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Divide&Content: A Fair OS-Level Resource Manager
for Contention Balancing on NUMA Multicores
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Abstract—Chip multicore processors (CMPs) constitute the
cherry-picked architecture for high-performance servers employed
in supercomputers and cloud datacenters. In the last few years,
Non-Uniform Memory Access (NUMA) multicore systems have
become the dominant choice in these domains. Regardless of the
technology advances enabling to pack an increasing number of
cores and bigger caches on the same chip, contention for shared
resources still represents an important challenge for the system
software. Cores in CMPs typically share multiple resources, such
as the last-level cache (LLC) or a DRAM controller. The competi-
tion for the usage of these resources leads to uneven performance
degradation across co-running applications. Previous research has
demonstrated that contention effects on CMPs can be mitigated
via smart partitioning of the LLC or by distributing threads across
groups of cores so as to even out the degree of competition on
multiple LLCs or memory nodes. However, most existing resource-
management strategies fail to effectively combine both contention-
mitigating techniques, thus providing suboptimal results on NUMA
multicores. In this paper, we analyze how to best combine these
techniques to improve system-wide fairness, and, based on the con-
clusions of our analysis, propose a fair OS-level NUMA-aware re-
source manager that leverages dynamic contention-aware thread-
to-socket mappings and cache-partitioning. We implemented our
resource manager in the Linux kernel and assessed its effectiveness
on a real dual-socket system featuring Intel Skylake processors.
Our results show that it reduces unfairness by more than 17% on
average compared to Linux and a state-of-the-art NUMA-aware
resource manager.

Index Terms—Multicore processors, NUMA, cache-partitioning,
fairness, linux kernel, resource management, operating system.

I. INTRODUCTION

EVER since their introduction, multicore processors have
incessantly grown in popularity. Today, they constitute the

architecture of choice for servers in cloud datacenters [1], [2],
[3], as well as the dominant general-purpose solution for HPC
platforms [4]. In both scenarios, NUMA multicores have become
widespread due to their decentralized and scalable nature [5].
They comprise multiple memory nodes, each one featuring a set
of cores that often share an on-chip DRAM controller. While
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local memory accesses happen via the local DRAM controller,
remote ones occur via a cross-chip interconnect [6].

Despite the outstanding technological and microarchitectural
advances, shared-resource contention in NUMA multicores still
poses a relevant challenge to the system software. Specifically,
cores in a memory node typically share critical resources with
the neighboring cores, such as a last-level cache (LLC) and
the local DRAM controller. Co-running applications and virtual
machines (VMs) may intensively compete with each other for
such shared resources, leading to uneven and hard-to-predict
application/VM’s performance degradation [1], [7], [8], [9]. The
higher latency of remote memory accesses, and the interconnect
contention in NUMA, are known to aggravate this problem
further [10].

Shared-resource contention introduces undesirable effects on
the system that make it difficult to enforce system-wide fair-
ness [7], [11], [12] and QoS (Quality of Service) constraints [1],
[2], [13]. For instance, an application’s completion time and tail
latency may largely depend on the application’s co-runners [9],
[13]. Moreover, the slowdown (i.e. relative performance degra-
dation w.r.t. an isolated execution) of equal-priority applications
that run simultaneously on the system may differ substantially
under contention, leading to unfairness and other issues [2], [7],
[8], [11].

Contention-induced performance disparities are exacerbated
in NUMA multicores –and more generally in systems with
multiple LLCs (each one shared by different groups of cores)–,
where an application’s slowdown may even differ substantially
across multiple runs of the same multi-program workload, de-
pending on the specific thread-to-core mappings. To illustrate
this issue, we performed ten runs of a multi-program workload
–consisting of compute-intensive applications from SPEC CPU
and Rodinia– on an Intel-based dual-socket NUMA experi-
mental system (more details on this platform can be found in
Section VI). Fig. 1 shows the distribution of slowdowns of each
program across the various runs provided by Linux’s default
scheduler, provided that no user-supplied thread-to-core bind-
ings are imposed and memory-related shared resources are not
partitioned. In this scenario, where the total number of threads
matches the platform’s core count, the degree of LLC contention
and/or memory-bandwidth contention on each socket greatly
depends on the (random) thread-to-core assignments performed
by Linux. This causes a large disparity in applications’ rela-
tive performance degradation; while the performance of some
(contention-insensitive) programs remains similar across runs,
others exhibit a highly variable slowdown (it rises up to 4.4x),
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Fig. 1. Distribution of per-application slowdown across 10 runs of the same
multi-program workload under the Linux default scheduler. The numbers in
parentheses by the names of parallel programs indicate the number of threads
they run with.

