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The Generalized Loneliness Detector and Weak
System Models for k-Set Agreement

Martin Biely, Peter Robinson, and Ulrich Schmid

Abstract—This paper presents two weak partially synchronous system models M%) and AM"%"=%) ' which are just strong enough
for solving k-set agreement: We introduce the generalized (n — k)-loneliness failure detector £(k), which we first prove to be sufficient
for solving k-set agreement, and show that £ (k) but not £(k — 1) can be implemented in both models. M) and A5 =0 grg
hence the first message passing models that lie between models where () (and therefore consensus) can be implemented and the
purely asynchronous model. We also address k-set agreement in anonymous systems, that is, in systems where (unique) process
identifiers are not available. Since our novel k-set agreement algorithm using £(k) also works in anonymous systems, it turns out that
the loneliness failure detector £ = £(n — 1) introduced by Delporte et al. is also the weakest failure detector for set agreement in
anonymous systems. Finally, we analyze the relationship between £(k) and other failure detectors suitable for solving  k-set

agreement.

Index Terms—Distributed systems, models of computation

1 INTRODUCTION

N recent years, the quest for weak system models (resp.

failure detectors [21]), which add just enough synchrony
(resp. failure information/fairness [50]) to purely asynchro-
nous systems to circumvent impossibility results for agree-
ment problems, has been an active research topic in
distributed computing. Most work in this area falls into one
of the following two categories: 1) Finding weak(est) failure
detectors and 2) defining weak partially synchronous mod-
els that add just enough synchrony to the asynchronous
model for solving a given agreement problem—more specif-
ically: consensus, set agreement or k-set agreement. In the
k-set agreement [23] problem, one considers n processes,
each starting with a (possibly different) initial value; (cor-
rect) processes must decide on one of the initial values such
that no more than k different values are decided upon sys-
tem-wide. Set agreement resp. consensus refers to the special
case k=n—1 resp. k=1 (where all processes have to
decide on the same value).

Historically, the first of the aforementioned impossibil-
ity results is the FLP result by Fischer et al. [33], which
established that consensus among n processes is impossi-
ble to solve in asynchronous systems if just f =1 process
may crash. Only later it has been shown that similar
results hold for the k-set agreement problem in asynchro-
nous systems with up to f =k crashes [17], [39], [53]. In
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the context of consensus, the eventual leader oracle () [20],
which eventually outputs the identifier of one correct pro-
cess everywhere, was identified as the weakest failure
detector for solving consensus a) for shared memory sys-
tems and b) for message passing systems where a majority
of the processes is correct. Research then shifted towards
weak partially synchronous models that allow to imple-
ment (). The first implementation of ) was provided in
[42] and was based on a variant of the partially synchro-
nous model of [30]. The subsequent quest for the weakest
synchrony assumptions for implementing () was started
by [3], and resulted in a series of papers [3], [4], [43], [40],
[31] in which the number of required timely links has been
reduced considerably. In [40], it was shown that a single
eventual moving f-source, i.e., a correct process that even-
tually has f (possibly changing) timely outgoing links in
every broadcast, is sufficient for implementing (), and thus
for solving consensus. Conversely, [9] revealed that Q) is
sufficient for implementing an eventual (n—1)-source. In
the most recent paper [31], the intermittent rotating f-star
assumption was introduced, which can be seen as a further
generalization of the timely f-source assumption.

For message passing systems, () was initially only
known to be sufficient for consensus when n > 2f,
whereas for shared memory the result also holds for the
wait-free case (i.e., f = n — 1). The apparent gap was even-
tually closed by Delporte-Gallet et al. [26], where it was
proved that the quorum failure detector 2 is the weakest
for implementing shared memory in message passing sys-
tems (also in those that allow a majority of the processes
to fail). Moreover, the combination of 3 and () was shown
to be the weakest failure detector for solving consensus
for any number of failures in message passing systems.
Note that 3 can be implementing in asynchronous mes-
sage passing systems with a majority of correct processes.

Turning to (k-)set agreement, we note that most of the
existing work is devoted to weak failure detectors. In [56], a
failure detector called anti-() was shown to be the weakest
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for set agreement in shared memory systems [55]. Like (),
anti-() also returns the identifier of some process. The cru-
cial difference to () is that anti-{) eventually never outputs
the identifier of some correct process and does not need to
stabilize on a single process identifier. A variant of anti-(),
called anti-(};, returns n — k processes and has been proved
in [32], [35] to be the weakest failure detector for k-set agree-
ment in shared memory systems.

In [28], the “loneliness” failure detector £ was shown to
be the weakest failure detector for (n—1)-set agreement in
message passing systems.

With respect to general k-set agreement, [14], [16] intro-
duced the quorum family %; and proved that it is neces-
sary for solving this problem. The paper also proved that
the failure detector family I, = (3, Q) coincides with the
weakest failure detectors (3,Q) for k=1, and with £ for
k=n— 1. Herein, (), is a generalization of ) introduced
in [49], which returns sets of k process ids that eventually
stabilize and contain a correct process. However, for gen-
eral values of 2 < k< n —2, it turned out [11], [18], [51]
that II, is not sufficient and thus not the weakest failure
detector for k-set agreement. Thus, the quest for the weak-
est failure detector for general message passing k-set agree-
ment is still open.

In sharp contrast to the considerable efforts spent on
failure detectors for k-set agreement surveyed above, very
little is known about partially synchronous models for this
problem. Besides some time complexity results in systems
where periods of synchrony and asynchrony alternate [5],
we are only aware of one related approach (albeit for
shared memory systems), namely, the set timeliness
approach for k-set agreement in shared memory systems
introduced in [1], [2]. Consult Section 3.3 for a more
detailed relation of our models & results and existing ones.

