
Architectural Synthesis of Multi-SIMD
Dataflow Accelerators for FPGA
YunWu,Member, IEEE and John McAllister , Senior Member, IEEE

Abstract—Field Programmable Gate Array (FPGA) boast abundant resources with which to realise high-performance accelerators for

computationally demanding operations. Highly efficient accelerators may be automatically derived from Signal Flow Graph (SFG)

models by using architectural synthesis techniques, but in practical design scenarios, these currently operate under two important

limitations - they cannot efficiently harness the programmable datapath components which make up an increasing proportion of the

computational capacity of modern FPGA and they are unable to automatically derive accelerators to meet a prescribed throughput or

latency requirement. This paper addresses these limitations. SFG synthesis is enabled which derives software-programmable

multicore single-instruction, multiple-data (SIMD) accelerators which, via combined offline characterisation of multicore performance

and compile-time program analysis, meet prescribed throughput requirements. The effectiveness of these techniques is demonstrated

on tree-search and linear algebraic accelerators for 802.11n WiFi transceivers, an application for which satisfying real-time

performance requirements has, to this point, proven challenging for even manually-derived architectures.

Index Terms—Field programmable gate array (FPGA), dataflow, signal flow, architectural synthesis, single-instruction multiple-data (SIMD)
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1 INTRODUCTION

FIELD Programmable Gate Array (FPGA) offer enormous
computational capacity and distributed memory resour-

ces for high-performance, low-cost realisation of signal,
image and data processing [1], high performance comput-
ing and big data analytics [2] and industrial control [3] oper-
ations. As custom computing devices, FPGA typically host
accelerators—components whose circuit architecture is tuned
to realise a specific function with performance and cost well
beyond that available via software-programmable devices,
such as multicore processors or graphics processing units.

To achieve these benefits, accelerators have traditionally
been developed manually at Register Transfer Level (RTL)
[4]. This low level of design abstraction enables highly effi-
cient results, but imposes a heavy development load made
increasingly unproductive as the scale of modern FPGA
devices increase. Architectural Synthesis (AS) eases this bur-
den by automating the derivation of pipelined accelerators
from Signal Flow Graph (SFG) models and has proven
highly successful in producing high-performance, efficient
results [1], [5].

In the context of modern FPGA, current SFG-AS
approaches have two shortcomings. First, the accelerators
they produce are networks of fixed-function components,
such as adders, multipliers or dividers. However, modern

FPGA increasingly rely on multi-functional or programma-
ble components, such as the DSP48E1 slice in Xilinx FPGA
[6], to provide computational capacity. When used to realise
fixed-function components, multiple of these are required to
affect different operations where otherwise one would suf-
fice, leading potentially to increased resource cost. No cur-
rent SFG-AS approach can harness these components’
programmability. Additionally, when designing for an
industrial operating context or for standards-based systems,
accelerators need to meet a prescribed throughput or
latency. No current SFG-AS approach can automatically
derive accelerators to meet such requirements and as a
result, iterative cycles of time-consuming FPGA place-and-
route to refine results to meet a required performance. This
is a highly time-consuming process and a major barrier to
high-productivity accelerator design.

This paper addresses these shortcomings. Specifically,
three principal contributions are made:

1) A novel SFG-AS approach is presented which
derives accelerators composed of custom multicore
SIMD processor architectures utilising the program-
mable datapaths on modern FPGA.

2) It is shown how, via off-line estimation of multicore
performance and compile-time application analysis,
accelerators may be automatically produced which
meet a pre-defined throughput requirement.

3) Automatic AS of accelerators with demanding real-
time requirements is demonstrated by application to
the design of transceivers for 802.11n WiFi.

The remainder of this paper is structured as follows.
Sections 2 and 3 outline the multi-SIMD accelerator design
problem, before Sections 4 and 5 describe the synthesis
approach and Section 6 applies this to the design of 802.11n
transceiver accelerators.
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2 BACKGROUND

Modern FPGA boast enormous on-chip computation, dis-
tributed memory and communications resources. For exam-
ple, Xilinx’s Virtex-7 FPGA family offer per-second access
to up to 7� 1012 multiply-accumulate (MAC) operations
and 40� 1012 bits/s of memory via programmable DSP48E1
[6], Look-Up Table (LUT) and Block RAM (BRAM) [7]
resources. Along with the abundance of on-chip registers
on modern FPGA, these resources are ideal for creating
high-throughput, deeply-pipelined accelerators [1], [2], [8].
However, to date accelerators have been designed at RTL, a
low-level, manual process made increasingly unproductive
as the scale of modern FPGA increases.

Currently, two popular classes of approach address this
productivity problem by adoptingmore abstract design entry
points. High-Level Synthesis (HLS) translates programs
written in popular software languages, such as C, C++ or
OpenCL, to accelerators [9], [10], [11]. These tools derive RTL
circuit architectures from the input and allow a designer to
manipulate performance and cost by transforming the C
source via, for example, loop unrolling, or by issuing synthe-
sis directives. They support bit-true hardware data-types for
arithmetic and automatically generate RTL code, frequently
via the use of advanced scheduling and resource sharing in
order to affect performance and cost.

An alternative approach uses AS techniques to derive
accelerators from SFG models described in tools such as
MATLAB Simulink. Exemplified by tools such as Xilinx’s Sys-
tem Generator, Altera’s DSP Builder and Synopsys’ Synplify
DSP, these empower a designer to specify the behaviour of an
RTL component before generating code in the form of VHDL
or Verilog. They support bit-true hardware datatypes, auto-
matic RTL code generation, close integration with vendor
synthesis and place-and-route tools and hardware-in-the-
loop emulation. The SFG models created are also ideal for
application of AS transformations such as automatic pipelin-
ing/retiming and graph folding or unfolding to trade the per-
formance and cost of the accelerator [1], [5].

