
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 7, JULY 2024 1307

Rollback-Free Recovery for a High Performance
Dense Linear Solver With Reduced

Memory Footprint
Daniela Loreti , Marcello Artioli , and Anna Ciampolini

Abstract—The scale of nowadays High Performance Computing
(HPC) systems is the key element that determines the achievement
of impressive performance, as well as the reason for their relatively
limited reliability. Over the last decade, specific areas of the High
Performance Computing (HPC) research field have addressed the
issue at different levels, by enriching the infrastructure, the plat-
forms, or the algorithms with fault tolerance features. In this work,
we focus on the rather-pervasive task of computing the solution of
a dense, unstructured linear system and we propose an algorithm-
based technique to obtain fault tolerance to multiple anywhere-
located faults during the parallel computation. We particularly
study the ways to boost the performance of the rollback-free re-
covery, and we provide an extensive evaluation of our technique
w.r.t. to other state-of-the-art algorithm-based methods.

Index Terms—Rollback-free recovery, algorithm-Based fault
tolerance, high performance computing, linear systems solver.

I. INTRODUCTION

OVER the last decade, the computing capabilities of High
Performance Computing (HPC) systems have impres-

sively increased, heading beyond the Exaflops realm [1]. Un-
fortunately, their availability and reliability have not escalated
at the same pace. The reason behind this is directly connected
to the system’s scale and the chip density that characterises
HPC hardware [2]. Nowadays, despite an overall increase in
chip’s Mean Time Between Failures (MTBF), the availability
of a relevant number of computing nodes frequently translates
not only into the desirable higher degree of parallelism (which
should improve the application’s performance) but also into a
significant drop of the infrastructure’s MTBF [3], [4] (which in
the end affects the application’s capability to provide correct
results). Clearly, this issue is particularly relevant for those

Manuscript received 25 September 2023; revised 16 March 2024; accepted
8 May 2024. Date of publication 13 May 2024; date of current version 31 May
2024. This work was supported by Daniela Loreti with a research contract co-
financed by the European Union - PON Ricerca e Innovazione 2014-2020 ai
sensi dell’art. 24, comma 3, lett. a), della Legge 30 dicembre 2010, n. 240 e
s.m.i. e del D.M. 10 agosto 2021 n. 1062. Recommended for acceptance by M.
Si. (Corresponding author: Daniela Loreti.)

Daniela Loreti and Anna Ciampolini are with the Department of Computer
Science and Engineering, University of Bologna, 40126 Bologna, Italy (e-mail:
daniela.loreti@unibo.it; anna.ciampolini@unibo.it).

Marcello Artioli is with the Italian National Agency for New Technologies,
Energy and Sustainable Economic Development (ENEA), 40129 Bologna, Italy
(e-mail: marcello.artioli@enea.it).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TPDS.2024.3400365, provided by the authors.

Digital Object Identifier 10.1109/TPDS.2024.3400365

applications that are significantly time-consuming despite being
parallelly executed on many cores.

An example of such applications is the resolution of linear sys-
tems characterised by large-scale dense matrices: a task required
in many scientific fields, from circuit simulation to aerodynamic
design. Beside some system- and application-level solutions to
improve the overall resilience of HPC systems [5], [6], [7], [8],
[9], fault-tolerant algorithms have been developed over the last
years, to precisely address matrix factorisation or linear algebra
applications in general. These algorithm-specific approaches
to resilience are often classified into the broad category of
Algorithm Based Fault Tolerance (ABFT) [10].

Whether it is applied at the algorithm, application, or system
level, the efficiency of a fault tolerance strategy is usually
connected to two factors: the overhead introduced during com-
putation before the failure occurs—e.g., to maintain an encoded
replica of the computation’s state; also known as computation
or failure-free overhead—and the computational cost due to the
recovery mechanism after the failure occurs—e.g. to reconstruct
the state of the fallen processors and restart the computation;
often referred to as recovery overhead.

A traditional, and still widely employed technique for fault-
tolerance at the system/application level is Checkpoint/Restart
(C/R), which envisages periodically saving the calculation state
on a persistent or volatile storage system [11]. In case of error,
before the application can continue, the faulty unit must be re-
placed and the state rolled back to the latest available checkpoint.
All these operations entail potentially significant failure-free and
recovery overheads. Albeit characterised by lower portability
w.r.t the C/R approach, ABFT techniques usually show the key
advantage of significantly reducing both the computation and
the recovery overheads.

In this work, we focus on an algorithm-level strategy to obtain
fault tolerance to multiple concurrent faults during the resolution
of linear systems on HPC hardware. In the context of linear
solvers for dense unstructured matrices, previous works [12],
[13] have studied the limited fault-free overhead that can be
obtained by applying ABFT to an existing direct linear systems
solver, called Inhibition Method (IMe) [14], [15]. However,
the approach shows poor performance in terms of memory
occupation and disregards the impact of recovery overhead on
the computation. The present paper addresses the limitations
of the previous works by exploiting the structure of the IMe
solver to provide a rollback-free technique that significantly

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see
https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0002-6507-7565
https://orcid.org/0009-0000-8398-8808
https://orcid.org/0000-0002-9314-1958
mailto:daniela.loreti@unibo.it
mailto:anna.ciampolini@unibo.it
mailto:marcello.artioli@enea.it
https://doi.org/10.1109/TPDS.2024.3400365


1308 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 7, JULY 2024

limits memory occupation. At the same time, the enhancement
improves the performance of the technique w.r.t state-of-the-art
fault tolerant solvers.

II. CONTRIBUTION

This work provides the following contributions.
� A rollback-free approach to fault tolerance for the reso-

lution of linear systems with dense unstructured matrices.
The technique allows recovery from multiple faults with
reduced memory occupation.

� A demonstration of how the method can be used to solve
multiple systems with the same matrix of coefficients but
different constant terms (analogously to, e.g., LU factor-
ization).

� A flexible parallel implementation of the above-mentioned
approach, which enhances the performance by limiting the
number of synchronisation points due to communication.

� An analysis of the advantages and shortcomings of cen-
tralised and distributed implementation strategies that can
be adopted for the recovery process.

� An empirical evaluation of the proposed solution, compar-
ing its overall performance (including scalability, memory
occupation, and accuracy of the recovery task) with other,
well-known fault-tolerant methods for dense linear system
resolution.

III. RELATED WORK

In the last decade, the decline of MTBF in HPC systems
has fostered the study of novel solutions to identify and handle
malfunctions affecting large-scale parallel computations. In lit-
erature, a widely adopted classification distinguishes the failures
based on their effects: hard errors or fail-stop address mal-
functions that interrupt the processor’s computation; whereas
soft errors, fail-continue or Silent Data Corruption (SDC) ad-
dress those errors that do not halt any computing node but
nonetheless induce alterations in the results. Known causes of
soft errors are thermal drift or radiation [16]. Both hard and soft
faults have the same power to invalidate the whole distributed
computation but, as their origins and effects are different, they
are usually addressed with different techniques. The approach
described in this work is primarily devoted to recovery from hard
errors.

C/R is the traditional way to tackle fail-stop errors in large
clusters [17]: the computation flow is periodically interrupted to
save the state of long-running programs on reliable storage. In
the event of an error, the whole application state is rolled back
to the most recent copy of the state, while the state of faulty
processors is sent to newly provided computing units. In this
way, the application can survive any number of faults because it
can continue from the latest saved checkpoint instead of being
started over.

A fault-tolerant mechanism can be implemented at system-
level, by modifying the OS kernel or the hardware [6], [18], [19];
user-level, by linking the program to fault-tolerant libraries [20],
[21], [22], [23]; or application-level, by injecting the resilient
code directly into the application (i.e., relaying on the program-
mer’s domain knowledge or by means of a pre-processor) [8],

[9]. Despite some recent relevant attempts [24] to combine
system- and user-level checkpointing to minimise the failure
overhead, I/O bottleneck remains the main concern of C/R
techniques. Diskless checkpointing [11] (and its following
enhancements [25], [26]) helped to contain this problem, by
encoding and saving the state of the computation into the internal
memory of redundant computing nodes, instead of reliable stor-
age. This solution provides a considerable reduction of check-
point overhead but comes at the price of the application no longer
being able to survive a whole-system failure. Furthermore, when
the program iteratively modifies large memory regions (as in
matrix factorisation), diskless checkpointing might still exhibit
relevant overheads [27]. Obviously, the naive solution of increas-
ing the checkpoint interval has the drawback of a longer recovery
overhead (on average), because the system will probably need
to roll back and restart the computation from an older state when
the fault occurs. To overcome these issues, an algorithm-specific
solution can be applied.

ABFT was first introduced by Huang et al. [10] to tackle the
problem of soft errors. This approach is based on the observation
that in various matrix operations, the checksum relationship can
be kept invariant during the course of the algorithm. Therefore,
a miscalculation can be detected by verifying if the final results
still maintain the checksum relationship. ABFT has been later
extended [28], [29], [30] and applied also to hard errors [31],
[32].