This paper introduces both a weak failure detector and
weak partially synchronous models for solving k-set agree-
ment in wait-free message passing systems, i.e.,, where at
most f =n — 1 of the n processes in the system may crash.
The detailed contributions are as follows:

a) The failure detector L£(k): We introduce the generalized
“(n — k)-loneliness” failure detector £(k) in Section 2, which
generalizes the loneliness failure detector £ = L(n—1)
from [28]. In Section 4, we show that £(k) is sufficient for
solving k-set agreement, by giving an algorithm and prov-
ing it correct. We also establish that there is no algorithm
that solves (k — 1)-set agreement with £(k).

In Section 5, we compare L(k) to the limited scope fail-
ure detector S,,_j with respect to the failure detector hier-
archy [21]. For the border cases (k=1 and k=n —1), we
show that one of the two failure detectors is strictly stron-
ger than the other; for any other choice of k, however, they
are incomparable. As a consequence, neither L(k) nor
Sn—k+1 can be the weakest failure detector for general k-set
agreement. We also analyze the relationship of £(k) to the
quorum failure detector X and its generalization X, which
is known to be necessary for solving k-set agreement [16]
and hence weaker than £(k).

b) Weak system models: In Section 3, we introduce two
novel system models M™% and M=F wwhich allow
to implement L£(k) and hence to solve k-set agreement.
Model M™(®@) is a time-free model based on expressing
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synchrony via message ordering properties, whereas model
M) ig similar in spirit to partially synchronous models
like [3], [30], [50]. We also prove that MR and
M=) are too weak for solving (k — 1)-set agreement.
To the best of our knowledge, these models are hence the
first message passing models that provide just enough syn-
chrony to solve k-set agreement, but no stronger agreement
problem (including consensus). Note that we also show
that neither M "™ nor M(F) js strong enough to
implement the limited scope failure detector S,,_;1, which
is known to be sufficient for implementing k-set agreement
[46]. This indicates that the models are closer to what is
necessary for k-set agreement than models that allow
implementing S, ;1.

¢) Anonymous systems: In Section 6, we turn our attention
to anonymous systems (without (unique) process identi-
fiers). We explain how to derive anonymous versions of
our system models and introduce an L(k)-based k-set
agreement algorithm. As it does not use process ids, it fol-
lows from [28] that £ is also the weakest failure detector
for set agreement in anonymous systems. Finally, we dis-
cuss the relation between £(1) and failure detectors AP
and AQ), and its impact on the quest for the weakest failure
detector for consensus in anonymous systems.

For conciseness, a number of definitions, results and
proofs have been relegated to the online supplement [12] of
this paper.

2 SyYSTEM MODELS AND PROBLEM DEFINITION

The models we consider in this paper are based on the
standard asynchronous model of [33], which we denote by
M Tt comprises a set II of n distributed processes,
which communicate via message passing over a fully-
connected point-to-point network made-up of pairs of uni-
directional links with finite but unbounded message
delays. Links need not be FIFO but are assumed to be reli-
able.! Every process executes an instance of a distributed
algorithm and is modeled as a deterministic state machine.
Its execution consists of a sequence of instantaneous local
steps, where a single process performs a state transition
according to its transition function, in addition to either
receiving a (possibly empty) set of previously sent mes-
sages or sending messages to an arbitrary set of processes
(including itself). A run o of a distributed algorithm con-
sists of a sequence of local steps of all the processes. For
analysis purposes, we assume the existence of a discrete
global clock with time instants taken from the infinite set
T. Whenever, a process takes a step the clock ticks (i.e., it
advances by one time unit). Note that processes do not
have access to this clock. For simplicity, we assume
that 7" = IN.

A correct process is correct if it takes infinitely many
steps in a run. The algorithm run by a process can halt by
entering a terminal state, in which it remains for infinitely
many steps (receiving but discarding all messages sent to
it). By contrast, a faulty process is one that takes only a
finite number of steps. In its last step, a process can omit

1.In [12, Section ILA], we briefly discuss relaxations of this
assumption.
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to send some, but not all, messages it is required to send
by its code.” We call a process alive at time ¢ if it takes a
step at or after ¢, and crashed otherwise.

The failure pattern of « is a function F' : T — 2! that out-
puts the set of crashed processes at a given time ¢. Clearly,
Vt>0: F(t) C F(t+1). Moreover, let F'={J,.,F(t) be
the set of faulty processes. The set of possible failure pat-
terns is called environment. In this paper, we admit any
environment that allows up to n — 1 crashes, i.e., we con-
sider the wait-free [38] case.

A run « is admissible in M*™"° if 1) a message is only
received at time ¢ by process p if it was sent by some process
¢ to it at some time ¢’ < ¢, and 2) every message sent to p is
eventually received if p is correct.

2.1 k-Set Agreement

In the k-set agreement problem [23], every process starts
with a proposal value v from a finite> domain V and must
eventually irrevocably decide on some value as follows:

Processes must decide on atmost &
different values system-wide.

k-Agreement:

Validity: If a correct process decides on v, then v
was proposed by some process.
Termination: Every correct process must eventually

decide.

For k=n—1, the problem is also referred to as set
agreement, whereas k = 1 is equivalent to uniform consen-
sus [22] (as the agreement property ties together the deci-
sion values of both correct and faulty processes). Note
that it is well known that k-set agreement is impossible in
purely asynchronous systems when f > k processes might
crash [17], [39], [53].