which greatly depends on the application’s co-runners on the
same socket. This performance variability also leads to unpre-
dictable system throughput across runs. Clearly, performance di-
vergences like these are unacceptable from the user satisfaction
and fairness standpoints [14], making it also difficult to prioritize
critical applications [13], to offer performance guarantees [2],
[15] or to ensure correct billings in commercial cloud-like com-
puting services [16]. Notably, uneven thread progress caused
by contention may also greatly limit the scalability of parallel
applications [17], [18].

Aware of these issues, previous work has aimed to miti-
gate shared-resource contention effects, mostly by exploiting
two main types of control mechanisms. One of them is map-
ping threads to groups of cores –sharing LLC and/or DRAM
controller- so as to ensure a balanced degree of contention
across core groups [5], [6], [9], [11]. For these techniques to
be effective, the system software has to be cognizant of the
underlying hardware and the memory -and LLC- related be-
havior of the various applications, which may vary dynamically
with program phases [9]. Another popular control mechanism
is to partition the LLC, enabling to impose a certain degree
of isolation among applications/VMs [1], [7]. After more than
two decades of research on cache-partitioning [19], [20], the
fairly recent adoption of hardware partitioning extensions in
commodity processors [21], [22], [23] has given rise to a growing
interest in the design of LLC-partitioning policies [7], [13],
[21], [24]. Some recent partitioning strategies mainly target
interactive latency-critical services [3], [13], [25]. In this work,
we focus instead on compute-intensive workloads (CPU and/or
memory bound) like other recent research [7], [14], [21], [26].

Crucially, most prior efforts on shared-resource contention
fail to effectively combine the two aforementioned control
mechanisms -a task that we will show to be far from trivial.
In particular, some techniques only exploit thread-placement
strategies [5], [11] but do not partition the LLC. Conversely,
most recent partitioning strategies that primarily target compute-
intensive workloads were specifically designed for UMA sys-
tems with a single LLC [7], [14], [24]. More importantly, as
we demonstrate in this work, solely applying fairness-aware
LLC-partitioning independently within each NUMA socket,
does not allow to optimize system-wide fairness on NUMA
multicores. Accomplishing this requires the simultaneous ex-
ploitation of dynamic contention-aware thread placement and
resource partitioning.

To fill this gap, we propose Divide&Content (DC), a fair
OS-level NUMA-aware resource management policy that dy-
namically combines LLC-partitioning with contention-aware
thread-to-socket placement. DC was designed to optimize fair-
ness with minimal impact on throughput. It strives to ensure
that equal-priority applications that could potentially suffer from
contention experience a similar performance degradation when
sharing the system with others. Moreover, unlike Linux’s default
scheduler, DC provides consistent application performance and
similar system throughput figures across multiple runs of the
same compute-intensive workload. The main contributions of
this paper are as follows:

1) By leveraging a simulation tool [27] –whose function-
ality had to be extended for this work– we conduct a
comprehensive study to gain an understanding of how to
best combine thread placement and LLC-partitioning for
fairness optimization. Our research reveals that addressing
thread placement and LLC-partitioning as separate and
orthogonal optimization problems results in suboptimal
solutions in terms of fairness. To maximize the effective-
ness of fair resource partitioning, it is essential to leverage
thread-to-socket assignments that even out the system-
wide pressure for the various types of memory-related
resources shared among cores in each NUMA node. We
consider this insight crucial, and recommend factoring it
in when designing NUMA-aware resource managers.

2) We designed DC based on the conclusions of our simu-
lations, and implemented it in the Linux kernel. DC does
not require any a priori application knowledge or profiling,
and it performs coordinated dynamic LLC-space alloca-
tion and contention-conscious thread-to-core mappings at
runtime, adapting to program phases.

3) For partitioning the LLC in DC, we built a variant of
the LFOC+ partitioning strategy [7]. This variant was
specifically designed to deal with multi-LLC systems.