Regardless of the approach chosen, however, some
restrictions are apparent. Consider the designer’s concern:
to realise a given function, on a given FPGA device, with a
throughput or latency which is prescribed either by an
industrial operating context, or by standards to which the
equipment of which it is a part must comply. In this
scenario, SFG-AS and HLS tools’ capabilities are currently
lacking in two important ways. Whilst transformation tech-
niques such as retiming [12] and folding or unfolding [5],
[13] allow accelerator performance to be traded with
resource or energy cost [1], [13], [14], current approaches
provide only partial support for deriving accelerators with
a given performance. This is because they measure perfor-
mance and cost in terms of abstract units such as clock
cycles (latency), samples/cycle (throughput) or number of
arithmetic components [13]. This puts the effect on actual
performance and cost in doubt, since facets such as number
of LUTs, or the length of each clock period cannot be accu-
rately estimated until the entire, highly time-consuming
FPGA synthesis toolchain, including place-and-route, has
been traversed. Hence creating an accelerator of a given per-
formance is a very unproductive, manual process.

Furthermore, all of these techniques derive RTL circuits
composed of fixed-function components, such as arithmetic
components, buffers or switches. However a substantial
proportion of the computational resource on modern FPGA
is increasingly made up of components which are multi-
functional or even programmable, such as the DSP48E1 on
Xilinx Virtex-7 FPGA. If these are restricted to performing
only one operation each, accelerators of greater cost may
result than otherwise necessary. To the best of the authors’
knowledge, no current AS approach addresses either of
these shortcomings.

The programmable components which these processes
should target require both control logic and memory
resource to store and manage delivery of instructions and
operands. These structures evoke the notion of software-
programmable processors, the use of which on FPGA has
been growing in recent times and has evolved into interme-
diate fabrics or overlays [15], [16], [17]. These take a wide
variety of forms, including vector processors [18], [19],
GPU-like structures [20], [21], [22] or domain-specific pro-
cessors [16], [23]. These are all founded on components
such as the DSP48E1 but impose large resource and perfor-
mance overheads to enable program and data control. To
enable efficient accelerators, these overheads must be mini-
mised via a soft design approach which customises their
structure to the workload at hand. An approach which
adheres to this philosophy is described in [24], [25]. Here,
very fine-grained processors are used as building blocks for
large-scale multi-SIMD structures whose architectures are
tuned to the workload. This approach has been shown to
support accelerators with performance and cost which are
highly competitive with those from libraries such as Xilinx’s
Core Generator or Spiral [26]. However, there is no technol-
ogy to automate their generation.

This paper devises an SFG-AS approach which derives
custom multi-SIMD processors built around programmable
on-chip computation units. Section 3 introduces the target
architectures in more detail.

3 HETEROGENEOUS MULTI-SIMD FOR FPGA

3.1 FPGA Processing Elements

In [24], [25] is described an approach to the realisation of
FPGA accelerators for signal, image and data processing
using a template architecture shown in Fig. 1. Accelerators
are realised using networks of Processing Elements (PEs)—
software-programmable SIMD soft processors. The execu-
tion of each SIMD is decoupled from all others and commu-
nication is via point-to-point links. The structure of the
network, the communications links and the widths of each
PE are customisable at design time to maximise perfor-
mance and minimise cost for the workload at hand.

Fig. 1. multi-SIMD architecture template.
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To enable highly efficient accelerators, two key features
are demanded of the PEs. They must be lean, incurring
very low resource cost, to enable scalability to many
hundreds of units for complex accelerators; associated
with this requirement is the need for standalone
operation—the ability to process data, access and manage
memory and communicate externally without the need for
a host processor. The FPGA PE (FPE) [24] is a RISC load-
store PE which fulfils these requirements; SIMD and SISD
(i.e., single-lane SIMD) variants of the FPE are shown in
Fig. 2. The FPE includes only vital components—a pro-
gram counter, program memory, instruction decoder, reg-
ister file, branch detection, data memory, immediate
memory and an arithmetic logic unit based on the
DSP48E1 in Xilinx FPGA [6]. A COMM module allows
direct insertion/extraction of data into and out of the FPE
pipeline. In addition, the FPE’s architecture is highly con-
figurable for tuning to a specific workload [24].

By ensuring absolute lowest cost, economies of scale
enable significant multicore resource cost savings. The
price for this efficiency, however, is flexibility—the FPE is
not a run-time general-purpose component because its
architecture is highly tuned to the application at hand. In
addition, it is domain-specific, enabling very high perfor-
mance for certain types of operations, with performance
degradation for others [25]. The benefit, however, is very
high performance; a 16-bit SISD FPE on Xilinx Virtex 5
VLX110T supports 480 MMACs/s requiring 90 LUTs; this
is just 14 percent of the cost of a general-purpose Xilinx
Microblaze processor and 35 percent of that of the iDEA
processor [23] on the same device. This efficiency enables
processor-based accelerators for a range of applications
whose performance and cost is highly competitive with
hand-crafted accelerators. The structures which results are
heterogeneous, as illustrated for an example symbol detec-
tor for 4� 4 16-QAM Multiple-Input, Multiple-Output

(MIMO) 802.11n transceivers in Fig. 3. This architectures
includes clusters of MIMD structures (4-FPE1) and nine
16-lane SIMD structures (FPE16). This accounts for a total
of 288 processing lanes, communicating via point-to-point
data queues to realise the functionality required. The per-
formance and cost of this architecture has been shown to
be highly competitive with hand-crafted realisations of the
same behaviour for this and a range of other functions
[24], [25].

3.2 Synthesis of FPE-Based Accelerators

The goal, in this paper, is to generate a multi-FPE accelera-
tor architecture from an application such that a prescribed
throughput, expressed as a number of iterations n of the
application per second, is satisfied. Accelerators based on
the FPE promise high performance and efficiency, but a
series of substantial design challenges must be overcome to
automate their derivation to meet a given real-time perfor-
mance. These are summarised in Fig. 4. A series of key sub-
tasks are involved [4]:

� Allocation of a set of SIMDs to realise the application,
� Partitioning & Binding of application tasks to SIMDs

and insertion of point-to-point communication links,
� Scheduling of the operations on each SIMD,
� Estimation of the performance of the result in order to

ensure requirements are satisfied,
� Code Generation of source for each PE.