2.2 Failure Detectors

A failure detector [21] D is an oracle that can be queried
by processes in any step, before making a state transition.
The behaviour of D in a run o depends on the failure pat-
tern F, which defines the set of admissible failure detector
histories. The value of a query of a process p in a step at
time ¢ is defined by the history function H(p,t), which
maps process identifiers and time to the range of output
symbols of D.

We denote the model where runs are admissible in
M and processes can query failure detector D in any
step as (M D). If an algorithm A solves problem P in
(M™™¢ D), we say that D solves P. We say that some algo-
rithm Ap_py transforms D to T/, if for any run of an asyn-
chronous system equipped with D (with failure pattern F)
it maintains an output variable output;y that simulates
legal (admissible for F) failure detector histories of D’ at
every process. We say that D' is weaker than D and say D
is stronger than T, if such an algorithm Ap_;y exists. If
there is also an algorithm A _p, we say that D and D’ are
equivalent. If no such algorithm Ay _ p exists, we say that
D is strictly stronger than T'; strictly weaker is defined

2. This definition allows “unclean” crashes. The assumption that at
least one message is sent in the last step is for simplicity only: A crash
that causes all messages to be lost is modeled as a crash before this step.

3. We assume that V] > n.
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analogously. If neither Ay nor Ap_,, exists, then we

say that D and D' are incomparable. A failure detector D' is

weakest for problem P if D is weaker than any failure detec-

tor D that solves P.

Recently, it was shown in [28] that the “loneliness”-
detector £ is the weakest failure detector for message
passing set agreement. Intuitively speaking, there is (at
least) one possibly faulty process where £ perpetually out-
puts FALSE, and, if all except one process p have crashed, £
eventually outputs TRUE at p forever.

We now present our generalization of L for k-set agree-
ment introduced in [10], which we denote by L(k) (with
L = L(n — 1)). Instead of loneliness, it enables processes to
detect “(n—k)-loneliness”. Formally speaking, a process p
is (n—k)-lonely at time ¢t in a run «, if p ¢ F(t) and |F(t)| = k
in o.

Definition 1. The (n—k)-loneliness detector L(k) outputs
either TRUE or FALSE, such that for all environments &£ and
VF € & it holds that there is a set of processes 11, C 11, |IIj| =
n — kand a correct process q such that:

Vp €Iy Vt : H(p,t) = FALSE, (1)

|F| > k=3tVt'>t: H(q,t') = TRUE. (2)

Before discussing other failure detectors for k-set agree-
ment, it is worthwhile to recall that a failure detector is
called realistic [24] if and only if it can be implemented in
a synchronous system with f =n — 1; otherwise it is non-
realistic. Moreover, we say that a model M is non-realistic
if a non-realistic failure detector can be implemented in
M. Mostéfaoui et al. [47, Theorem 2]] have shown that
k > n/2 is a necessary and sufficient condition for £(k) to
be realistic.

Another class of failure detectors for k-set agreement
are the limited scope failure detectors introduced in [37],
[45], which output sets of process ids. Such failure detec-
tors have the strong completeness property of the strong
failure detector S [21], but their accuracy is limited to a
set of processes called the scope; see [12, Definition 1]. In
the special case where the scope comprises all processes,
S, coincides with S.* It was shown in [46] that S,_j1 is
sufficient for k-set agreement.

While the weakest failure detector for message passing k-
set agreement is still unknown, Bonnet and Raynal have
introduced the quorum family 3, in [16] (see [12, Definition
2]), and shown that 3, is necessary for solving k-set agree-
ment, i.e., that any failure detector X’ that allows to solve k-
set agreement can be transformed into .

3 WEAK SYSTEM MODELS FOR SET AGREEMENT

In this section, we introduce two system models MAE) and
M@ which restrict the set of admissible runs in M€
by weak synchrony conditions. By implementing £(k) in
both M™("=F) and AMMK"F) e show that they are strong
enough for solving k-set agreement. The models differ in the
way how synchrony properties are added: M™®) uses

4. For the case k > f (which is not relevant here as f =n — 1) [45]
also provides a transformation T, _.s.
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message-ordering and is hence time-free, whereas M (")
relies on classical partial synchrony assumptions [30].

3.1 The Model A>"i(")

In some application domains, e.g., systems-on-chip [34],
message-driven execution models [13], [52], [54], where
computing steps are triggered by the arrival of messages
instead of the passage of time, can be advantageous over
the usual time-driven execution model. The main advantage
here is that there is no need for dedicated clocks to trigger
steps. For a more detailed discussion of this issue, we refer
the interested reader to [54, Section 5].

The model M™"®) presented in this section belongs to
the aforementioned category of message-driven models.
Inspired by the round-trip-based model introduced in [44],
[48], we specify our synchrony requirements as conditions
on the order of round-trip message arrivals. Computations
proceed in asynchronous local (i.e., uncoordinated) rounds:
At the start of its round, process p sends a (query)-message’
to all processes, including itself. If a process receives a
(query)-message from some process ¢, it sends a (response)-
message to ¢. Once a round ends, all further responses to
the query are discarded by the system. Clearly, such behav-
iour could be implemented by attaching sequence numbers
to all queries.

In [44], a round ends when n — f responses have been
received. In a wait-free setting like ours, this means that a
round ends when the first response arrives. By contrast, in
M@ 5 round ends when a process receives its own
response: This triggers an end—round event, upon which
the process obtains the set of all processes that have
responded in this round.

The synchrony condition of our model is encapsulated in
the central concept of an z-anti-source:

Definition 2 (z-Anti-Source). A correct or faulty process p is
an x-anti-source, if, whenever p sends a (query) to all remote
processes it will receive (response)-messages from at least x
remote processes before process p starts a new round.