The advantage of some ABFT techniques w.r.t a traditional—
disk or diskless—checkpointing is twofold. On one hand, the
failure-free overhead is reduced because there is often no need to
stop the computation to encode and save the state: the checksum
is calculated once at the beginning, and then maintained by
applying some operations as it is done on the data. On the other
hand, these ABFT approaches do not need to perform rollback
when the fault occurs because the state is always up-to-date.

The works [27], [33], [34], [35], [36], [37], [38], [39], [40]
proved that a checksum invariant can be maintained during
matrix-matrix multiplication, and various linear system resolu-
tion methods. In particular, Davies et al. [33] focus on High Per-
formance Linpack (HPL) and demonstrate that the right-looking
LU factorisation can be performed while preserving a checksum
at each step of the computation. Such a strategy protects the U
matrix from the occurrence of a single anywhere-located fault,
whereas the L matrix is not protected. In [36], the authors pro-
pose a dynamic fault-tolerant mechanism for Communication-
Avoiding LU (CALU) grounded on redundancy: at the begin-
ning, the algorithm cannot tolerate any fault; then at each step,
an exchange of data between the computing nodes increases
the number of tolerable faults. Kang et al. [39], [40] propose
an ABFT linear system solver for sparse matrices based on the
Conjugate Gradient method, which tolerates up to k faults by
augmenting the input matrix with a suitable set of coded rows
and columns. To contain the—otherwise relevant—computation
overhead, they use a sparse coding scheme so that the algorithm
is no longer able to recover from any possible k faults, but
tolerates the faults with a given probability. Bouteiller et al. [27]
extended a previous work [35] to deal with multiple faults. They
propose a general ABFT framework for matrix factorisation,
which can be applied not only to HPL and Cholesky but also to



LORETI et al.: ROLLBACK-FREE RECOVERY FOR A HIGH PERFORMANCE DENSE LINEAR SOLVER WITH REDUCED MEMORY FOOTPRINT 1309

Fig. 1. Initialization of IMe data structures.

LU and QR. However, the protection of the left factor is achieved
through a C/R scheme.

Differently from all the cited works, the technique described
in this work is devoted to the recovery from multiple anywhere-
located faults during a different solving approach, grounded on
IMe [14], [15]. This strategy enables a pure algorithm-based
approach to fault tolerance that avoids any C/R and greatly
simplifies the management of the checksums by exploiting the
structure of IMe itself. Other remarkable advantages are the
reduced memory overhead to maintain the checksum and the
intrinsically load-balanced parallel implementation.

Since IMe is scarcely referred to in literature, we dedicate the
following section to the description of its original formulation
devoted to the linear system resolution.

IV. BACKGROUND

IMe was initially proposed in 1963 [41] to perform the anal-
ysis of complex electric circuits and later extended to linear
system resolution and matrix inversion [14], [15]. The method
envisages an exact direct solver for systems in the formAx = b,
where the matrixA of coefficients is a squaredn× n, dense, un-
structured, and invertible matrix, and b is the vector of constant
terms.

The original formulation starts by computing two n× n ma-
trices E (the matrix of the effects) and K (the matrix of the
inhibition quantities), and an auxiliary vector α (with n− 1
elements) out of the initial matrix A, as shown in Fig. 1.

E,K and α are modified in n subsequent iterations, which
were originally called levels and named by decreasing order (so
that level l = n actually addresses the first iteration). At each
level l = n . . . 2 all the elements of the two matrices are modified
according to the following fundamental formula.

e
(l−1)
ij =

[
e
(l)
ij − e

(l)
lj · k(l)il

]
· α(l)

i , i = 1 . . . l − 1, j = 1 . . . n

k
(l−1)
ij =

[
k
(l)
ij − k

(l)
lj · k(l)il

]
· α(l)

i , i, j = 1 . . . l − 1

(1)

where e
(l)
ij and k

(l)
ij denote the elements on row i and column j

at level l of the matrices E and K, respectively. The vector α
too is recomputed at each level as follows.

α
(l)
i =

1

1− k
(l)
li · k(l)il

, ∀l = n . . . 2, i = 1 . . . l − 1. (2)

As shown in Fig. 2, the algorithm reduces E by a row at each
level, whereas K loses both a row and a column. This process

Fig. 2. Evolution of IMe data structures.

continues until E is reduced to a row vector of n elements and
K contains only an element with value 1. The original method
prescribes using the matrices obtained from each level to modify
the constant terms vector b and, at the same time, compute the
solution x. That is, for all levels l

b
(l−1)
i = b

(l)
i − k

(l−1)
l−1,i · b(l)l , i = 1 . . . l − 2 (3)

x
(l−1)
i = x

(l)
i + e

(l−1)
l−1,i · b(l)l , i = l − 1 . . . n (4)

Thanks to its structure, IMe is particularly suitable for a
parallel implementation.

A previous work [12] proposed IMeFT, an HPC implementa-
tion of IMe, which employed a 1D-block distribution along the
matrix columns. The paper demonstrated that by computing row-
wise checksums of [E|K], and then applying the fundamental
formula (1) on them as on any other element of [E|K], the addi-
tional columns continue to hold the checksums for any following
level. In other words, the checksum relation is kept invariant
during the whole computation. Based on this observation, the
work [12] concluded that it is possible to obtain fault tolerance
from a single, anywhere-located, hard error at the price of a small
computation overhead: an additional computing processor must
be employed during the whole algorithm execution.

In this work, we adopt the definition of failure period of
Bouteillers et al. [27] i.e., the time between the moment when
the failure is detected, and the moment when the data have been
completely recovered, so that the normal computation is ready to
continue. Theoretically, the strategy of IMeFT [12], like the one
of Bouteillers et al. [27], allows surviving any number of faults,
as long as their failure periods do not overlap. In other words, if
two faults occur during the same computation, the second one
can be recovered only if it shows up after the first one has been
recovered.

However, it is important to consider that this circumstance is
not frequent in nowadays HPC systems: as they are composed
of (several) multiprocessor machines, a hard fault is unlikely to
involve a single core at a time. More probably, it will regard a
processor socket with multiple cores or the whole machine, thus
making more pressing the need for algorithms that can survive
multiple faults within the same failure period. For this reason,
the work [13] demonstrated that—by adopting a simple column-
wise parallelisation and using a weighted sum instead of a simple



1310 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 7, JULY 2024

sum—IMeFT can be extended to tackle also multiple hard errors
i.e., faults involving up to a certain number of anywhere-located
processors, and occurring during the same failure period.

The advantage of the fault-tolerant approaches described
in [12], [13] w.r.t a traditional Gaussian solver with diskless
checkpointing is in the reduced failure-free overhead, whereas
the memory occupation remains an issue: the IMe-based ap-
proach can work in-place at every level by overwriting the
elements of [E|K] for all l, but it employs a matrix [E|K] that,
initially, is twice the size of A. Furthermore, a more flexible
parallelisation scheme (i.e., not limited to a strict column-wise
distribution) is needed to provide a method that can be success-
fully applied in practice in an HPC environment. Finally, [12],
[13] do not deepen the topic of the recovery overhead: the per-
formance of the recovery mechanisms needs to be investigated
in order to compare the technique with existing state-of-the-art
fault-tolerant methods for linear system resolution.

In this study, we address each of these issues: we start with the
reduction of the memory occupation described in the following
section; the column-wise distribution is enhanced to a 2D-block
cyclic distribution as presented in Section V-A; and a new
distributed recovery strategy is described in Section VII.

V. ENHANCING FAULT-TOLERANT IME WITH REDUCED

MEMORY FOOTAGE

Looking at the effects, depicted in Fig. 2, produced by the n
subsequent applications of the fundamental formula, it is easy to
see that the original algorithm maintains a considerable number
of 1 and 0 entries at each level. Most of these elements keep their
0 or 1 value during the whole computation despite the algorithm
applying the fundamental formula on them as on any other
element of [E|K]. As we want to reduce the memory occupation
of the algorithm, a natural enhancement is therefore to eliminate
these 1 and 0 entries and overwrite them with more meaningful
values. To this end, we must first assess and demonstrate that the
position of 1 and 0 values is indeed the one illustrated in Fig. 2
throughout the computation. Then we can use this information
to propose a compression of [E|K].

Theorem V.1. At any level l = n . . . 1 the matrix [E|K](l)

contains l ones (on the diagonal of K(l)) and l2−l zeros (on all
non-diagonal elements of E(l)).

The proof of Theorem 5.1 can be found in the Appendix. We
can therefore overwrite the 0 and 1 entries when compressing
E(l) and K(l) into a single compact matrix V (l) as shown in
Fig. 3. At the initialisation step, V (n) is actually the original
matrix K(n) with the 1-entries overwritten by the diagonal
elements of E(n). Then, for each level, the rows of V (l) have
the same content of E(l), except for the 0-entries in the first l
columns, which are overwritten by the corresponding elements
of K(l). Thanks to this strategy the memory occupation is
reduced by a half.