Fig. 2. The FPGA processing element.

Fig. 3. FPE-based SD for 4� 4 802.11n.

Fig. 4. FPE-based accelerator synthesis.
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Partitioning, scheduling and estimating the performance
of application workloads for programmable multicore and
GPU devices is an active topic of research [27], [28]. How-
ever, these works differ from that described here. For
instance, in many cases they can reduce the scheduling load
on the compiler by employing hardware scheduling cir-
cuitry [27], [28], [29]; this is not available in the FPE. In all
cases, they do not have to allocate a processing resource, as
is required for the FPE and their performance estimation,
e.g., [30], does not extend to estimating the physical length
of a clock cycle, as is required for FPGA.

The SFG modelling entry point is well-suited to synthe-
sis problems such as this and has already been adopted in
numerous FPGA AS tools as detailed in Section 2. It is a
highly restricted form of dataflow, a domain of modelling
languages which have been shown well-suited to rapid
synthesis of digital signal processing operations for both
multicore and FPGA [5], [31], [32], [33]. Specifically, SFG
is a sub-class of synchronous dataflow [34], a decidable
dataflow dialect [35] which has consistently demonstrated
outstanding support for compile-time analysis and gener-
ation of efficient code. Its popularity has led to a consider-
able body of work in the areas of partitioning and binding,
scheduling and code generation of dataflow applications
for multiprocessors [32], [36], [37]. Hence, this paper
focuses on the key novel aspects of this work: allocation
of multi-SIMD PE architectures and mapping and schedul-
ing of SFG tasks across PEs to meet a given real-time
performance.

4 ARCHITECTURAL SYNTHESIS OF

HETEROGENEOUS MULTI-SIMD ACCELERATORS

4.1 Synthesis Strategy

SFG models of two classes of tree-search Sphere Decoding
(SD) operation—Fixed-Complexity Sphere Decoder (FSD)
and Selective Spanning with Fast Enumeration (SSFE)-
1; 1; 2; 4½ � - for 4� 4 16-QAM MIMO for 802.11n Wi-Fi are
shown in Fig. 5 and will be used to illustrate the synthesis
process as it progresses. A SFG G ¼ N;Eð Þ describes a set of
nodes or actors N and a set of edges E ¼ N �N - directed
First-In, First-Out (FIFO) queues of data tokens. A node is
said to fire, consuming/producing a pre-specified number
of tokens, known as the rate, from each incoming/outgoing
edge. In an SFG, all rates are 1 and are not quoted.

In Fig. 5, the SFG is composed of 108 subactors, each of
which processes a single Orthogonal Frequency Division
Multiplexing (OFDM) subdivision of the allocated fre-
quency band. For each sub-band i, two pieces of data are
input: a channel matrix Hi and a received symbol vector yi.
In the cases considered in this paper, H 2 C4�4 and
y 2 C4�1. Preprocessing is applied by pp, ordering the
entries of both y and H according to the distortion on each
path through the wireless channel, before an equalised ver-
sion of y (yeq) is produced. The resulting data are then
refined to an estimate ŝ of the transmitted symbol vector
s 2 C4�1 by a sequence of Euclidean distance cost functions
a1i � a4i in Fig. 5a (e1i � e4 in Fig. 5b) Further details of
these algorithms are available in [38], [39].

Each of the SFGs in Fig. 5 contain many instances of
actors of a restricted range of classes, replicated in a very
regular data/task parallel fashion. For instance, in FSD the
sequence of actors a4; a3; a2; a1f g forms all 16 branches of
the SD tree, replicated 108 times to constitute 1,728 instances
of this same sequence. Similarly, there are 16 data parallel
instances of min, one per tree. These repeated parallel
sequences are well suited to SIMD realisation, and we pro-
pose to exploit this feature to derive multi-SIMD realisa-
tions via a two-step process illustrated in Fig. 6.

As shown on the left of Fig. 6, the process commences
with the SFG model and the definition of a set K of kernels.
Kernels are considered the fundamental units of ‘work’,
with the accelerator created to realise these kernels. This
approach is in keeping with that of common heterogeneous
computing languages such as OpenCL [40], where they are
known as work-items, and CUDA. A kernel k 2 K is a sub-
graph of G such that G may be subdivided into a set of par-
titions P ¼ p1; p2; . . . ; pnf g, with each pi 2 P an instance of a
kernel k 2 K such that p1 [ p2 [ . . . pn ¼ G; pi \ pj ¼ ; for all
i; j; i 6¼ j, i.e., every actor in G is a member of precisely one

Fig. 5. FSD and SSFE SDF models.

Fig. 6. Synthesis process overview.
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kernel instance. Kernels may take any form and are defined
by the designer. However, in order to realise the most effec-
tive multi-SIMD realisations, these should be chosen to
expose large numbers of similar, data parallel operations. In
the FSD application, for example, both the FSD tree
branches and the min actors, highlighted in Fig. 6 as k1 and
k2 respectively, are ideal kernels.

From the SFG and kernel definitions are derived a work-
load. A workload is a sequence of kernel batches, with a
multi-SIMD workgroup synthesised to process a prescribed
number, n, of batches per second. Since all SIMDs in each
workgroup execute the same kernel a distinct workgroup is
required per kernel class; this paper illustrates the synthesis
process for k1 in Fig. 6.

4.2 Workload Synthesis

Consider the FSD model in Fig. 5a. Each OFDM sub-band
contains multiple instances of the kernel k1, all of which
depend on data emanating from a pp node - yeq and H -
which are local to that sub-band. Hence, when realising the
set of k1 kernels, if two instances from the same sub-band
are realised on different SIMDs or different lanes of the
same SIMD, this local data will have to be stored in multiple
different memories, increasing the total memory capacity
required and the total FPGA resource cost. Conversely, if
both are realised on the same SIMD lane, a substantial
resource saving may result. This data locality is ensured by
the SFG model’s hierarchy and, as a result, it is important
that this is maintained and exploited to guide the work-
group synthesis process to realise these kernels on the same
SIMD resource. Accordingly, the workload is described as a
batch of kernel clusters, formed to emphasise local commu-
nication and memory storage.