As discussed in considerable detail in [54], such a
time-free specification does not mean that there is also a
time-free implementation of an z-anti-source. Still,
bounded link delay ratios, rather than bounded absolute
delay values, are sufficient for asserting the existence of
an z-anti-source.

Note that an anti-source, as we have previously intro-
duced it [10], is not the same as a 1-anti-source: In the for-
mer, a round ended after receiving the first response like
in [44]. Thus, an anti-source was defined as a process
whose round-trips with itself is never the fastest. The sub-
tle difference is that a 1-anti-source can receive any num-
ber (up to n) of (response)-messages, while an anti-source
can only receive one. Moreover, a 1-anti-source will always
see its own (response) while this is not the case for an anti-
source. Fig. 1 shows an example execution where process p
is a l-anti-source. That is, in Fig. 1, an algorithm running
on p will—besides its own response—only see the response

5. In [44], query and response messages are allowed to carry addi-
tional data. We omit this possibility here, since it is not needed to imple-
ment L(k).
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P1

p2

Fig. 1. An execution of an algorithm in model M) where process p is
a 1-anti-source. For the sake of readability, we have included only the
messages p sees by the end of its rounds. That is, we omitted the late
responses as well as (query)-messages sent by p; and p, and the corre-
sponding (response)-messages.

of p; for the first request and only the response of p, for the
second request.

Definition 3. Let « be a run of a distributed algorithm. Then, o is
admissible in M) if the following holds:

1. Run « is admissible in M™*¥"°.
2. At least x processes are an x-anti-source in o.

3.1.1 Detecting k-Loneliness in Model M™4(*)

Algorithm 1 provides an implementation of the k-loneliness
failure detector L(n—k) in M™* A process sets its
output, to TRUE if and only if it receives responses from less
than k& remote processes. A process that is a k-anti-source
will thus never change its variable output, to TRUE.

Algorithm 1 £(n — k) in Model Aqenti(k)

1: Vars:
2: outputy € {TRUE, FALSE}
3: Initially:

4: output, <— FALSE;

s: start Round()

6: upon end of round r do
7: /* R is the set of remote processes we got responses from */
s:  if |R| > k then
9

: start Round()
10: else
11: output, <— TRUE

12: upon receive (query) from g do
13: send (response) do ¢

14: procedure start Round|()
15: send (query) to all

Theorem 1. £(n — k) is implementable in M™®),

Proof. Let p be a k-anti-source in a run of Algorithm 1. At
the start of every round, process p sends a (query)-
message tagged with the round number to all other
processes. By the definition of a k-anti-source, p never
receives (response)-messages from less than k remote
processes. Process p will therefore always pass the test in
Line 8 and start a new round. It follows that p never
reaches Line 11, that is, its output, remains FALSE forever,
which entails Property (1) in Definition 1.

To show Property (2), consider a run o where at
least n — k processes crash. Let ¢ be a correct process in
a. Then, there is a time after which all faulty processes
have crashed, and thus cannot respond to ¢'s query.
That is, there will be some query such that ¢ will get
only responses from other correct processes. As there
are less than k such processes, clearly, the test in
Line 8 will fail and ¢ will set output, to TRUE once and
forever in Line 11. 0
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3.1.2  Discussion of M™i(®)

As shown in [47, Theorem 2], £(k) is not realistic, i.e., it can-
not be implemented in a synchronous system with up to
n — 1 crash failures if 2k < n. With respect to £(n — k), this
translates into the condition 2(n — k) < nand hencen < 2k
for L(n — k) not bemg realistic. Since L(n — k) can be imple-
mented in /\/lmtl ), this sheds some light on the relation
between M1} and the wait-free synchronous model.

We start our considerations with the following simple
observation: If a process p is a 1-anti-source, it cannot be
the only correct process, because after all other processes
have crashed, no process remains to guarantee that it
will receive a response from a remote process to each
query. In general, no k-anti-source can be among the last
k alive processes. Now, consider M™% for n < 2k: The
model requires the existence of k processes that are k-
anti-sources. As long as some k-anti-source is alive, it
requires k other processes to be alive as well. Conse-
quently, i) if only ¢ < k processes are alive at some point
in a run, then none of them can be a k-anti source. On
the other hand, ii) when only j < k processes have
crashed at some point in a run, then least one of the k
required  k-anti-sources must be alive. When
n=1+j < 2k, then these two contradicting cases can
happen simultaneously at some time: This happens in
every run where the number of alive processes ever
becomes <k, although the number of crashed processes
is still < k. This gives raise to the following observation:

Observation 1. When n < 2k, there are no admissible runs
in M™® where i < k processes are correct and
n—1i < kare faulty.

On the other hand, in a run where at least ' > k pro-
cesses crash, less than £ additional processes can remain
alive in case of n < 2k. Hence, the only runs where i) and
ii) are guaranteed not to hold true simultaneously at some
time in case of ' > k are “trivial” admissible runs with at
least k initially dead k-anti-sources.

Therefore, it turns out that M™ " and the synchronous
model with f =n — 1 are incomparable in case of n < 2k:
On the one hand, the synchronous model is obviously stron-
ger than M™% since it requires every process to receive all
messages from correct processes in a round. On the other
hand, M*™® ig stronger than the wait-free synchronous
model, since the failure bound f =n—1 cannot be “tight”
in a non-trivial run of M The existence of just one not
initially dead Fk-anti-source does not allow more than
f = k — 2 crash failures.