According to this change, we initialise each v
(n)
ij element of

V (n) as follows.

v
(n)
ij =

{
1
aij

, if j = i
aji

aii
, otherwise

Fig. 3. Evolution of IMe data structures when compressing E and K into a
single matrixV . Here,V is reused at each level. The dotted portions correspond
to cells that are not modified at that level.

with i, j = 1 . . . n. The fundamental formula becomes:

v
(l−1)
ij = α

(l)
i ·

⎧⎪⎪⎨⎪⎪⎩
v
(l)
ii , if j = i

−v(l)il v
(l)
ll , if j = l

v
(l)
ij − v

(l)
il v

(l)
lj , otherwise

(5)

with l = n . . . 2, i = 1 . . . l − 1, and j = 1 . . . n. To compute the
solution we apply the following for all levels l = n . . . 2:

b
(l−1)
i = b

(l)
i − v

(l−1)
l−1,i · b(l)l , i = 1 . . . l − 2 (6)

x
(l−1)
i = x

(l)
i + v

(l−1)
l−1,i · b(l)l , i = l − 1 . . . n (7)

The matrix V obtained with the described compression strat-
egy shows a derirable characteristic:

Theorem V.2. Given a linear system Ax = b, the iterative
application of (5) produces a matrix V (1) that can be used not
only to compute x, but also x′ solution of Ax′ = b′, i.e., the
solution of any other linear system characterised by the same
matrix A but a different constant term b′.

In other words, Theorem 5.2 (proof in the Appendix) ensures
that, similarly to the LU factorisation, once the matrix A has
undergone all the n levels producing V (1), the latter can be used
to solve systems with different right-hand sides. More precisely,
since (6) and (7) entail two floating point operations (flops)
for i = 1 . . . n in any of the n levels, the computation of the
solution requires 2n2 flops (the same required to compute the
solution from a LU-factorised matrix). The theoretical cost of
computing V (1), instead, is O( 32n

3) [12], slightly higher than
LU factorisation: O( 23n

3).



LORETI et al.: ROLLBACK-FREE RECOVERY FOR A HIGH PERFORMANCE DENSE LINEAR SOLVER WITH REDUCED MEMORY FOOTPRINT 1311

Fig. 4. 2D block-cyclic distribution ofV andS on a 3× 4 and 3× 2 processor
grid, respectively. Generally, with this scheme, the algorithm can recover from
up to R = 2 anywhere-located faults. In this case, even if the fault involves
three processors, (0, 0)(0, 1) and (1, 0) creating the grey holes in V , they can
be recovered anyway using the dotted blocks on the checksum processors (0,
r0)(0, r1) and (1, r0). This is possible because the third faulty processor (1,0)
is not on the same processor row as the others.

A. Checksum Protection Against Multiple Failures

The use of the compact matrix V turns IMe into an algorithm
that can work in-place with the same memory occupation as
LU factorisation. It is also crucial to demonstrate that these
changes do not affect the checksum invariant. To this aim, we
first need to consider how IMe can be parallelly executed on a
HPC environment with distributed memory.

The previous work [13] assumed a contiguous allocation of
the matrix columns on the computing processors. In order to
obtain a flexible algorithm (i.e., an algorithm that can be applied
to any number of interconnected nodes preserving the load
balancing feature during the execution), we hereby introduce
a 2D-block cyclic distribution of the initial matrix V (n). Ac-
cording to 2D-block cyclic distribution, V (n) is divided into
N ×N blocks of data, each one of size nb × nb. The blocks
are distributed along a process grid of P ×Q processors using a
cartesian virtual topology. Therefore, each processor receives at
mostK = �NP � × �NQ � blocks. Similarly to the notation of [27],

we denote withV (l)
k,pq the kth block of columns held by processor

(p, q), with 0 ≤ p < P , 0 ≤ q < Q, and 1 ≤ k ≤ K. Also, we
denote with Q the set of the indexes {0, . . . , Q− 1} on a row
of the processor grid.

A 2D-block cyclic layout brings several advantages w.r.t a
simple column distribution. It helps to balance the computational
load because, in each step of the algorithm, many computing
nodes can be concurrently engaged in computations. Also, as
we show in the following, this choice contributes to reducing
the synchronisation points due to data communication because
broadcast messages are limited to processor rows and columns
instead of involving all computing nodes.

Assuming a 2D-block cyclic distribution, if we want to toler-
ate up to R anywhere-located faults, we need P ×R additional
processors to store the checksum matrix S(n). We will call
them recovery processors. Actually, as shown in Fig. 4, P ×R
recovery processors allow tolerating a number of faults that can
be even higher than R (up to P ·R), provided that we have at

Fig. 5. The blocks involved in the update of a specific block on the processor
(p, q) are those illustrated in light gray beloging to processors (p, q′), (p, q′′)
and (p′, q).

most R faults on the same processor row. We denote with R
the set of the indexes {0, . . . , R− 1} on a row of the recovery
processor grid.

Furthermore, to be consistent with the original algorithm [13],
the row-wise weighted sums computed during the initialisation

must be performed on the matrix Ṽ
(n)

= V (n)+I (to take into
account the 1-entries on the diagonal of K(n) overwritten by the
compression). So, S(n) is partitioned into the following blocks:

S
(n)
k,pr =

∑
q∈Q

wqrṼ
(n)
k,pq (8)

where S
(n)
k,pr is the kth block of S(n) held by the recovery

processor (p, r) (with 1 ≤ k ≤ K and r ∈ R), and analogously

Ṽ
(n)
k,pq is the kth block of Ṽ

(n)
that is stored on the computing

processor (p, q). Also, wqr is the entry of row q and column r
of a weight matrix W . Indeed, to recover multiple faults, the
checksums must be weighted employing a Q×R matrix suit-
ably conceived for the purpose (such that any square sub-matrix
of W is non-singular [13], [26]). All blocks S(n)

k,pr have nb × nb

elements and each recovery processor hosts at most K blocks
(as any other computing processor).

IMe operates on the checksum blocks as if they were matrix
blocks. Hence, we can imagine to iteratively apply the funda-
mental formula (5) to the matrix [V |S](n).

Theorem V.3. The iterative application of (5) to [V |S](n)
preserves the checksum invariant i.e., at any level l, the submatrix
S(l) holds the checksum of V (l).

Theorem 5.3 (proof in Appendix) ensures ABFT for IMe.

VI. THE PARALLEL IMPLEMENTATION

A parallel message-passing implementation of the algorithm
is shown in Algorithm 1. In the following, we will refer
to it as Compressed Inhibition Method with Fault Tolerance
(C-IMeFT).

Algorithm 1 shows the pseudocode of a generic (computing or
recovery) processor (p, q), which receives as input a set A∗,pq of
blocks of the coefficient matrixA, and the diagonal d(A). These



1312 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 7, JULY 2024

Algorithm 1: Pseudocode of C-IMeFT on a Generic
Processor (p, q), With p ∈ [0, P ), q ∈ Q ∪R.

Input: A∗,pq , blocks of A assigned to processor (p, q),
supposed empty if q ∈ R; d(A), diagonal of A.
Output: V̂ 1

∗,pq blocks of V̂ 1 assigned to processor (p, q).
1: procedure C-IMEFT(A∗,pq, d(A))
2: V̂∗,pq ← IMEINIT(A∗,pq, d(A))
3: rowp ← set of processors on the same row of (p, q)
4: colq ← set of processors on the same column of (p, q)
5: (p, q′)← processor holding portion of d(V̂ ) on the

same row of (p, q)
6: for l← n . . . 2 do
7: (p′, q)← processor holding portion of v̂l,∗ on the

same column of (p, q)
8: (p, q′′)← processor holding portion of v̂∗,l on the

same row of (p, q)
9: BROADCAST(v̂∗,l, rowp,root=(p, q′′))

10: BROADCAST(v̂l,∗, colq ,root=(p′, q))
11: if q == q′ then
12: for each αi on (p, q′) do
13: αi = 1− v̂i,l ∗ v̂l,i
14: end for
15: end if
16: BROADCAST(αpq′ , rowp,root=(p, q′))
17: for each i, j|i < l ∧ v̂i,j ∈ V̂∗,pq do
18: if j == i then
19: v̂i,i ← v̂i,i/αi

20: else if j == l then
21: v̂i,l ← −v̂i,lv̂l,l/αi

22: else
23: v̂i,j ← (v̂i,j − v̂i,lv̂l,j)/αi

24: end if
25: end for
26: end for
27: return V̂∗,pq
28: end procedure

data are used for initialising the elements of V̂ = [V |S](n) held
by (p, q) (procedure IMEINIT on line 2). That is, (p, q) receives
the blocks V∗,pq if it is a computing processor (q ∈ Q), or S∗,pq
if it is a checksum processor (q ∈ R).