Realising this feature requires two capabilities. The
graph G must be reformulated to express its behaviour in
terms of the kernel set K, with any instance of a kernel
k 2 K in G replaced by a single actor k, whilst kernels of the
same class within the same composite node need to be clus-
tered for batch formation. The effect of this clustering on the
FSD and SSFE- 1; 1; 2; 4½ � SFGs are shown in Fig. 7. Note that

there are 108 disjoint FSD subgraphs, Q1 �Q108, each repre-
senting an OFDM subcarrier. Two kernels are identified: k2
designates the min actor as a kernel, whilst k1 identifies a
branch of the FSD tree as a kernel. The SFG is factored to
replace the subgraphs represented by each of these kernels
with a single ‘kernel’ actor. In addition, the similar kernels
in each disparate subgraph Qi are composed into clusters
and hence two clusters arise - C1 and C2, composed respec-
tively of all instances of k1 and k2. Similarly, the three ker-
nels identified in Fig. 7b result in three clusters for each Qi.
The SFG model reformulation process is performed as
described in Algorithm 1.

Algorithm 1. DFG Clustering

1: procedure CLUSTERDFG(G;K)
2: i; j 1
3: while 9 Q � Gð Þ : E Qð Þ \E G�Qð Þ ¼ ;ð Þ do
4: ci;j  ;
5: while j � jKj do
6: Qk ¼ Q \ kj
7: Q REPLACE(Q;Qk; kj)
8: ci;j  ci;j \Qk

9: j jþ 1
10: i iþ 1

return G0; C

Input to this process are the set of kernels K and the SFG
G. The goal is to derive G0, a SFG of equivalent behaviour to
G whose child actors are all kernels and members of K. In
the process the set of kernel clusters C is also derived. The
reformulation finds every instance of every kernel in G
(line 6) by isolating its disjoint subgraphs Q � G (line 3). All
instances of each kernel k in Q (Qk) are replaced with a
single actor representing the kernel (line 7), with the set of
kernels for each subgraph appended to the cluster definition
(line 8). This process is repeated for every disjoint subgraph
and every kernel type, with G0 and C returned.

4.3 Design Space Scaffolding

The workgroup synthesis strategy adopted is illustrated in
Fig. 8a. A workgroup is synthesised for each class of kernel.
It executes all instances of the kernel batches, where each
batch is a set of clusters (as determined in Section 4.2) of suf-
ficient size to meet the system throughput requirement. In
deriving the workgroup, there are three key challenges:
determining the batch size, the number of SIMDs and the
width of each. To aid this process, a template workgroup
structure is assumed, illustrated in Fig. 8b.

A workgroup is a two-dimensional SIMD structure, the
rows of which are composed of SIMD units with column i
(i ¼ 1; . . . ; l) formed by the composite of lanes j; ið Þ; j ¼ 1;
. . . ; d. To derive such a structure, d and l must be deter-
mined to execute a batch with a given throughput. The
dimensions d; lð Þ can vary between:

� 1; 1ð Þ: one single-lane SIMD is employed to process
wi kernels sequentially,

� wi; 1ð Þ: multiple single-lane SIMDs are employed,
with each SIMD realising a single kernel

� 1; wið Þ: one multi-lane SIMD is employed, each lane
of which realises a single kernel

Fig. 7. Clustered FSD and SSFE results.
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To guide the selection of the appropriate combination of
rows/columns, two key observations may be made:

� To achieve highest efficiency, the kernel load of each
column should be balanced so that no lane is idle
awaiting others to finish. This implies that the num-
ber of kernels executed per column is an integer fac-
tor of the number contained in the batch.

� FPE performance scales linearly with number of
lanes up to a width of 16, after which clock period
constraints as a result of wide instruction broadcast
imposes increasingly sublinear scaling [41].

A batch describes a subset of the clusters associated with
each class of kernel; the set of viable batch sizes
S ¼ s 2 Z : 1 � s � jCjf g. For each viable batch size si 2 S,
a multi-phase workload may be defined as a sequence W ,
with each wi 2W determining the number of kernels exe-
cuted during that phase of the sequence. Specifically, for

each s 2 S,W ¼ wif g
d Cj jsi e
i¼1 , where

wi ¼
Ps�i

j¼s� i�1ð Þþ1 jCjj when i � jCjsPjSj
j¼s� i�1ð Þþ1 jCjj when i ¼ jCjs þ 1:

8<
: (1)

Given these observations, a set L of candidate work-
group widths (i.e., number of columns) can be enumerated
as the integer factors of the workload size, up to a limit of 16

L ¼ l 2 Zþ :
XjCj
n¼1
jcij

 !
%l ¼ 0 and l � 16

( )
: (2)

Given this set of widths, the viable depths d can be deter-
mined by subdividing the batch across the workgroup

columns and determining the number of SIMDs required
by comparing estimates of the iteration rate to the require-
ment. This is achieved via Algorithm 2.

Algorithm 2.Workgroup Synthesis

1: procedureWORKGROUPSYNTHESIS(C; n)
2: M;Mc  ;
3: S  s 2 Z : 1 � s � jCjf g
4: for each s 2 S do
5: W  EnumerateWorkload(s)
6: L EnumerateWidths(w1)
7: n0  n� jW j
8: for each l 2 L do
9: M 0  ;
10: M 0  Deploy(w1, C, l, n0)
11: Mc  Mc \M 0

12: M  SelectCandidate(Mc)
13: returnM

Two pieces of information allow the workgroup to be
created: the kernel clusters C and n, which defines the
number of iterations of the clusters required every second.
The goal of workgroup synthesis is to determine a two-
dimensional setM, with each elementmij 2M the sequence
of kernels to be executed on the lane at row i, column j of
the workgroup. To derive this, batch size and workgroup
widths are successively enumerated and the batches
deployed on the corresponding workgroups. The best of
each of these options is chosen as the final deployment. Spe-
cifically, the set of all viable batch sizes S is enumerated
(line 3 of Algorithm 2), and the corresponding sequence of
batches W and workgroup widths L defined in lines 5 and
6, as in (1) and (2) (line 6) respectively. The workload is exe-
cuted in jW j phases and hence the iteration rate n is scaled
accordingly (line 7). Then, for each candidate workgroup
width, viable depths and workload mappings are derived
(line 10, as described in Section 4.4) and appended to the set
of candidate solutions Mc (line 11). The final result M is
selected from this set (line 12).