Observation 2. Model M™® for n < 2k (and hence
MR for 9k < n) are non-realistic, in the sense that
there are runs in the synchronous wait-free model that
are not admissible in M)

All runs in a synchronous system with n < 2k pro-

cesses where at most f = k — 2 can crash are admissible in
M™8E)  however.

3.2 The Model M%)
The model M*™ () is a weak variant of the classic partially

synchronous models [29], [30], as are the weak-timely link
(WTL) models [3], [4], [40], [43]. Essentially, all those
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models assume that processes are partially synchronous
and try to minimize the synchrony requirements on com-
munication delays.

In the model M) introduced before, there is no time
bound on the duration of a round-trip, as only the arrival
order or response messages matters. Our second model
MUK enforces a similar ordering by means of explicit
communication delay bounds and message timeouts. A
naive approach would be to simply assume a bound on
the round trip time, which is essentially equivalent to
requiring a moving bi-directional timely link from one pro-
cess. This assumption would make one process perma-
nently 1-accessible (in the notation of [43]), though, which is
unnecessarily strong.

As in [29], we assume two bounds ® and A, where &
bounds the relative speed of processes, whereas A bounds
the transmission delay of a timely message m, ie., the
number of steps processes can take during the transmis-
sion of m. We say that a message m is delivered timely
over the link (p,q) iff it is received by ¢ not after ¢ has
taken A steps after p has sent the message.® Note that this
definition implies that all messages sent to a crashed pro-
cess (or a process that crashes before taking A steps) are
considered to be delivered timely.

Although we use A and ® to describe synchrony as in
[29], [30], M) differs from these models w.r.t. the
atomicity of steps: We assume that processes can both
receive and broadcast (i.e.,, send multiple messages) in
the same step. Although this assumption is not really
vital, it considerably simplifies our algorithm and its
proof: As Algorithm 2 employs step-counting and asyn-
chronous rounds, we would otherwise have to argue
about a process being in the middle of broadcasting a
message (which would take n steps, i.e., up to nd time),
which complicates the definition and analysis of round
switching.

Algorithm 2 £(n — k) in Model M?®"k(¥)

1: vars:
2: output, € {TRUE, FALSE}
3. seen[N] € Z

4: Initially:
5
6
7

. outpul, <— FALSE
. Vi€ N: seen[i] < 0
: startPhase(0)

s: in step number (i - 1) do
9:  startPhase()
10: in step number ((i + 1) - ®n — 1+ A) do

11: if seen[i] < k then
12: output, <— TRUE
13: upon receive (alive,ph) do
14: seen[ph] < seen[ph] + 1

15: procedure startPhase(phase)
16: send (alive, phase) to all remote

As in the WTL models (and in contrast to [29], [30]), we
do not assume A to hold for all messages. Rather, we base
our synchrony conditions on “sinks”, i.e., processes that
can always receive some messages timely.

6. Note that A refers to steps of the receiver here, as in [29], [50] and
contrasting [30], where A is measured in some notion of real-time.



BIELY ET AL.: THE GENERALIZED LONELINESS DETECTOR AND WEAK SYSTEM MODELS FOR K-SET AGREEMENT

Definition 4 (z-Sink). A correct or faulty process q is an z-sink
in a run o, if there is a set P of |P| = x processes, which do
not crash earlier than q, such that any message sent by p € P
to q is delivered timely to g.

Observe that the decisive difference between ¢ being a
2-sink and p being a perpetual 1-source (in the notation of
[3]) is that ¢ may crash in our model.

Note that we implicitly assume that all processes ini-
tially start-up at the same time (7" = 0) as usual. All our
reasoning below would also apply, however, if we
allowed sinks to start-up later: All that is actually needed
is that no message from p is successfully received by ¢
after A time.

Definition 4 is not the end of the road, however, as this
synchrony requirement can be further weakened in case of
algorithms with a “round-like” structure—that is, algo-
rithms where each process repeatedly sends messages to all
other processes, as it is often the case with heartbeat-based
failure detectors. For such algorithms, we also provide an
alternative (and in fact even weaker) definition of an z-sink,
where the timely processes P may change. It is similar in
spirit to the timely f-source model with moving timely links
[40], albeit complicated by the fact that we cannot rely on a
single (send-) event as a common reference point here. For
i = 1, let A(i) be the set of (alive) processes that perform
the ith broadcast step (at least partially, in case of a crash
during the step) starting round 7. Moreover, let o(i) be the
time (according to our global clock) of the step in which the
last process performs its ith broadcast.

Definition 5 (z-Sink’). A process q is an x-sink” in a run « if
for every i >1 it holds that

a. if |A(4)\{¢}| = =z, then there is a set P(i) with
|P(i)| = x such that Vp € P(i), ¢ timely receives the
ith message sent by p.

b. Otherwise, if |A(4) \ {¢}| < z, then ¢ does not take A
or more steps after o (7).

As a message is—per definition—timely when sent to a
process that does less than A steps after the message was
sent, we have that initially dead processes are always z-
sinks’. Moreover, item (b) ensures that an z-sink is never
able to “time out” more than n — x remote processes, even if
not enough messages are sent that could arrive timely.

Definition 6 (Model M*™ (™)), Let o be a pun of a distributed
algorithm. Then, a is admissible in M*™) if the following
holds:

1. Run « is admissible in M*™™,

2. Thereis a bound ®, such that every correct process takes
at least one step in any interval of time containing O
steps of any other process. Moreover, there is a bound A
on the maximum number of steps taken by any process
during the transmission of a timely message.

3. At least x processes are x-sinks in a.

Note that, in contrast to M*®) the model M*™ () is
equivalent to the M*™ model introduced in [10].

