. CMU-CS-95–170, 1995.

[6] W. W. Carlson, J. M. Draper, D. E. Culler, K. Yelick, E. Brooks, and
K. Warren, “Introduction to UPC and language specification,” IDA
Center Comput. Sci., Bowie, MD, USA, Tech. Rep. CCS-TR-99–157,
1999.

Fig. 9. Speed-Up results for Kmeans. Fig. 10. Speed-Up results for MTBF.

1930 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 9, SEPTEMBER 2019

http://www.toreador-project.eu/

[7] M. Cole, Algorithmic Skeletons: Structured Management of Parallel
Computation. Cambridge, MA, USA: MIT Press, 1991.

[8] M. I. Cole, Algorithmic Skeletons: Structured Management of Parallel
Computation. London, U.K.: Pitman, 1989.

[9] M. Danelutto, “Distributed systems: Paradigms and models,” Sup-
port Material-Laurea Magistrale Comput. Sci. Netw. Pisa, versione
Sep. 25, 2013, Available online at http://backus.di.unipi.it/
~marcod/SPM1415/spmSept14Epub.pdf, last checked Mar. 2019.

[10] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing
on large clusters,”Commun. ACM, vol. 51, no. 1, pp. 107–113, 2008.

[11] B. Di Martino, S. D’Angelo, and A. Esposito, “A platform for
MBDAaaS based on patterns and skeletons: The python based
algorithms compiler,” in Proc. IEEE 14th Int. Conf. Netw. Sens. Con-
trol, 2017, pp. 400–405.

[12] B. Di Martino, S. D’Angelo, A. Esposito, I. Martinez, J. Montero,
and T. Pariente Lobo, “Parallelization and deployment of big data
algorithms: The TOREADOR approach,” in Proc. 32nd IEEE Int.
Conf. Adv. Inf. Netw. Appl., May 2018, pp. 408–412.

[13] B. Di Martino, S. D’Angelo, A. Esposito, R. Cappuzzo, and
A. S. de Oliveira, “ROCK algorithm parallelization with TOREA-
DOR primitives,” in Proc. 32nd Int. Conf. Adv. Inf. Netw. Appl. Work-
shops, 2018, pp. 402–407.

[14] G. Fortino, A. Guerrieri, W. Russo, and C. Savaglio, “Integration
of agent-based and cloud computing for the smart objects-
oriented IoT,” in Proc. IEEE 18th Int. Conf. Comput. Supported
Cooperative Work Des., May 2014, pp. 493–498.

[15] G. Fortino and P. Trunfio, Internet of Things Based on Smart Objects,
G. Fortino & P. Trunfio, Eds., Berlin, Germany: Springer, 2014.

[16] H. Gonz�alez-V�elez and M. Leyton, “A survey of algorithmic skele-
ton frameworks: High-level structured parallel programming ena-
blers,” Softw.: Practice Exp., vol. 40, no. 12, pp. 1135–1160, 2010.

[17] M. Oberdorfer and J. Gutowski, “CxC parallel programming,” C/C
++ Users J., CMPMedia LLC, United States, 2004, pp. 42–47.

[18] T. G. Mattson, B. A. Sanders, and B. L. Massingill, Patterns for Par-
allel Programming. London, U.K.: Pearson Education, 2004.

[19] E. Totoni, T. A. Anderson, and T. Shpeisman, “HPAT: High per-
formance analytics with scripting ease-of-use,” in Proc. Int. Conf.
Supercomput., 2017, Art. no. 9.

[20] S. Toub, “Patterns for parallel programming: understanding and
applying parallel patterns with the .NET framework 4,” Available
online at https://www.microsoft.com/downloads/details.aspx?
FamilyID=86b3d32b-ad26-4bb8-a3ae-c1637026c3ee, Last checked
Mar. 2019.