4.4 Workgroup Derivation

The Deploy process maps a batch w of kernels onto a work-
group of a given width l such that a number of iterations
per second of the batch n is achieved. The behaviour of this
process is described in Algorithm 3.

Algorithm 3.Multi-SIMDWorkload Deployment

1: procedure DEPLOY(w;C; l; n)
2: A;M 0  ;
3: A ShapeWorkload(w, C, l)
4: M 0  AllocateMapSchedule(A, n)
5: returnM 0

There are two key steps: the batch is subdivided across
the columns which make up the width of the workload
(ShapeWorkload in line 3, described in Section 4.5), before
the resulting arrangement, denoted by the set A is used to
determine the number of SIMDs required in order to exe-
cute the kernels assigned to each column in satisfaction of n
(line 4, described in Section 4.6). The cardinality of the
resulting two-dimensional set M 0 defines the dimensions of

Fig. 8. Workgroup structure & synthesis.
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the SIMD array and whose entries define the sequence of
kernels executed on each lane of each SIMD.

4.5 Workload Shaping

Workload shaping assigns kernels for execution on the col-
umns of the two-dimensional workgroup; at the point of
entry only the width of the workgroup (i.e., the number of
lanes in each SIMD) is defined, with the number of SIMDs
initially assumed to be one. The goal of this process is to
subdivide the batch across a given number of columns (i.e.,
workgroup lanes), with the number of rows (i.e., SIMDs) to
be later derived. In order to ensure that kernels sharing local
data variables are assigned to the same SIMD lane, they
must be assigned to the same workgroup column and hence
the mapping of kernels to columns is guided by C according
to Algorithm 4.

Algorithm 4.Workload Shaping

1: procedure SHAPEWORKLOAD(w;C; l)
2: cl  w

l

3: S  C
4: A ;
5: i; j; k 0
6: while i � jlj do
7: R q � sj : jqj ¼ minðjsjj; cl � jsjjÞ

� �
8: ai  ai [R
9: sj ¼ sj

R

10: if jaij ¼ cl then
11: k maxð1;modðkþ 1; wÞÞ
12: if jsjj ¼ 0 then
13: j jþ 1
14: if k ¼ 1 then
15: i iþ 1
16: return A

The ultimate aim is to derive a mapping of kernels from
the batch w to workgroup lanes, deriving a set A each ele-
ment ai 2 A of which defines the kernels assigned to that
lane. To derive this subdivision from w, the number of ker-
nels per lane is calculated (line 2) and the kernels for each
lane isolated (line 6). The assignment maintains column-
local communication, i.e., kernels from the same cluster are
assigned to the same column, as far as is possible. From
each cluster are extracted kernels which number the lower
of either the number of unmapped kernels in the cluster or
the number required in order to fully load the current lane
(line 7). These kernels are assigned to the current lane
(line 8) and removed from the cluster (line 9). When a
lane is fully loaded the next is considered (lines 10, 11); oth-
erwise if all kernels in the cluster have been mapped the
process repeats for the next cluster (line 12, 13).

4.6 Allocation, Mapping and Scheduling

Given themapping of kernels to workgroup lanes, it remains
to determine the number of SIMDs required in order to exe-
cute each lane’s load to meet the system’s throughput
requirements. This is performed by a joint allocation/map-
ping/scheduling process which has threemain objectives:

� Determine the number of SIMDs.
� Assign each kernel to a specific lane of a specific

SIMD.

� Order the execution of kernels on each SIMD.
This requires a procedure with two inputs, a definition of

the kernels assigned to each workgroup lane A, and a defi-
nition of the required number of iterations per second n
times per second. The resulting two-dimensional set M 0

describes the sequence of kernels executed on each lane of
each SIMD, derived via Algorithm 5.

Algorithm 5. Allocation, Mapping and Scheduling

1: procedure ALLOCATEMAPSCHEDULE(A;n)
2: dmax  ja1j; dmin  1
3: M 0  ;
4: while 1 � dmin � dmax do

5: d ¼ dmin þ ddmax�dmin
2 e

6: k ¼ ja1jd
7: ne ¼ EstimateThroughput(k, l, d)
8: if ne > n then
9: M 0  Map(A, d)
10: dmax  d� 1
11: else
12: dmin  dþ 1
13: returnM 0

There are, potentially, a significant number of options for
the number of SIMDs—any integer number up to a maxi-
mum of jaij - and a greedy design space pruning process is
used to determine the appropriate value. Upper and lower
bounds on the number of SIMDs, dmax and dmin are defined
(line 2), with the range between these limits successively
halved over multiple iterations. In each iteration, the perfor-
mance of the mid-point of the range is estimated. In the case
where it is too low, the upper half is chosen on the next itera-
tion or, in case it exceeds the requirement, the lower half is
chosen. In each iteration the number of kernels assigned to
each workgroup row is determined (line 6) and its through-
put estimated (line 7 - see Section 5). If the estimated through-
put exceeds the requirement (line 8), the allocation is valid
and the kernel load is mapped across the d SIMDs (line 9)
before the upper bound on the search space is lowered to
d� 1 (line 10) and the process repeated to determine poten-
tially lower-cost solutions. When performance is not suffi-
cient, the lower bound dmin is increased to dþ 1 (line 11) and
the process repeats until either the lower or upper bounds
exceed their viable ranges. The result is the final workgroup
derivedwhich exceeds the performance requirement.