At a first glance, it might be surprising that model
M¥@) is a non-eventual model, i.e., a model where all
model properties must hold at all times. This is necessary
in order to implement L(k) (see Definition 1), however,
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which is a non-eventual failure detector. In fact, this is no
peculiarity of set agreement: The weakest failure detector
for (n—1)-resilient consensus is (3, ), which also involves
the non-eventual X (see [25]).

The non-eventuality of £(k) also implies that the model
parameters ® and A must be known and have to hold
right from the start: After all, n — k processes, namely, all
the (n—k)-sinks in MK “must never falsely suspect
(n—Fk)-loneliness and set their output to TRUE, as this
would otherwise violate (1). Although it would be suffi-
cient if only the z-sinks knew the model parameters ®
and A, we do not assume that the sinks are known in
advance, so all processes must know these parameters.

3.2.1 Detecting k-Loneliness in Model M%)

Algorithm 2 shows a 51mp1e protocol that implements
L(n — k) in model M ¥ Variable output; contains the
simulated failure detector output. Every process p periodi-
cally (every n steps) sends out (alive, phase)-messages that
carry the current phase-counter 7. In addition, p keeps track
of the number of (alive, ph)-messages received from differ-
ent other processes in the array seen[ph|. In case it did not
receive at least k messages by the end of the current phase i
in Line 10, it sets output; <+ TRUE in Line 12.

Theorem 2. Al%mrzthm 2 implements failure detector L(n — k) in
model M*™ W) for f=n — 1.

3.3 Discussion of M)

As detailed in [12], the k-sinks used in M%) provide
considerably weaker communication synchrony than (per-
petual) k-sources, as used in the WTL model [4], [40]. Like
MR AR s also non-realistic for n < 2k (and
hence M=) for 9k < n), though.

Interestingly, the fact that £(k) and hence k-set agree-
ment can be implemented in M*™™("*) is also in accor-
dance with results obtained in the generalized set
timeliness model of [2], despite the fact that the latter has
been devised for shared memory systems. As opposed to
classic partially synchronous processes [29], where every
individual process must be timely with respect to every
other individual process, in the sense that it makes at
least one step when the other process made ® steps, [2]
requires such a property only for sets of processes: In
model S] ,» there must be at least one set I of size ¢ that
is timely with respect to some other set J of size j, in the
sense that within @ steps of (possibly different) processes
in J, some process in I must make at least one step. The
authors proved that k-set agreement is solvable in S, in
the presence of up to f crash failures, iff i<k and
j—i>f+1—k

Now consider M*™ "% which guarantees n — k pro-
cesses qi,...,q,— that act as (n—k)-sinks, i.e., receive
timely the messages from at least n — k other processes. In
order to do so, every ¢; must receive timely from at least
one process outside {qi,...,q,—x}. This is in accordance
with the findings of [2], if one considers J =II (which
includes the n — k-sinks) and I =11\ {q,...,q,—x}: Since
i =4k and j=n here, the above equations tell that k-set
agreement is solvable; since one can implement L(k) in
MR Cthis is indeed in accordance with our findings.
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3.4 k-Set Agreement Impossibility

In Section 4, we provide an algorithm that solves k-set
agreement with £(k), which in turn is implementable in
MR (Theorem 1) and M™% (Theorem 2). In this
section, we will show that it is impossible to solve k'-set
agreement for ' < k in either model. Note carefully that
this result reveals that the parameter k precisely character-
izes the k-set agreement solvability border in both A*!i("~#)
and MR “for every choice of n (both models are non-
realistic for 2k < n, however).

Theorem 3. It is impossible to solve k-set agreement among n
processes in M™) for kb < m—x — 1.

Proof. Assume, for the sake of a contradiction, that some
algorithm A solves this problem and consider runs of A
where the z required z-anti-sources are initially dead.
Since there are no further synchrony requirements in
M 3]l remaining processes can communicate totally
asynchronously. Thus, there is a one-to-one relationship
between these runs and the runs A produces in an asyn-
chronous system of n'=n—xz processes of which
f'=n'—1=n—x—1= processes can crash. However,
due to the k-set impossibility results of [17], [39], [53],
there is no algorithm that solves k-set agreement in an
asynchronous system where [’ out of n’ processes may
crash in case of k < f'. O

The analogous result for M*"™%) is provided in [12].

4 SOLVING k-SET AGREEMENT WITH L(k)

In this section, we present an algorithm that solves k-set
agreement in an (anonymous) asynchronous system aug-
mented with a failure detector L(k). In addition, we
prove that it is impossible to solve (k — 1)-set agreement
with L(k).

The algorithm for solving (n—1)-set agreement with £
presented in [28] requires a total order on process identi-
fiers. By contrast, our Algorithm 3 solves k-set agreement
for any 1 < k < n on top of £(k) and works even in
anonymous systems. Note carefully that this means that
processes neither need to know the unique id of the
sender of a message nor that they need to be able to dis-
tinguish messages from different senders.

Algorithm 3 proceeds in asynchronous rounds, made
up of one or more computing steps that comprise receiv-
ing zero or more messages, querying the failure detector
(L(k) in our case), doing some local computation, and
optionally broadcasting a message. The messages sent by
a process in our algorithm contain the current estimate x
and the current round number. In every round r,
0 < r < k+1, every process p that has not yet decided
queries its failure detector and decides if L£(k) outputs
TRUE. Otherwise, p checks if it has received n — k round r
messages from remote processes; note that all the checks
are non-blocking and are checked anew in every step. If
so, p updates its current estimate z to the minimum of
the received values.