In order to apply the fundamental formula, at each level l the
processor (p, q) needs a portion of the α vector, and a portion of
the lth column and lth row of V̂ . Therefore, at each iteration, the
algorithm enforces a set of broadcast communications. Fig. 5
highlights the blocks containing relevant information for the
computation carried out on (p, q). In particular, the processor
(p, q′′) on the same processor row of (p, q) holding a portion
of the lth column of V̂ , sends it to the whole processor row
(broadcast of v̂∗,l to rowp on line 9); the processor (p′, q) on the
same column of (p, q) holding a portion of the lth row of V̂ ,
sends it to the whole processor column (broadcast of v̂l,∗ to colq
on line 10). After these exchanges, the processors holding the
main diagonal of V̂ have all that is needed to compute a portion

of the α vector (line 13). The portion is then broadcasted to all
the processors on the same row (line 16). Then, all processors can
apply the fundamental formula (lines 19–23) on all the elements
of their blocks.1

Thanks to the adopted 2D block-cyclic distribution, the three
collective communications in Algorithm 1 involve only proces-
sors on the same row or column. As the number of processors
engaged in each collective communication is reduced w.r.t a
broadcast involving all the nodes (which would be required in
column-wise repartition), this strategy helps to reduce the syn-
chronisation points. Furthermore, while the collective operation
in line 16 needs to be performed after the computation in line
13 is completed, the first two broadcasts (lines 9 and 10) can be
executed concurrently because they regard different elements of
the matrix that are only accessed but not modified at this stage.
The concurrency of these communications contributes to the
containment of the computation time.

Our ABFT technique shows two advantages w.r.t. diskless
checkpointing: i) there is no need to periodically interrupt the
computation to save the state of the system, but an encoded
version of it is constantly updated on the recovery processors;
ii) the encoded state is always up-to-date, so if a failure occurs,
there is no need to perform a rollback of the whole matrix to the
latest available copy of the state.

When compared with the hybrid ABFT-checkpointing tech-
nique by Bouteillers et al. [27], C-IMeFT shows two advantages:
i) a uniform fault-tolerant technique to protect the whole matrix
because resilience is obtained with a pure ABFT approach;
ii) the memory overhead to host the checksums is half the size
required by [27]. Indeed, to obtain resilience from up to R
concurrent faults during the elaboration, C-IMeFT needsP ×R
additional processors and a memory overhead of PRKn2

b .
Bouteillers et al. [27] suggest a mechanism to allow storing the
checksums on the same processors used for the factorisation, but
the additional memory occupation is 2PRKn2

b .
As explained in Section V, the flops required by the com-

pressed version of IMe are O( 32n
3). Regarding the computa-

tional overhead introduced by our fault-tolerant strategy, it can
be calculated starting from the observation that each recovery
processor is subject to the same computing load as any comput-
ing processor. Indeed, the P ×R additional processors operate
on their checksum blocks as if they were part of the coefficient
matrix, and each recovery processor hosts at most K blocks
(as any of the other P ×Q computing processors). Hence, fault
tolerance makes the flops increase to R

Q ·O( 32n
3).

VII. ROLLBACK-FREE DISTRIBUTED RECOVERY

When one or more hard faults occur, all the computing and
recovery nodes still alive need to be notified of the event. Dif-
ferent solutions have been proposed to orchestrate this process
[42], [43]. For example, Hydra2—a process manager used by

1Differently from the original description of the IMe, here αi is computed
without the reciprocal in line 13, and its value is used as the divisor in the
fundamental formula. This allows for avoiding useless flops at each iteration.

2[Online]. Available: https://github.com/pmodels/mpich/blob/main/doc/
wiki/how_to/Using_the_Hydra_Process_Manager.md

https://github.com/pmodels/mpich/blob/main/doc/wiki/how_to/Using_the_Hydra_Process_Manager.md
https://github.com/pmodels/mpich/blob/main/doc/wiki/how_to/Using_the_Hydra_Process_Manager.md


LORETI et al.: ROLLBACK-FREE RECOVERY FOR A HIGH PERFORMANCE DENSE LINEAR SOLVER WITH REDUCED MEMORY FOOTPRINT 1313

default in famous Message Passing Interface (MPI) implemen-
tations like MPICH3 and IntelMPI4—provides a mechanism to
automatically send a signal to all running processes, including
those suspended on communication primitives, whenever a fault
is detected.

In this section, we assume a lower-level mechanism (like the
one provided by Hydra) is in charge of detecting the faults and
notifying all the other working processors. Given this assump-
tion, we focus on how the rollback-free recovery algorithm of
C-IMeFT can be implemented in a distributed fashion. Indeed,
a parallel implementation of this step helps in various ways:

1) it avoids a single point of failure;
2) it improves the performance by leveraging the resources

of multiple nodes during the computation; and
3) it allows overcoming the limitations related to the size of

the memory of a single node.
If IMe computation is carried out on P ×Q computing pro-

cessors and we have P ×R additional recovery processors, we
can face up to R anywhere-located hard faults, involving either
computing or recovery nodes. If the fault actually involves both
computing and recovery nodes, the algorithm must first focus
on reconstructing the state of the computing processors. Then,
the state of the recovery nodes can be determined through a
straightforward recomputation of the checksums (as stated by
(8)) involving the survived and newly-reconstructed comput-
ing nodes. Therefore, in the following, we focus on the more
interesting case of F faults (with F ≤ R) involving only com-
puting processors. In this case, in order to replace the faulty
nodes, a subset of available recovery processors (all of them if
F = R) must be selected. We will call them activated recovery
processors. The purpose of the recovery algorithm is to turn the
activated recovery processors into up-to-date computing nodes.
We denote with F the set of column indexes of the faulty nodes
(therefore, F ⊆ Q and |F| = F ), and with R′ the set of the
column indexes of the activated recovery processors (obviously,
R′ ⊆ R).

In general, to recover from F faults we need to solve a
batch of linear systems, all characterised by the same coefficient
matrix W ′. W ′ is an F × F matrix composed of a subset of
the weights in W : all rows of W corresponding to the faulty
computing processors, and all columns corresponding to the
activated recovery nodes going to take their place.

First, the algorithm needs to recompute the row-wise check-
sums of the survived processors on the activated recovery nodes,
i.e.,

Sk,pr = Sk,pr −
∑

q∈Q\F
wqrṼ

(n)
k,pq ∀r ∈ R′ (9)

Let us now denote with sr the row vector obtained by col-
lapsing on one dimension all elements of the blocks S∗,pr held
by the activated recovery processor (p, r)—with r∈R′.

Let us also denote with ṽf the row vector obtained by col-
lapsing on one dimension all elements of the blocks Ṽ∗,pf held
by the faulty processor (p, f), with f ∈ F . Each vector ṽf has
Kn2

b elements. These are the unknowns to be recovered.

3[Online]. Available: https://www.mpich.org/about/overview/
4[Online]. Available: https://software.intel.com/en-us/mpi-library

The recovery algorithm must solve:

W ′ ·

⎡⎢⎢⎣
ṽf1

...

ṽfF

⎤⎥⎥⎦ =

⎡⎢⎢⎣
sr1

...

srF

⎤⎥⎥⎦ (10)

that is, a batch of Kn2
b small linear systems, all characterised by

the same F × F coefficient matrix W ′. The memory overhead
introduced by the recovery is ascribable to the matrix W ′, as
it is the only additional structure that needs to be maintained.
In general, the dimension of such a matrix should be small
(Fn), entailing not only a limited additional memory occu-
pation but also the fact that W ′ can be factorised (or inverted)
with a very small computational effort; then, solving the batch
of linear systems requires a relatively limited number of flops
(2F 2 ·Kn2

b).Nonetheless, depending on how we implement the
recovery process, such a solving step may cause a relevant
memory occupation.

For example, a naive “centralised” strategy to recover multiple
faults, where a recovery node r0 ∈ R′ is elected coordinator, is
shown in Fig. 6(b). Node r0 must first perform a reduce operation
to collect all the blocks from the other recovery nodes in R′,
solve all the systems in (10), and send the results back. Though
flops should not be an issue, the coordinator node might not
have enough memory to store the blocks from all other activated
recovery processors. Also, communications may represent a
bottleneck in such a centralised implementation. Alternatively,
the coordinator could iteratively collect portions of blocks from
the other nodes, solve the correspondent systems and send
back the results. This idea reduces the memory requirement
on the coordinator but increases the number of messages, and
ultimately the synchronisation points.

To overcome the limitations of a centralised solution, we
resort to a distributed recovery strategy. Algorithm 2 illustrates it
through pseudo-code. The algorithm is executed on any survived
computing or activated recovery processor (p, q).

In particular, for each activated recovery processor, all sur-
vived computing nodes pre-multiply their blocks for the weights
(line 4) and perform a reduce operation to compute (9) in a
distributed fashion (line 7). As a result, the constant terms in
(10) are now scattered across the activated recovery nodes.
Instead of collecting them on a single recovery coordinator
for a centralised resolution and sending the results back (as in
Fig. 6(b)), the algorithm adopts a distributed resolution strategy.
Indeed, solving the linear systems in (10) is equivalent to solving
the following:

Z ·

⎡⎢⎢⎣
s1
...

sF

⎤⎥⎥⎦ =

⎡⎢⎢⎣
ṽ1

...