The process of mapping kernels to SIMD rows is a trivial
subdivision of each a 2 A into d subsequences each of
length djajd e, where each subsequence describes the kernels
to be executed on each row of the workgroup. This process
is not described further here.

4.7 FSD Example

Fig. 9 illustrates the process of synthesising a workgroup to
realise k1 for FSD. As shown, there are 108 clusters, each con-
taining 16 instances of k1. Accordingly S ¼ 1; 2; . . . ; 108f g.
For each si 2 S, a workload can be derived. In the case where
si ¼ 54, a two-phase workload results, each phase of which
executes 864 kernels. Given the processing of 54 clusters per
batch, the viablewidths ofworkgroup, i.e., the integer factors
of the number of clusters, are given by L ¼ 1; 2; 3; 6; 9f g. For
each li 2 L the number of workgroup rows may then be
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defined as D ¼ di 2 Zþ \ 1; li½ �f g. Fig. 9 illustrates the final
arrangement when d ¼ 2 and the kernel load for each work-
group column subdivided thereon.

Key to this process is its ability to estimate the through-
put of a given workload, on a given workgroup and to
account for potential estimation inaccuracies. Techniques to
facilitate both these objectives are described in Section 5.

5 PERFORMANCE ESTIMATION AND

SELF-CORRECTION

5.1 Throughput Estimation

To estimate throughput, two key metrics are required: the
number of cycles required to execute the workload and
length of each cycle, i.e., the clock period of the architecture.

Each SIMD executes a sequence of kernels and hence one
prominent component of the throughput estimation prob-
lem is determining the number of instructions and cycles
required to execute a given number of identical kernels.
Given this information, the estimation process can employ

any scheduling approach desired. Since the accelerator
architecture exploits numerous copies of a single compo-
nent (the FPE) in various SIMD configurations, the instruc-
tion stream for a kernel will be identical, regardless of on
which component of the final architecture it is deployed.
This allows pre-synthesis characterisation of the perfor-
mance and cost of a kernel, a characterisation which may be
used to enable the allocation process.

In order to reduce resource cost, forwarding hardware
has been omitted from the FPE. In order, then, to avoid data
hazards, NOPs must be inserted in the instruction stream
realising a kernel in order to synchronise operand accesses.
This leads to kernel instruction sequences such as that in
Fig. 10a. Consider the resulting effect on the execution of a
sequence of similar kernels by the FPE. Fig. 10 shows two
example two-kernel workloads.

In both these cases, a series of Effective Instructions (EIs)
is interspersed with NOPs for the purposes of data synchro-
nisation. Assume that each kernel also requires r register
file locations. In Fig. 10a, the two kernels may be executed
sequentially, requiring only r RF locations; however, they
may also be interleaved, with the EIs from one kernel occu-
pying the NOPs from the other as in Fig. 10b. The inter-
leaved version enables higher efficiency and throughput,
but has increased RF cost. Hence each SIMD should inter-
leave kernels as much as possible, so long as RF capacity
constraints allow. The estimation problem is to determine
the number of cycles required to execute a given multi-
kernel workload, within a given constraint on r. This is
determined by profiling the kernels, deriving instruction-
level statistics of their computational operations and NOPs
and combining these into a single cost metric.

Assuming an RF occupancy per kernel of r registers, then
given a constraint on the number of RF locations rc,

1 the
maximum number of interleaved kernels f is given by

f ¼ brc
r
c: (3)

The PM cost effect of interleaving successive kernels can
be estimated by considering each kernel to be a sequence of

Fig. 9. Process overview for FSD.

Fig. 10. Kernel interleaving illustration.

1. For the remainder of this paper, assume a maximum RF size of 64
locations
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instructions subdivided into a sequence of blocks demar-
cated at NOP;EIf g sequence boundaries - i.e., the first EI
following a NOP represents the start of a new block. Each
block consists of a set of EIs EI followed by a set of NOPs
NOP and may then be represented by a coefficient g

g ¼ jEIj
jNOP j : (4)

Letting PIL denote the maximum pipeline stage length,2

kernel instruction statistics are categorised into PIL cata-
logue sets depending on (0 � g � 1), (1 � g � 2), . . .,
(g ¼ PIL � 1). By defining two cost vectors, a and b, where
ai and bi indicate respectively the number of EI and total
instructions of a block in the ith catalog ði 2 ½1; PIL�Þ, then
the PM size increment Dp of adding a further interleaved
kernel is given by [42]

Dp ¼
Xk�2
i¼1

ai þ k � ak�1 � bk�1: (5)

Hence, for k kernels mapped to an FPE, the total PM cost
is given by

p ¼bk
f
c pþ Dp f � 1ð Þ þmin(x; PIL � 1)½ �
þ pþ Dp k%f � 1½ �ð Þ:

(6)

The two additive terms in (6) respectively represent the
total PM cost of the bkfc full interleaves and the final inter-
leave, which may or may not be fully occupied. The value p
denotes the number of cycles required to execute the multi-
kernel workload for each FPE.

This analysis allows compile-time evaluation of the num-
ber of cycles required to execute a given set of kernels. The
final performance in real-world terms depends not only on
the number of cycles, but the length of each, as dictated by
the clock period of the synthesised architecture. This period
is determined by vendor place-and-route tools, such as

Xilinx ISE or Vivado and the quality of the final result can
be optimised by using additional intelligence to guide the
process [43]. However, for this process the primary concern
is the ability to estimate the final result, without undergoing
the long delays associated with executing these functions.
We need to be able to accurately estimate the length of each
cycle that will result from any approaches such as these
without actually executing them. This is achieved by pre-
profiling, via RTL synthesis, varying numbers of SIMDs of
varying width. Fig. 11 illustrates this profile for 1 to 20
SIMDs of each which has 1 to 16 lanes on Xilinx Virtex-5.