At a first glance, it appears counterintuitive that pro-
cesses terminate after k + 2 rounds. After all, it would be
reasonable to expect that harder agreement tasks like
consensus require more rounds than, for example,
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(n —1)-set agreement. The reason why this is not the
case here is that L(k) itself becomes much weaker for
values of k close to n — 1, since there are less processes
that perpetually output false. To argue informally why
k+ 2 rounds are required by our algorithm, consider an
execution where in every round r < k (i.e, within &
rounds), exactly one process decides in Line 9 and hence
no longer participates in later rounds. Thus, r+ 1 pro-
cesses decide by the end of round r < k via Line 9, and
r processes do no longer participate in round r < k. As
we will prove in Lemma 4 below, in round r, the remain-
ing processes could decide on at most k — r different val-
ues (either in Line 9 or 20) in this case. If the algorithm
had a loop bound less than k+1, i.e., terminated at the
end of some round r<k, we could end up with
r+1+k—r=k+1 decision values. On the other hand,
deciding at the end of round k + 1 is safe, since no more
than k processes can decide via Line 9 as £(k) can output
TRUE at no more than k processes.

Algorithm 3 Solving k-set agreement with L(k)

1: in the first step:

2: T4V

3: rnd < 0

4: send (ROUND, 0, z) to all remote processes

s: in any later step:

6: receive messages

7: if £(k) = TRUE then

8 send (DEC, z) to all remote processes
9

decide x
10 halt
11: else if received (DEC, y) then
12: send (DEC, y) to all remote processes
13: decide y
14: halt

15: else if received n — k (ROUND, rnd, y;)-msgs then

o S {y1, - Y-kt U {z}

17: x < min(S)

18: if rnd = k + 1 then

19: send (DEC, z) to all remote processes

20: decide x

21: halt

22: rnd < rnd + 1

23: send (ROUND, rnd, ) to all remote processes
4.1 Proof of Correctness

We denote by X" the possibly empty array containing all
z-values of processes in the system (with repetitions
allowed) that completed the assignment in Line 17 while
rnd = r. Note carefully that the z-value of a process ¢ that
decides via Line 9 in round r is not contained in X"; this
does not imply, however, that no process p could decide
on the same decision value as ¢ (after all, repetitions are
allowed). We assume that X" is ordered by decreasing
values, i.e., X"[1] is the maximal value, if it exists. Fur-
thermore, we denote the number of unique values in X"
by «". If no process reaches Line 17 in round r, the array
is empty and both |X"| and u" are zero.

Lemma 4. For any round r > 0, the number of unique values in
X" satisfies u" < k — a,, where a, is the number of processes
which never sent (ROUND, r, z).

Proof. First, we observe that « is updated by a process p
only after receiving n—k (ROUND,r,y) messages
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from other processes, that is, p knows about n —k+1
values.

Let p be the process which assigns the largest value 2’
in Line 17. Since process p computes ' as the minimum
of the n — k£ + 1 round r values in the multi-set .S, it must
consistof n — k+ 1 valuesy > .

Considering that |X'| < n—a,, it follows from
SCX thatonly n—a, —(n—k+1) < k—a, —1 val-
ues in X" can be strictly smaller than 2. Thus, processes
assign at most k — a, different values to « in Line 17
(and subsequently send them as (ROUND,r+1,x)-
messages). ]

Lemma 5. Processes do not decide on more than k differ-
ent values.

Proof. Regarding the number of different decision values,
processes deciding due to receiving a (DEC, y) message
(Line 13) make no difference, since some other process
must have decided on y using another method before.
Thus we can ignore this case here.

What remains are decisions due to £(k) being TRUE
(Line 9) and due to having received n — k messages in
round k+ 1 (Line 20). For each » > 0, we denote by ¢,
the number of processes which have decided due to
their failure detector output being TRUE while rnd = r.
Thus, the number of processes that have decided in
Line 9 with rnd < r for some r > 0 is 3. _ ¢, In the
following, we use ¢” as an abbreviation for this sum.
Since processes halt after deciding, we can deduce that
the number a, of processes which do not send round r
messages is at least 0"~ !. Thus, Lemma 4 tells us that
u" < k—o""'. Now assume by contradiction that there
are actually D >Fk different decisions, with
D < uM! 4 0" Note that that D is the number of dif-
ferent values decided on in Line 20 plus those that
ever decided based on L(k), which is obviously at
most u**! + ¢*1. It can be less, since processes need of
course not decide on different values. Thus we get
uf*! > k — o**! and by using the above property of u"
for r=k+1, we deduce that o"!' > ¢ and thus
li+1 = 1. These processes must have decided on some
values in X*, however, which implies D < u* + o*, as
obviously z € X**! = z € X*. We can repeat this argu-
ment until we reach D < u'+0°=u!+4¢, Here,
Lemma 4 gives us the trivial upper bound u' < k,
which entails the requirement ¢y > 1as D > k.

By now, we have shown that, assuming D > k deci-
sions ¢, > 1 for r € {0,...,k+ 1}. In other words we
have deduced that o' > k+1 processes have
decided due to their £(k) output being TRUE. This con-
tradicts property (2) of L(k), however, thus proving
Lemma 5. O

Theorem 6. Algorithm 3 solves k-set agreement in an asyn-
chronous system without unique process ids augmented
with L(k).