Beniamino Di Martino is a full professor of infor-
mation systems with the Engineering Depart-
ment, University of Campania “Luigi Vanvitelli”
(Italy). He is author of 14 international books and
more than 300 publications in international jour-
nals and conferences. He has been coordinator
of EU funded FP7-ICT Project mOSAIC, and par-
ticipates to various international research proj-
ects with various leadership roles (among them
five EC FP7 and H2020 projects). He is editor /
associate editor of seven international journals

and EB member of several international journals. He is vice chair of the
IEEE CS Technical Committee on Scalable Computing. He is member of
many Technical Committees, including: IEEE WG for the IEEE P3203
Standard on Cloud Interoperability, IEEE Intercloud Testbed Initiative,
IEEE Technical Committees on Scalable Computing (TCSC), on Big
Data (TCBD), on Data Engineering (TCDE), on Semantic Computing
(TCSEM), on Services Computing (TCSVC), on Intelligent Informatics
(TCII), on Pattern Analysis and Machine Intelligence (TCPAMI), on Soft-
ware Engineering (TCSE), on Distributed Processing (TCDP), on Paral-
lel Processing (TCPP), on Cloud Computing (TCCC), of Cloud
Standards Customer Council, of OMG Cloud Working Group, of Cloud
Computing Experts’ Group of the European Commission. He is chair of
Nomination Committee for the “IEEE TCSC Award of Excellence in Scal-
able Computing” and member of Nomination Committee for the “IEEE
TCSC Award for Medium Career Researchers”. His research interests
include: Knowledge discovery and management, Semantic Web and
Semantic Web services, Semantic based information retrieval, cloud
computing, big data intelligence, high performance computing and archi-
tectures. Mobile and intelligent agents and mobile computing, reverse
engineering, automated program analysis and transformation, algorith-
mic patterns recognition and program comprehension, image analysis.

Antonio Esposito received the PhD degree in
December 2016, with a thesis on a pattern-
guided Semantic approach to the solution of por-
tability and interoperability issues in the Cloud
enabling automatic services composition. He is a
postdoc with the Engineering Department, Uni-
versity of Campania “Luigi Vanvitelli” (Italy). He
participated in research projects supported by
international and national organizations, such as
EU-FP7-SMARTCITIES CoSSmiC and EU-
H2020-BIGDATA Toreador. His main interests

include software engineering, cloud computing, design and cloud pat-
terns, Semantic based information retrieval.

Salvatore D’Angelo received the master’s
degree in computer engineering, in 2016. He is
working toward the PhD degree in computer and
electronic engineering in the Department of Engi-
neering, University of Campania “Luigi Vanvitelli”.
His interests include research activities dealing
with big data, machine learning, cloud computing,
and high performance computing.

Salvatore Augusto Maisto received the mas-
ter’s degree in computer engineering, in 2016.
He is working toward the PhD degree in computer
and electronic engineering in the Department of
Industrial and Information Engineering, University
of Campania “Luigi Vanvitelli” (Italy). His interests
include research activities dealing with Semantic
Web, knowledge discovery, cloud computing,
business process management, microservices,
and software modernization.

Stefania Nacchia received the master’s degree
in computer engineering, in 2016. She is working
toward the PhD degree in computer and elec-
tronic engineering in the Department of Engineer-
ing, University of Campania “Luigi Vanvitelli”
(Italy). She is involved in research activities deal-
ing with Semantic Web, knowledge discovery,
cloud computing, business process manage-
ment, and machine learning.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

DI MARTINO ETAL.: A COMPILER FOR AGNOSTIC PROGRAMMING AND DEPLOYMENTOF BIG DATA ANALYTICS ON MULTIPLE PLATFORMS 1931

http://backus.di.unipi.it/~marcod/SPM1415/spmSept14Epub.pdf
http://backus.di.unipi.it/~marcod/SPM1415/spmSept14Epub.pdf
https://www.microsoft.com/downloads/details.aspx?FamilyID=86b3d32b-ad26-4bb8-a3ae-c1637026c3ee
https://www.microsoft.com/downloads/details.aspx?FamilyID=86b3d32b-ad26-4bb8-a3ae-c1637026c3ee

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