As this shows, the highest clock rate - approximately
370 MHz - is achieved by a single SISD processor with the
lowest experienced for 20 SIMD processors with 16 FPEs.
As shown in Fig. 11, the anticipated clock rates trends are
observed—as the total resource realised on the device
increases (represented by points towards the front left hand
corner), clock rate reduces, as a natural result of the optimi-
zation algorithms executed by Xilinx ISE increasingly strug-
gle to find low-cost/high-performance design space points
as the scale of the gate-level netlist being mapped increases.
Given this profiling and the estimation of the number of
cycles required for workload execution, the throughput of a
realisation, in iterations per second, may be estimated. Let-
ting ce denote the estimated clock frequency the estimated
number of iterations ne - used in Algorithm 5 to determine
the viability of a realisation—is given by

ne ¼ ce
p
: (7)

5.2 Self-Correction

At the point of estimation the number of instructions can, in
fact, be measured rather than estimated. However, the clock
frequency is a true estimate: the precise value cannot be
known until after FPGA place-and-route is complete. At the
proposed pre-synthesis point of estimation there is likely to
be some error between the estimated and actual clock fre-
quencies. Since this estimate is an intrinsic part of the design
process the inherent inaccuracy may preclude the result
from meeting the intended real-time performance.

Suppose that the estimated clock frequency is higher than
the post-place-and-route actual frequency; this reduced
clock frequency will lead to a reduced real-time perfor-
mance, which in turn may be below the threshold perfor-
mance target. In this case, allocation needs to be repeated to
account for the discrepancy. To automatically derive a viable
accelerator whilst accounting for the estimation discrepancy,
themulti-phase synthesis process in Fig. 12 is employed.

As this shows, an iterative process adjusts the through-
put target to account for inaccuracies in the estimated clock
frequency ce. If this exceeds the actual clock rate ca and is
sufficiently low that the actual number of iterations na < n,
where n is the throughput requirement, then the threshold
is adjusted (increased) to account for the differential, scaling
by the ratio of the estimated and actual clock periods.

6 EXPERIMENTS

To illustrate the capability of the proposed synthesis pro-
cess, seven exemplar accelerators are addressed for 4� 4
MIMO transceivers:

Fig. 11. Clock rate database for Virtex-5.

2. For the remainder of this paper, PIL ¼ 6
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1) FSD, SSFE- 1; 1; 1; 4½ � and SSFE- 1; 1; 2; 4½ � tree-search
SD

2) Zero-Forcing (ZF) and Minimum Mean Square Error
(MMSE) equalisation

3) Sorted QR Decomposition (SQRD) pre-processing
We propose to evaluate the ability of the FPE AS

approach by addressing the context of 802.11n, which
demands 480 Mbps detection for FSD and SSFE and ZF/
MMSE equalisation and 30� 106 iterations/second SQRD -
demanding requirements for even hand-crafted accelerators
[24], [44]. This application has been chosen because it
requires a range of operation types typical in signal, image
and data processing—linear algebraic (matrix decomposi-
tion, matrix-vector and matrix-matrix multiplication) and
tree-search operations, in a demanding real-time setting.

The SFG-AS process described in Sections 4 and 5 have
been realised in a prototype, the behaviour of which is
described in Fig. 13. In the main, XML is used for all input
and intermediate data exchange, with the final result being

VHDL and C sources describing the respective structure
and executables for the multi-FPE accelerator derived. The
intermediate processing stages match those in Sections 4
and 5 and are realised using Java. The C source for each
FPE is compiled using a custom LLVM-based compiler, to
produce assembly. The RTL source is translated to Xilinx
Virtex-5 XC5VSX240T via ISE 14.2. In line with standard
practise, to permit objective analysis of the performance
and cost of the accelerators produced and comparison
with existing and future approaches in the areas of HLS
[10], [11], [13], [26], [43], FPGA-based processors [15], [16],
[18], [19], [20], [22], [23], [24], [25], [43] and accelerators [1],
[2], [13], [26], all performance and cost metrics are mea-
sured post-place and route, independent of a specific hard-
ware platform.

6.1 Tree Search: FSD & SSFE

In order to realise FSD and SSFE- 1; 1; 2; 4½ � the SFG applica-
tion models and corresponding kernels are respectively
shown in Figs. 5 and 7. The kernels for SSFE- 1; 1; 1; 4½ � are
illustrated in Fig. 14. Real-time operation for 4� 4, 16-QAM
802.11n MIMO demands 480 Mbps throughput and is taken
as the performance target. The resulting accelerators are
itemised in Table 1. The FSD and SSFE- 1; 1; 1; 4½ � accelerators
are depicted in Fig. 14.

Fig. 12. Iterative synthesis process.

Fig. 13. Prototype SFG-AS tool structure.

Fig. 14. FSD and SSFE SIMD architectures.
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The key features of the synthesis process are evident in
the SIMD structures in Fig. 14. For FSD (Fig. 7a), two work-
groups are created, one each for realisation of k1 and k2 in
Fig. 6, with point-to-point FIFOs realising the dependencies
between the two. For k1 a workgroup of twelve 16-way
SIMDs is realised, whilst for k2, the workgroup consists of
two 12-way SIMDs. Similarly, three workgroups are created
for the three kernels which describe SSFE- 1; 1; 1; 4½ � - a
9-way SIMD for k1, three 12-way SIMDs for k2 and a 6-way
SIMD for k3.

There are a number of notable aspects of the results in
Tables 1 and 2. Immediately obvious is that the real-time
performance requirements have been satisfied; to the best of
the authors’ knowledge, this is the first record of automatic
derivation of multicore accelerators in satisfaction of a pre-
defined performance requirement. In addition, it is worth
noting the effectiveness of the proposed process in guiding
the creation of each accelerator. In no case was the relative
error in the estimated clock rate greater than 2 percent. This
indicates that the pre-synthesis clock rate estimates were
very accurate. Indeed, it is perhaps notable that in a number
of instances, clock rate was underestimated.