Proof. It is immediately apparent from the code that the
algorithm also works in anonymous systems, since
every process sends its round-r message at most once.
Validity is evident, since no value other than the initial
values v of processes are ever assigned directly or
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Consensus k-Set Agr. (n—1)-Set Agr.
L(1) L(k) v = L(n—-1)=L
| 1
S, — —— S
l 1
(E,Q) T R 4 (En—l)gn—l)
()
Y1=X—--- 2k Sn-1

Fig. 2. Failure detector classes for wait-free k-set agreement. A unidirec-
tional arrow from X to Y indicates that failure detector X is stronger than
Y; note that this relation is transitive. Arrows in both directions corre-
spond to equality, while the crossed-out arrows indicate incomparability.
Failure detectors located within shaded boxes are sufficiently strong for
solving the k-set instance given in the column header. The middle col-
umn thus shows the “solvability gap,” where the (currently) unknown
weakest failure detector will fit in.

indirectly to z. k-Agreement follows from Lemma 5,
and since either n —k processes send messages in
each round or some process has L(k) = TRUE, every
correct process terminates. O

Theorem 6 showed that £(k) is sufficient for k-set agree-
ment. We now prove that it is not (much) stronger than nec-
essary, as L(k) is too weak to solve (k—1)-set agreement.

Theorem 7. No algorithm can solve (k—1)-set agreement with
L(k), forany2 < k < n— 1

Proof. We assume for the sake of a contradiction that
such an algorithm A exists. Now consider the failure
detector history where £(k) outputs TRUE at processes
' = {p1,...,p}, while it outputs raLse at the n—k
processes 17 = {prs1,...,p.}. This defines a legal his-
tory for £(k) in any run where one of the processes in
IT" is correct. For our proof we now consider the set
of runs where all processes in I/ crash initially. Let
this set be R. Now we consider the set of runs of A in
an asynchronous system consisting of the k& processes
pis--.,pr equipped with the dummy failure detector
[36] that always outputs TRUE. Let this set be S. Due to
the impossibility of solving set agreement in the asyn-
chronous system [17], [39], [53], A cannot solve
(k—1)-set agreement in all runs in S. Take any such
run ¢. Clearly, ¢ is indistinguishable to some run in R
to all processes in II'. Thus, A cannot solve (k— 1) set
agreement in all runs in R, that is, in the asynchro-
nous system augmented with £(k). O

5 RELATION BETWEEN £ (k) AND OTHER FAILURE
DETECTORS

In [12, Section 4], we analyze how the L(k) failure detector
relates to some important other failure detectors for mes-
sage passing k-set agreement. The results are presented
in Fig. 2.

6 L(k) IN ANONYMOUS SYSTEMS

In this section, we will focus on anonymous systems,
where processes do not have unique identifiers but can
at most distinguish their neighbors via local port num-
bers, cp. [6], [8], or can distinguish multiple copies of the
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same message by other means, i.e., are numerate in the
notion of [27]. Failure detectors for anonymous resp.
homonymous system (where processes may share the
same id) have been studied in [15] resp. [7]; a weakest
failure detector for consensus has been given in [19].

6.1 Implementing L(k)

Given that we have provided an algorithm that solves
k-set agreement using L(k) without the need for unique
identifiers, one natural question to ask is whether this
also applies for our algorithms implementing L(k).

For Algorithm 2, we note that it just counts the number of
(alive, ph) messages for each phase ph. So as long as line 13
is triggered by each (identical) message, the algorithm also
works in anonymous systems. Moreover, since it does not
require the knowledge of n, it is also a uniform algorithm
[15], as long as k does not depend on n. Given that Algo-
rithm 2 implements £(n — k), assuming this independence
might seem self-contradictory. However, this contradiction
disappears when considering the aggregate of Algorithm 2
and Algorithm 3 together.

Some considerations related to Algorithm 1 for M)
can be found in [12, Section 4].

6.2 Relations to Anonymous Failure Detectors

From [28], we know that £ can be extracted anonymously
from any failure detector D that solves set agreement using
some algorithm A: Every process executes an independent
instance of A (without any other process participating)
using D as its failure detector. The simulated £ outputs
TRUE at p only when A has terminated at p. In conjunction
with our Theorem 6 applied for k = n — 1, this implies the
following fact:

Corollary 8. L is the weakest failure detector for set agreement in
anomnymous message passing systems.

With respect to consensus, [15] provided an in-depth
analysis of various failure detectors for anonymous sys-
tems, in particular, the identity-free perfect failure detector
AP and the identity-free eventual leader oracle A€}, see [12,
Definitions 3 and 4].

In [15], it was conjectured that (A3, AQ) ® AP is the
weakest failure detector for solving anonymous consen-
sus. This @-combination is defined as the failure detector
that outputs L for an arbitrary finite prefix and then
chooses an output that is admissible for either (A, AQ)
or AP at every process.

In [12, Section 4], we disprove this conjecture by showing
that (AX, AQ) @& AP cannot be extracted from £(1).

Theorem 9. Consider an anonymous asynchronous system of
at least three processes. Failure detectors (A%, AQ) ® AP
and L(1) are incomparable.

Corollary 10. Neither (A%, AQ) @ AP nor L(1) is the weak-
est failure detector for solving consensus in an anonymous
asynchronous system.

Note that it is not yet known whether every problem
has exactly one class of weakest failure detectors also in
anonymous systems, as it is the case for non-anonymous
systems (cf. [41]). Therefore, (A%, AQ) ® AP ® L(1) could
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be seen as a promising candidate for a weakest failure
detector for consensus in anonymous systems.

7 CONCLUSIONS

We introduced two novel message passing models
MR and MEER that provide enough synchrony
for solving k-set agreement and showed how to imple-
ment our generalized (n — k)-loneliness failure detector
L(k) in these models. Part of our future research will
focus on the still ongoing chase for the weakest failure
detector for message passing k-set agreement, both in
non-anonymous and anonymous systems.
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