ṽF

⎤⎥⎥⎦ (11)

where Z = W ′−1. Therefore, the algorithm states that all acti-
vated recovery processors pre-multiply theirS∗,pq blocks for the
corresponding coefficients of Z (line 12) and perform a reduce
operation to compute (11) in a distributed fashion (line 13).

Fig. 6(c) shows how the checksum blocks are exchanged by
the activated recovery processors. Obviously, the number of sent

https://www.mpich.org/about/overview/
https://software.intel.com/en-us/mpi-library


1314 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 7, JULY 2024

Fig. 6. Different strategies to recover from multiple faults involving the grey blocks in (a) centralised recovery approach (b), where the recovery node r0 is
elected coordinator and thus collects the blocks on the other nodes to reconstruct the state of the fallen ones), and the distributed strategy of Algorithm 2 (c).

Algorithm 2: Distributed Recovery Strategy Executed on a
Generic Processor (p, q), With p ∈ [0, P ), q ∈ Q ∪R′.
Input: W ′, weights matrix for the faulty processors;
Z = W ′−1; V∗,pq , blocks of V̂ assigned to processor
(p, q);R′, column indexes of activated recovery processors
Output: V∗,pr, blocks of V̂ reconstructed after the fault and
assigned to processor (p, r) with p ∈ [0, P ), r ∈ R′.;
1: procedure IMeRecoverW ′, V∗,pq, . . .
2: for each (p, r)|r ∈ R′ do
3: if q ∈ Q then
4: S∗,pr = −wqrV∗,pq
5: end if
6: row(p,Q+r) ← group (p, r) with all survived

computing processors on the same row of (p, q)
7: REDUCE(S∗,pr, row(p,Q+r),root=(p, r))
8: end for
9: if q ∈ R′ then

10: row(p,R′) ← all activated recovery processors on the
same row of (p, q)

11: for each (p, r)|r ∈ R′ do
12: V∗,pq = zrpS∗,pq
13: REDUCE(V ∗,pq, row(p,R′),root=(p, r))
14: if V∗,pq is a diagonal block then
15: V∗,pq = V∗,pq − I
16: end if
17: End for
18: end if
19: end procedure

messages is higher w.r.t a centralised implementation, but the
overhead of memory occupation is virtually zero.

VIII. EXPERIMENTAL EVALUATION

A. Experimental Setup

We evaluate the performance of C-IMeFT and IMERECOVER

algorithms on CRESCO6,5 a HPC cluster built by ENEA, and
composed of 434 nodes; each one with two sockets of 24 cores

5[Online]. Available: https://www.eneagrid.enea.it/CRESCOportal/

(2.10 GHz Intel Xeon Platinum 8160) and 192 GB RAM. Phys-
ical nodes are interconnected by an Intel Omni-Path 100 Gb/s
network. Our implementation is included in a prototype library
of IMe-based functions available on GitHub.6 The whole library
is written in C language and all communication/synchronization
aspects are managed with MPI.

In order to evaluate the performance of our approach, we
compare it with two existing fault-tolerant linear system solvers:
� The PDGESV routine of Scalable LAPACK (ScaLA-

PACK),7 which implements a Gauss-Jordan solver opti-
mised for the execution on HPC environments; we conve-
niently modified the function to guarantee fault tolerance
through periodic diskless C/R [11]. In each experiment,
the checkpointing frequency is calculated as prescribed by
the foundational work of Young [44]. In the following, we
refer to this solution by using the acronym (SPK+C/R).

� The Fault Tolerant Linear Algebra (FT-LA) library,8 which
implements the ABFT linear solver described in [27]. This
library is composed of a subset of ScaLAPACK routines
enhanced to intrinsically protect the right factor during
the matrix factorisation. The resilience of the left factor is
instead obtained through an efficient checkpointing mech-
anism.

B. Evaluation Approach

To clearly state the strengths and weaknesses of our method,
we need to first evaluate the performance enhancements intro-
duced by the compressed version of the algorithm. Then, both
the failure-free and recovery overhead must be evaluated. In
particular,we are not just interested in the speed-up that our
parallel implementation can reach but also in the evaluation of its
memory occupation. Also, it is important to investigate the entity
of the reconstruction error, whenever the recovery mechanism
has to intervene. For these reasons, we structure the tests into
fourgroups.

Group 1. Performance enhancements . In order to clearly
state the enhancements brought by the proposed technique, we
compare C-IMeFT with its previous version IMeFT [13], which
required to operate on a matrix that is initially twice the size ofA.

6[Online]. Available: https://github.com/orgs/Reference-IMe
7[Online]. Available: https://github.com/Reference-scaLAPACK
8[Online]. Available: https://icl.utk.edu/ft-la/index.html

https://www.eneagrid.enea.it/CRESCOportal/
https://github.com/orgs/Reference-IMe
https://github.com/Reference-scaLAPACK
https://icl.utk.edu/ft-la/index.html


LORETI et al.: ROLLBACK-FREE RECOVERY FOR A HIGH PERFORMANCE DENSE LINEAR SOLVER WITH REDUCED MEMORY FOOTPRINT 1315

Fig. 7. Comparison of runtime (lines) and memory occupation (bars) of C-IMeFT with its previous version IMeFT.

The comparison is conducted in terms of both runtime and peak
memory occupation when solving a set of randomly generated
dense linear matrices with increasing sizes. For the measurement
of the execution times, we employed the MPI_WTIME directive.9

Group 2. Scalability: We evaluate the performance (in terms
of time to compute the solution) of C-IMeFT, SPK+C/R and
FT-LA when solving a linear system of fixed dimension on
an increasing number of computing processors, i.e., we per-
form a strong scalability test. Then, we also compare the weak
scalability by keeping constant the load on each processor and
progressively increasing both the matrix size and the number
of computing cores. In this way, we evaluate the algorithms’
ability to solve bigger systems in the same time whenever more
computing nodes are available. In order to better understand the
advantages and weaknesses of any approach, for both strong
and weak scalability it is important to compare the fault-free
performance, and then introduce an increasing number of faults
to assess the trends of the recovery overhead. FT-LA implemen-
tation offers a performance test mechanism that simulates the
occurrence of a fault. Likewise, our evaluation simulates faults
for C-IMeFT and SPK+C/R. In case of multiple faults, we imag-
ine them to happen contemporarily, as to simulate the case of
malfunctions with overlapping failure periods. We test situations
with an increasing number of faults from 0 (fault-free case) to
24. The latter corresponds to a hard fault that involves a whole
computing socket of the considered infrastructure. As regards
the spatial distribution of the faults, we randomly choose the row
of processors involved in the malfunction. Analogously, we ran-
domly choose the time instant in which the set of faults occurs.

Group 3. Memory occupation: We compare the peak memory
footprints of the three approaches, for increasing number of
computing processors and matrix dimension. These measure-
ments are based on the values provided by the architecture’s job
scheduler, IBM Spectrum Load Sharing Facility (LSF).10

Group 4. Reconstruction Error: For the sake of completeness,
we also analyse the error that is introduced in C-IMeFT com-
putation when the occurrence of an error triggers the recovery
procedure. We, therefore, compare the solution computed by a
fault-free execution, with that obtained after the occurrence of
a fault. In particular, we analyse the impact of the location in

9[Online]. Available: https://www.mpi-forum.org/docs/mpi-4.0/mpi40-
report.pdf

10[Online]. Available: https://www.ibm.com/docs/en/spectrum-lsf/10.1.
0?topic=components-lsf-documentation

the matrix and the iteration at which the fault occurs on such a
reconstruction error.

C. Results

The results of the four groups of tests are illustrated in the
following.

Results of Group 1. Performance enhancements . Fig. 7 com-
pares the peak memory occupation and runtime of C-IMeFT with
those of its previous version, IMeFT, when solving matrices of
increasing size. Three different execution cases are considered,
involving 64, 144 and 576 processors.

As expected, the execution times (illustrated through lines
in Fig. 7) of C-IMeFT and IMeFT are comparable. Indeed, the
proposed performance enhancements do not reduce the number
of flops but rather focus on reducing the dimension of the matrix
on which the algorithm operates. Therefore, the key advantage
of C-IMeFT stands precisely in the reduced memory footprint
(shown through bars in Fig. 7). Given the superiority of C-IMeFT
in all the considered cases, we refer to this enhanced version in
all the following tests.

Results of Group 2. Scalability: Fig. 8 compares the strong
scalability of C-IMeFT, SPK+C/R and FT-LA when increasing
number of faults occur while solving dense linear systems
with sizes n = 11520, n = 23040, n = 46080, corresponding
to a memory occupation of around 500 MB, 2 GB and 8 GB,
respectively. Each computation time in the graph is aver-
aged over 5 different matrices for each size and 10 different
runs.