6.2 Equalisation: ZF & MMSE

In MIMO communications, ZF or MMSE equalisation forms
an estimate x̂ of the transmitted symbol vector x by forming
the product of the received symbol vector y and an equalisa-
tion matrixW

x̂ ¼W � y; (8)

where y 2 C4�1 and W 2 C4�4 The equalisation matrix W
takes different forms depending on whether a ZF or MMSE
equalisation strategy is to be employed. For ZF

WZF ¼ HH �H� ��1�HH; (9)

where H 2 C4�4 is the channel matrix and HH denotes the
hermitian transpose ofH. For MMSE equalisation,

WMMSE ¼ HH �Hþ IM
r

� ��1
�HH; (10)

where IM is an identity matrix of order 4. The very high
complexity of matrix inversion is the major challenge pre-
sented by this operation. To address this issue, QR decom-
position is applied toH to produce

W ¼ Q � Rð ÞH � Q � Rð Þ
� 	�1

�HH

¼ R�1 � R�1
� �H �HH;

(11)

where both Q;R 2 C4�4 According to this reformulation, the
SDF application model for ZF and MMSE equalisation is
shown in Fig. 15. As this shows, multiple operations are
invoked, including QR decomposition of the channel matrix
H, followed by back-substitution to deriveR�1 of theRmatrix
produced. Subsequently the products of R�1, its hermitian
andHHy are formed to derive ŷ. Real-time operation for 4� 4
802.11n MIMO requires 480 Mbps throughput—the through-
put and costmetrics obtained are described in Table 3.

It is again notable that, in both cases, real-time accelera-
tors automatically result; to the best of the authors’ knowl-
edge, this is the first time this capability has been
demonstrated for algebraic operations, such as the matrix
triangularisation, inversion and multiplication operations.
In addition, note again the effectiveness of the design pro-
cess in estimating and refining the accelerator architecture.
In the case of the MMSE accelerator, the estimation clock
rate is only 6.7 percent in error. The situation is slightly
deteriorated for ZF, where an 11.5 percent error in the initial
estimate is encountered; whilst this is higher than any other
estimate, it is still mild in absolute terms.

TABLE 1
4� 4 FSD Implementation Results

Modulation 16-QAM 64-QAM

SIMDs 14 25
DSP48E1 216 304
LUTs (�103) 31.1 154.42
Clock (MHz) 298 278
Throughput (Mbps) 483.2 506.4
Clock Est. (MHz) 289 276
Error (%) 3 0.72

TABLE 2
4� 4 16/64-QAM SSFE Implementations

1; 1; 1; 4½ � 1; 1; 2; 4½ �
QAM 16 64 16 64
SIMDs 5 4 6 6
DSP48E1 45 33 80 49
LUTs (�103) 8.35 6.3 18.3 11.7
Clock (MHz) 355 357 354 353
Throughput (Mbps) 541.2 499.1 544.87 536.6
Clock Est. (MHz) 353 357 347 348
Error (%) 0.6 0 2.0 1.4

Fig. 15. ZF / MMSE SFG model.

TABLE 3
4� 4 ZF & MMSE Implementations

ZF MMSE

SIMD 13 24
DSP48E1 180 384
LUTs (�103) 31.6 73.1
Clock (MHz) 292 238
Throughput (Mbps) 507.69 591.6
Clock Est. (MHz) 330 255
Error (%) 11.5 6.7
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6.3 Preprocessing: SQRD

In order to realise real-time ordering for 4� 4 802.11n
MIMO, the resulting accelerator has to operate at a rate of
30� 106 iterations per second. SQRD merges QR decompo-
sition of the channel matrix H with heuristic-based sorting
to ensure that the decoding process addresses antennas in
the correct order to account for the relative distortion expe-
rienced by each [45]. Table 4 reports both MMSE and ZF
variants.

Once again, it is notable that these automatically derived
accelerators meet the real-time performance requirement
and that the estimation-based design process has been
highly effective. For MMSE, the estimated clock rate and
throughput are only 6.3 percent in error. Similarly, the ZF
estimates are actually underestimates.

7 CONCLUSION & FUTURE WORK

This paper has presented an approach for AS of accelerators
for modern FPGAwhich achieves two unique capabilities. By
deriving custom multi-SIMD processors it can harness the
programmable datapath resources which increasingly make
up a substantial portion of the computational capacity of
modern FPGA. Furthermore, it automates the generation of
accelerators satisfying real-time performance requirements
prescribed by their industrial operating context or as a result
in standards-based equipment. This process is facilitated by
offline characterisation of the performance of multi-SIMD
topologies, compile-time evaluation of the cycle cost of SIMD
programs and a self-correcting synthesis strategy which
adapts to account for errors in the estimation process. When
applied to the design of large-scale linear-algebraic (matrix
triangularisation and multiplication) and tree-search opera-
tions, it automatically produces a series of accelerators capa-
ble of supporting real-time performance for 4� 4 802.11n
MIMO employing either 16-QAM or 64-QAM. This is a nota-
ble achievement since, on the same FPGA technology, imple-
mentations of the same operations has had to be enabled by
hand-crafted RTL design, if indeed these previously existed -
the authors are unaware of any work which enables real-time
FSD employing 64-QAM, for instance. Furthermore, this
paper targets Virtex 5 FPGA, but the techniques presented are
applicable to later generations since the FPE ‘virtualizes’ the
FPGA as it derives networks of FPEs and instructions for exe-
cution on each FPE and not the FPGAdevice architecture.

Despite the effectiveness of this approach, a series of fur-
ther improvements could be made. For instance, it does not
consider the resource cost of inter-processor communication
and does not explore the potential for cost reduction via

different mapping of the same application on an allocation.
Similarly, automatically tuning the FPE RTL architecture to
its functionality is not considered. Since the DSP48E slices
targetted natively only support fixed-point arithmetic, the
only way to support floating-point is via emulation, addi-
tion of floating-point co-processors next to, or in place of,
the DSP48E in Fig. 2, or by combining this work with stan-
dard AS techniques which derive networks of fixed-
function floating-point components. In addition, previous
work [43] has shown the benefit of considering the nature of
the processing architecture being realised when optimizing
its mapping to the FPGA, and it is likely that a similar
approach could yield increased performance and/or lower
cost FPE-based accelerators. There is considerable perfor-
mance/cost benefit to all of these considerations.
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