It can be noted that for FT-LA and C-IMeFT some of the bars
do not show the darker colours (corresponding to the executions
with higher numbers of faults). This is due to different reasons
for the two algorithms. For FT-LA the current implementation
does not support multiple faults, so the graphs report only the
computing time of the no-fault and the single-fault situations. For
C-IMeFT instead, all the fault cases from 0 to 24 are reported but
in some situations, it is not possible to appreciate the difference
between the execution time of the 4, 8 and 24 fault cases. Indeed,
the time to recover from 24 faults is always just slightly higher
than the time to recover from one. This is a desired behaviour,
because it shows that the recovery time is not heavily influenced
by the number of nodes whose state must be reconstructed.
Therefore, the histograms show that C-IMeFT is generally able
to outperform the other two algorithms, especially when many
faults occur.

https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.ibm.com/docs/en/spectrum-lsf/10.1.0{?}topic$=$components-lsf-documentation
https://www.ibm.com/docs/en/spectrum-lsf/10.1.0{?}topic$=$components-lsf-documentation


1316 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 7, JULY 2024

Fig. 8. Strong scalability analysis of C-IMeFT, SPK+C/R and FT-LA.

Fig. 9. Weak scalability analysis of C-IMeFT, SPK+C/R and FT-LA.

Similar trends are also visible when analysing the weak scal-
ability. Fig. 9 reports the execution times (again averaged on 5
matrices and 10 repetitions) of the three algorithms when we in-
crease both the matrix dimension and the computing processors
so that the load on each computing node is kept constant: Fig. 9
reports the performance when each processor works on a portion
of the original matrix of dimensions 320 × 320, 480 × 480 and
640 × 640. The four graphs show that C-IMeFT outperforms
SPK + C/R even for low values of faults, especially when the
load on each processor is contained. Furthermore, when fault
occurrence is high (around 4 or higher) C-IMeFT is almost
always the best-performing algorithm.

Again, we underline that the current implementation of FT-LA
does not support multiple faults, so the graphs report only the
computing time of the no-fault and the single-fault situations.

Results of Group 3. Memory occupation: The graphs of Fig. 10
compare the peak memory occupation caused by each of the
three considered algorithms when solving a system of fixed
size on an increasing number of computing nodes. All values
are averaged on 5 different matrices for each chosen matrix
dimension and 10 repetitions. Fig. 10(a), (b), and (c) focus on
the fault-free performance, i.e., the memory footprint of each
algorithm when the fault tolerance mechanism is present but
no fault occurs. Conversely, Fig. 10(d), (e), and (f) compare the
memory occupation when a fault occurs and is recovered. All the
graphs highlight the capability of C-IMeFT to sensibly reduce
the memory occupation w.r.t to ScaLAPACK+C/R. However,
it can be noted that for big matrices C-IMeFT performs only

slightly better than FT-LA. Indeed, C-IMeFT halves the memory
overhead of the checksum matrix w.r.t. FT-LA: when the matrix
of coefficients is big, its memory occupation dominates that of
the checksums, and the advantage of C-IMeFT appears more
limited.

Results of Group 4. Reconstruction Error: Fig. 11 shows
the difference between the solution computed by a fault-free
execution of C-IMeFT and that of a computation in which the
occurrence of a fault triggers the execution of the IMERECOVER

procedure. For each matrix size, the results are averaged over five
executions with different randomly generated matrices. Overall,
the graphs show a rather contained error, rarely reaching the
order of 10−8.

Fig. 11(a) compares the errors when the fault occurs at the
same iteration but involves different locations of the matrix V .
In general, a fault causing a hole at the bottom right of V seems
to cause a slightly higher error than a top left hole. This is indeed
expected because values at the bottom right of V are involved
in initial iterations and contribute to all the following.

Fig. 11(b) instead, shows the difference in the impact of a
fault occurring at the beginning of the computation (i.e., initial
iterations), w.r.t. one towards the end. For all matrix dimensions,
the slightly higher values of errors at the end of the computation
suggest the presence of a desirable cancellation phenomenon,
i.e., an error at the beginning seems to be progressively reduced
during computation. Further investigations—out of the scope of
this work—are needed in order to assess the precise nature and
entity of this phenomenon.



LORETI et al.: ROLLBACK-FREE RECOVERY FOR A HIGH PERFORMANCE DENSE LINEAR SOLVER WITH REDUCED MEMORY FOOTPRINT 1317

Fig. 10. Peak memory occupation of C-IMeFT, SPK+C/R and FT-LA. (a), (b), and (c) refer to the fault-free condition; (d), (e), and (f) to the occurrence and
recovery from one fault.

Fig. 11. Comparison of norm-wise reconstruction error of IMeRecover procedure when (a) the fault occurs at different points in time during the computation,
and (b) when it involves different matrix elements.

IX. DISCUSSION

The experimental evaluation highlights a series of key ad-
vantages when employing C-IMeFT on an HPC infrastructure.
Nonetheless, some practical aspects need to be further discussed.

First of all, environmental conditions such as the expected
frequency of faults, must always be considered when choosing a
fault-tolerant strategy in an HPC context. Indeed, the proposed
approach states that, in order to be guaranteed from up to R
faults, P ×R additional nodes must be involved in the compu-
tation from the beginning. C-IMeFT shows the great advantage
that the faults can be located anywhere, and (as shown in Fig.
4) in many cases, with P ×R checksum nodes, we can recover
from more than R faults. On the other hand, the strategy comes
with the drawback of an increased cost of running due to spare
nodes that must be allocated and take part in the computation
even if no fault actually happens. Therefore, the cost of employ-
ing C-IMeFT must always be evaluated w.r.t. the probability of

fault occurrence for the underlying infrastructure. Furthermore,
analogously to diskless C/R, C-IMeFT cannot cancel the risk of
having to recompute everything from scratch in case of losing
all the nodes. If the infrastructure is such that this circumstance
is probable, C/R on a reliable storage is certainly preferrable.

Another point of discussion regards the nature of the
underlying HPC system. The proposed algorithm was designed
to run on a network of interconnected CPUs. Recent works
have shown how graphical accelerators can be used to boost the
performance of linear algebra algorithms [45], [46]. C-IMeFT
too can be adapted to run on a GPU (some recent attempts exist
in this regard [47], [48]), but the nature of graphical accelerators
can render the adoption of an ABFT technique such as C-IMeFT
useless: hard faults involving specific GPU cores are rather
infrequent events, whereas the failure of an entire GPU is more
probable. In the latter case, the whole computation would be
lost, making (again) the adoption of C/R on reliable storage
preferable w.r.t. C-IMeFT. A different case is the execution on



1318 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 7, JULY 2024

a multi-GPUs system: C-IMeFT could—in theory—be adapted
to recover the state of faulty GPUs. However, the current
replication scheme would probably need to be redefined in
order to reduce the number of additional nodes for recovery.

X. CONCLUSION

In the last years, the reliability of supercomputers has not in-
creased at the same pace as their impressive computing capabil-
ities. ABFT is one of the (many) ways to provide fault tolerance
to HPC systems. In this paper, we have concentrated attention
on the resolution of dense, unstructured, linear systems—a
task common to many scientific fields—and we have described
how an existing solver can be enhanced to reduce its memory
footprint and, contemporary, intrinsically provide fault tolerance
to multiple anywhere-located faults at the price of a limited
overhead. We have also proposed a rollback-free distributed
approach to overcome the limitations of a centralised recovery
strategy, and we have conducted an extensive experimental
evaluation on a real-life HPC environment to asses the algo-
rithm’s performance in terms of scalability, memory footprint
and reconstruction error. The analysis suggests that our method
is generally able to outperform state-of-the-art thecniques, in
particular when fault tolerance to a significant number of faults
is required. Moreover, the memory occupation investigations
highlight a desirable reduced footprint both in fault-free condi-
tions and when a fault occurs. Finally, the reconstruction error
analysis shows that the application of the recovery method has
a limited impact on the final result.

As energy consumption is becoming a matter of primary
concern in HPC environments, we plan to further investigate
the advantages that IMe can bring on this front. A preliminary
investigation seems to show that the promising results obtained
in terms of reducing the computation time translate into equally
valuable improvements in the containment of power consump-
tion. In the near future, we plan to deepen the analysis of the
energy gains achievable through our technique.

Moreover, the approach to fault tolerance employed in this
work is based on the computation (and subsequent availability)
of checksums. This feature could—in principle—be easily used
to also highlight and repair soft errors (inducing variations in
the results without causing a complete node failure) during the
computation. Future works will deepen the concrete feasibility
of employing this technique to tackle soft errors.

Related to this topic, the implementation of C-IMeFT on
GPUs could be valuable. Indeed, differently form hard faults,
soft errors involving only some GPU cores are not infrequent.
Once a soft error management strategy is theoretically defined
for the IMe algorithm, it could be interesting to evaluate the
performance of a GPU implementation.

ACKNOWLEDGMENTS

The computing resources and the related technical support
used for this work have been provided by CRESCO/ENEAGRID
High Performance Computing infrastructure and its staff.
CRESCO/ENEAGRID is funded by ENEA and by Italian and
European research programmes. This work has been realized
by Daniela Loreti with a research contract co-financed by the

European Union - PON Ricerca e Innovazione 2014-2020 ai
sensi dell’art. 24, comma 3, lett. a), della Legge 30 dicembre
2010, n. 240 e s.m.i. e del D.M. 10 agosto 2021 n. 1062. The
authors want to acknowledge also the CINECA Consortium for
the availability of the HPC resources and the technical support
provided in the framework of the IscraC project En-FRLS.

REFERENCES

[1] M. Malms et al., “ETP4HPC’s SRA 5 - strategic research agenda for
high-performance computing in Europe - 2022,” 2022. [Online]. Available:
https://doi.org/10.5281/zenodo.7347009

[2] B. Schroeder and G. Gibson, “A large-scale study of failures in
high-performance computing systems,” IEEE Trans. Dependable Se-
cure Comput., vol. 7, no. 4, pp. 337–350, Fourth Quart. 2010,
doi: 10.1109/TDSC.2009.4.

[3] F. Cappello, A. Geist, W. Gropp, S. Kale, B. Kramer, and M. Snir, “Toward
exascale resilience: 2014 update,” Supercomputing Front. Innov., vol. 1,
no. 1, pp. 5–28, Apr. 2014, doi: 10.14529/jsfi140101.

[4] M. Bouguerra, A. Gainaru, L. A. Bautista-Gomez, F. Cappello, S. Mat-
suoka, and N. Maruyama, “Improving the computing efficiency of HPC
systems using a combination of proactive and preventive checkpointing,” in
Proc. IEEE 27th Int. Symp. Parallel Distrib. Process., 2013, pp. 501–512,
doi: 10.1109/IPDPS.2013.74.

[5] G. Burns, R. Daoud, and J. Vaigl, “LAM: An open cluster environment
for MPI,” in Proc. Supercomputing Symp., 1994, pp. 379–386.

[6] C. Wang, F. Mueller, C. Engelmann, and S. L. Scott, “A job pause
service under LAM/MPI BLCR for transparent fault tolerance,” in
Proc. IEEE 21th Int. Parallel Distrib. Process. Symp., 2007, pp. 1–10,
doi: 10.1109/IPDPS.2007.370307.

[7] P. V. Cardoso and P. P. Barcelos, “Definition of an architecture for dynamic
and automatic checkpoints on apache spark,” in Proc. IEEE 37th Symp.
Reliable Distrib. Syst., 2018, pp. 271–272.

[8] M. Schulz, G. Bronevetsky, R. Fernandes, D. Marques, K.
Pingali, and P. Stodghill, “Implementation and evaluation of a scalable
application-level checkpoint-recovery scheme for MPI programs,” in
Proc. ACM/IEEE SC2004 Conf. High Perform. Netw. Comput., 2004,
p. 38, doi: 10.1109/SC.2004.29.

[9] G. Bronevetsky, D. Marques, K. Pingali, and P. Stodghill, “Auto-
mated application-level checkpointing of MPI programs,” in Proc. ACM
SIGPLAN Symp. Princ. Pract. Parallel Program., 2003, pp. 84–94,
doi: 10.1145/781498.781513.

[10] K. Huang and J. A. Abraham, “Algorithm-based fault tolerance for matrix
operations,” IEEE Trans. Comput., vol. 33, no. 6, pp. 518–528, Jun. 1984,
doi: 10.1109/TC.1984.1676475.

[11] J. S. Plank, K. Li, and M. A. Puening, “Diskless checkpointing,” IEEE
Trans. Parallel Distrib. Syst., vol. 9, no. 10, pp. 972–986, Oct. 1998,
doi: 10.1109/71.730527.

[12] M. Artioli, D. Loreti, and A. Ciampolini, “Fault tolerant high performance
solver for linear equation systems,” in Proc. IEEE 39th Symp. Reliable
Distrib. Syst., 2019, pp. 113–11309.

[13] D. Loreti, M. Artioli, and A. Ciampolini, “Solving linear systems on
high performance hardware with resilience to multiple hard faults,”
in Proc. IEEE Int. Symp. Reliable Distrib. Syst., 2020, pp. 266–275,
doi: 10.1109/SRDS51746.2020.00034.

[14] M. Artioli and F. Filippetti, “IMe: A. general method to analyse linear
systems and electric circuits,” in Software for Electrical Engineering
Analysis and Design V. Ashurst, Southampton, U.K.: WIT Press, 2001,
pp. 147–162. [Online]. Available: https://www.witpress.com/elibrary/wit-
transactions-on-engineering-sciences/31/3346

[15] F. Filippetti and M. Artioli, “IMe: 4-term formula method for the symbolic
analysis of linear circuits,” IEEE Trans. Circuits Syst., vol. 51, no. 3,
pp. 526–538, Mar. 2004, doi: 10.1109/TCSI.2003.822374.

[16] S. S. Mukherjee, J. S. Emer, and S. K. Reinhardt, “The soft error problem:
An architectural perspective,” in Proc. IEEE 11th Int. Conf. High-Perform.
Comput. Architecture, 2005, pp. 243–247, doi: 10.1109/HPCA.2005.37.

[17] I. P. Egwutuoha, D. Levy, B. Selic, and S. Chen, “A survey of fault tolerance
mechanisms and checkpoint/restart implementations for high performance
computing systems,” J. Supercomputing, vol. 65, no. 3, pp. 1302–1326,
2013, doi: 10.1007/s11227-013-0884-0.

[18] O. O. Sudakov, I. S. Meshcheriakov, and Y. V. Boyko, “CHPOX: Transpar-
ent checkpointing system for Linux clusters,” in Proc. IEEE 4th Workshop
Intell. Data Acquisition Adv. Comput. Systems: Technol. Appl., 2007,
pp. 159–164.

https://doi.org/10.5281/zenodo.7347009
https://dx.doi.org/10.1109/TDSC.2009.4
https://dx.doi.org/10.14529/jsfi140101
https://dx.doi.org/10.1109/IPDPS.2013.74
https://dx.doi.org/10.1109/IPDPS.2007.370307
https://dx.doi.org/10.1109/SC.2004.29
https://dx.doi.org/10.1145/781498.781513
https://dx.doi.org/10.1109/TC.1984.1676475
https://dx.doi.org/10.1109/71.730527
https://dx.doi.org/10.1109/SRDS51746.2020.00034
https://www.witpress.com/elibrary/wit-transactions-on-engineering-sciences/31/3346
https://www.witpress.com/elibrary/wit-transactions-on-engineering-sciences/31/3346
https://dx.doi.org/10.1109/TCSI.2003.822374
https://dx.doi.org/10.1109/HPCA.2005.37
https://dx.doi.org/10.1007/s11227-013-0884-0


LORETI et al.: ROLLBACK-FREE RECOVERY FOR A HIGH PERFORMANCE DENSE LINEAR SOLVER WITH REDUCED MEMORY FOOTPRINT 1319

[19] S. Osman, D. Subhraveti, G. Su, and J. Nieh, “The design and implementa-
tion of zap: A system for migrating computing environments,” in Proc. 5th
Symp. Operating Syst. Des. Implementation, 2002, pp. 361–376. [Online].
Available: http://www.usenix.org/events/osdi02/tech/osman.html

[20] W. Bland, A. Bouteiller, T. Hérault, J. Hursey, G. Bosilca, and
J. J. Dongarra, “An evaluation of user-level failure mitigation sup-
port in MPI,” Computing, vol. 95, no. 12, pp. 1171–1184, 2013,
doi: 10.1007/s00607-013-0331-3.

[21] G. E. Fagg and J. J. Dongarra, “FT-MPI: Fault tolerant MPI, supporting
dynamic applications in a dynamic world,” in Recent Advances in Parallel
Virtual Machine and Message Passing Interface, Balatonfüred, Hungary:
Springer, 2000, pp. 346–353, doi: 10.1007/3-540-45255-9_47.

[22] G. Bosilca et al., “MPICH-V: Toward a scalable fault tolerant MPI
for volatile nodes,” in Proc. ACM/IEEE Conf. Supercomputing, 2002,
pp. 31:1–31:18, doi: 10.1109/SC.2002.10048.

[23] A. Bouteiller, G. Bosilca, and J. J. Dongarra, “Redesigning the message
logging model for high performance,” Concurrency Computation: Pract.
Experience, vol. 22, no. 16, pp. 2196–2211, 2010, doi: 10.1002/cpe.1589.

[24] M. Gholami, F. Schintke, and T. Schütt, “Checkpoint scheduling for shared
usage of burst-buffers in supercomputers,” in Proc. 47th Int. Conf. Parallel
Process. Companion, 2018, pp. 1–10, doi: 10.1145/3229710.3229755.

[25] Z. Chen et al., “Fault tolerant high performance computing by a coding
approach,” in Proc. 10th ACM SIGPLAN Symp. Princ. Pract. Parallel
Program., 2005, pp. 213–223, doi: 10.1145/1065944.1065973.

[26] Z. Chen, “Scalable techniques for fault tolerant high performance com-
puting,” Ph.D. dissertation, Univ. Tennesse, Knoxville, TN, USA, 2006.

[27] A. Bouteiller, T. Hérault, G. Bosilca, P. Du, and J. J. Dongarra, “Algorithm-
based fault tolerance for dense matrix factorizations, multiple failures and
accuracy,” ACM Trans. Parallel Comput., vol. 1, no. 2, pp. 10:1–10:28,
2015, doi: 10.1145/2686892.

[28] C. J. Anfinson and F. T. Luk, “A linear algebraic model of algorithm-based
fault tolerance,” IEEE Trans. Comput., vol. 37, no. 12, pp. 1599–1604,
Dec. 1988, doi: 10.1109/12.9736.

[29] P. Banerjee et al., “Algorithm-based fault tolerance on a hypercube mul-
tiprocessor,” IEEE Trans. Comput., vol. 39, no. 9, pp. 1132–1145, 1990,
doi: 10.1109/12.57055.

[30] D. L. Boley, R. P. Brent, G. H. Golub, and F. T. Luk, “Algorithmic fault
tolerance using the Lanczos method,” SIAM J. Matrix Anal. Appl., vol. 13,
no. 1, pp. 312–332, 1992, doi: 10.1137/0613023.

[31] Z. Chen and J. J. Dongarra, “Algorithm-based fault tolerance for fail-
stop failures,” IEEE Trans. Parallel Distrib. Syst., vol. 19, no. 12,
pp. 1628–1641, Dec. 2008, doi: 10.1109/TPDS.2008.58.

[32] Z. Chen, “Algorithm-based recovery for iterative methods without check-
pointing,” in Proc. 20th ACM Int. Symp. High Perform. Distrib. Comput.,
2011, pp. 73–84, doi: 10.1145/1996130.1996142.

[33] T. Davies and Z. Chen, “Fault tolerant linear algebra: Recovering from fail-
stop failures without checkpointing,” in Proc. IEEE 24th Int. Symp. Paral-
lel Distrib. Process., 2010, pp. 1–4, doi: 10.1109/IPDPSW.2010.5470775.

[34] D. Hakkarinen and Z. Chen, “Algorithmic cholesky factorization fault
recovery,” in Proc. IEEE 24th Int. Symp. Parallel Distrib. Process., 2010,
pp. 1–10, doi: 10.1109/IPDPS.2010.5470436.

[35] P. Du, A. Bouteiller, G. Bosilca, T. Herault, and J. Dongarra, “Algorithm-
based fault tolerance for dense matrix factorizations,” in Proc. 17th
ACM SIGPLAN Symp. Princ. Pract. Parallel Prog., 2012, pp. 225–234,
doi: 10.1145/2145816.2145845.

[36] C. Coti, L. Petrucci, and D. A. T. González, “Fault-tolerant LU fac-
torization is low cost,” in Euro-Par. Berlin, Germany: Springer, 2021,
pp. 536–549.

[37] Y. Zhu, Y. Liu, and G. Zhang, “FT-PBLAS: Pblas-based fault-tolerant
linear algebra computation on high-performance computing systems,”
IEEE Access, vol. 8, pp. 42674–42688, 2020.

[38] V. L. Fèvre, T. Hérault, J. Langou, and Y. Robert, “A comparison of several
fault-tolerance methods for the detection and correction of floating-point
errors in matrix-matrix multiplication,” in Proc. Eur. Conf. Parallel Pro-
cess., 2020, pp. 303–315.

[39] X. Kang, D. F. Gleich, A. H. Sameh, and A. Grama, “Adaptive erasure
coded fault tolerant linear system solver,” ACM Trans. Parallel Comput.,
vol. 8, no. 4, pp. 21:1–21:19, 2021.

[40] X. Kang, D. F. Gleich, A. H. Sameh, and A. Grama, “Distributed fault
tolerant linear system solvers based on erasure coding,” in Proc. IEEE
37th Int. Conf. Distrib. Comput. Syst., 2017, pp. 2478–2485.

[41] F. Ciampolini, “Un metodo di soluzione dei circuiti lineari,”
L’Elettrotecnica, vol. L, no. 10, 1963.

[42] N. Losada, P. González, M. J. Martín, G. Bosilca, A. Bouteiller, and
K. Teranishi, “Fault tolerance of MPI applications in exascale sys-
tems: The ULFM solution,” Future Gener. Comput. Syst., vol. 106,
pp. 467–481, 2020.

[43] G. E. Fagg et al., “Process fault tolerance: Semantics, design and appli-
cations for high performance computing,” Int. J. High Perform. Comput.
Appl., vol. 19, no. 4, pp. 465–477, 2005.

[44] J. W. Young, “A first order approximation to the optimum checkpoint
interval,” Commun. ACM, vol. 17, no. 9, pp. 530–531, Sep. 1974.

[45] T. Dong, A. Haidar, P. Luszczek, J. A. Harris, S. Tomov, and J. J. Dongarra,
“LU factorization of small matrices: Accelerating batched DGETRF on the
GPU,” in Proc. EEE Int. Conf. High Perform. Comput. Commun., IEEE
6th Int. Symp. Cyberspace Saf. Secur., IEEE 11th Int. Conf. Embedded
Softw. Syst., 2014, pp. 157–160.

[46] A. Haidar, A. Abdelfattah, M. Zounon, S. Tomov, and J. Dongarra,
“A guide for achieving high performance with very small matrices on
GPU: A case study of batched LU and Cholesky factorizations,” IEEE
Trans. Parallel Distrib. Syst., vol. 29, no. 5, pp. 973–984, May 2018,
doi: 10.1109/TPDS.2017.2783929.

[47] G. Cortesi, “Analisi e uso di architetture GPU per la risoluzione di pic-
coli sistemi lineari in ambiente HPC,” Bachelor’s thesis, Univ. Bologna,
Bologna, Italy, 2019.

[48] N. Thomopulos, “Sviluppo e sperimentazione di algoritmi per la soluzione
di sistemi lineari su GP-GPU” Master’s thesis, Univ. Bologna, Bologna,
Italy, 2020.

Daniela Loreti received the PhD degree in computer
science in 2016. She is currently a junior assistant
professor of operating systems with the Department
of Computer Science and Engineering, University
of Bologna, Bologna, Italy. Her research interests
include distributed systems for Big Data management
and stream processing and parallel paradigms for high
performance computing. She is also interested in the
parallelization of artificial intelligence techniques in
the fields of machine learning, process mining, and
expert systems.

Marcello Artioli received the PhD degree in elec-
trical engineering. He is currently a researcher with
ENEA, the Italian National Agency for New Tech-
nologies, Energy and Sustainable Economic Devel-
opment, where he works as system integrator and data
analyst. His research interests include high perfor-
mance computing, fault diagnosis, and signal analy-
sis. He is involved in several international projects,
and due to his interdisciplinary vocation, he has
successfully contributed to projects outside his core
research domain.

Anna Ciampolini received the PhD degree in com-
puter science and engineering. She is currently a
full professor with the Department of Computer Sci-
ence and Engineering, University of Bologna, where
she teaches operating systems. Her research interests
include operating systems, virtualization techniques
and cloud computing, parallel and distributed pro-
gramming, automatic management of Cloud com-
puting systems, distributed platforms for Big Data
analysis, distributed artificial intelligence, with par-
ticular regard to distributed automated reasoning. She

is involved in several international projects, also in coordination roles. Her
research interests include application and theoretical aspects as shown by her
broad bibliographic production.

Open Access funding provided by ‘Alma Mater Studiorum - Università di Bologna’ within the CRUI CARE Agreement

http://www.usenix.org/events/osdi02/tech/osman.html
https://dx.doi.org/10.1007/s00607-013-0331-3
https://dx.doi.org/10.1007/3-540-45255-9_47
https://dx.doi.org/10.1109/SC.2002.10048
https://dx.doi.org/10.1002/cpe.1589
https://dx.doi.org/10.1145/3229710.3229755
https://dx.doi.org/10.1145/1065944.1065973
https://dx.doi.org/10.1145/2686892
https://dx.doi.org/10.1109/12.9736
https://dx.doi.org/10.1109/12.57055
https://dx.doi.org/10.1137/0613023
https://dx.doi.org/10.1109/TPDS.2008.58
https://dx.doi.org/10.1145/1996130.1996142
https://dx.doi.org/10.1109/IPDPSW.2010.5470775
https://dx.doi.org/10.1109/IPDPS.2010.5470436
https://dx.doi.org/10.1145/2145816.2145845
https://dx.doi.org/10.1109/TPDS.2017.2783929


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