4) For a comprehensive evaluation of DC, we compare it with
our kernel-level implementation of DINO [5] (originally
evaluated via a userspace prototype).

5) We performed an exhaustive experimental evaluation of
DC on a real dual-socket NUMA multicore system, using a
wide range of compute-intensive workloads that combine
single- and multithreaded programs. We show that DC
substantially improves fairness with respect to both DINO
and the Linux default scheduler.

The remainder of the paper is organized as follows. Sec-
tion II presents the motivation behind the creation of our a
NUMA-aware resource manager. Section III discusses related
work. Section IV covers our simulation analysis and enumerates
the main insights leveraged by DC. Section V outlines DC’s
design and implementation. Section VI covers the experimental
evaluation, and Section VII concludes the paper.

II. BACKGROUND AND MOTIVATION

The main goal of this section is to briefly present the fea-
tures of the LFOC+ partitioning policy [7], which is one of
the building blocks of our proposal, as well as to discuss the
limitations of partitioning policies designed for UMA systems
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(such as LFOC+) when trivially adapted to NUMA systems.
Before covering these aspects, we introduce the metrics used in
our work to assess the degree of fairness and throughput of the
various analyzed policies.

A. Fairness and Throughput Metrics

To quantify the performance degradation of an application ai,
part of N-application workload W = {a1, a2, . . . , aN}, we use
the Slowdown metric:

Slowdownai
=

CTres,ai

CTalone,ai
=

IPCalone,ai

IPCres,ai
(1)

where CTres,ai
is the completion time of application ai when

running together with the other applications in W , under a
specific resource management policy. Conversely, CTalone,ai

is the time of ai let run alone on the same system. In our exper-
imental evaluation (Section VI), we calculate an application’s
slowdown based on its observed completion time. Nevertheless,
as shown in Eq. 1, the slowdown can also be defined in terms
of the Instructions Per Cycle (IPC) registered by the application
when running in isolation (IPCalone,ai

) and the achieved in the
multi-program scenario (IPCres,ai

). Considering the IPC, it
becomes possible to measure a thread’s slowdown in specific
program phases by factoring in the phase’s IPC in isolation
and that observed in the multi-program scenario. LFOC+ [7],
one of the building blocks of our proposal, relies on the IPC
to approximate the slowdown of specific program phases at
runtime.

Previous research on fairness for multicore systems [7], [11],
[12] defines a policy as fair if equal-priority applications in a
workload are subjected to the same slowdown product of sharing
the system. To adopt this notion of fairness, we employ the
unfairness metric, which has been extensively used in previous
work [7], [11], [16], [17]. For a workloadW , this lower-is-better
metric is defined as follows:

Unfairness =
MAX(Slowdowna1

···SlowdownaN
)

MIN(Slowdowna1
···SlowdownaN

) (2)

The degree of unfairness is often reported together with sys-
tem throughput figures. To this end, we employ the STP (System
ThroughPut) metric [12], [28], defined as follows:

STP =
∑N

i=1

(
CTalone,ai

CTres,ai

)
=

∑N
i=1

(
1

Slowdownai

)
(3)

The STP is also known as the Weighted Speedup, and it has
been widely used in computer architecture research [8], [12],
[21], [29], [30]. The work by Eyerman and Eeckout [28] explains
in detail why STP constitutes a throughput metric.

B. The LFOC+ Partitioning Policy

As applications run under LFOC+, the OS continuously gath-
ers the value of several runtime metrics via performance moni-
toring counters (PMCs). Based on these metrics, applications are
classified online into three categories: light sharing, streaming
or cache sensitive. Cache-sensitive programs are those particu-
larly susceptible to LLC contention; their performance degra-
dation increases substantially as their LLC-way allotment is
reduced. The streaming class encompasses bandwidth-intensive

Fig. 2. Slowdown and LLCMPKC for different applications and ways.

programs that incur a high number of LLC misses per 1K
cycles (LLCMPKC), and exhibit both a low LLC reuse rate
and a low performance penalty for almost all way allocations
when in isolation; these programs often degrade the performance
of cache-sensitive applications co-located on the same LLC
partition. Light-sharing programs are neither cache sensitive
nor contentious to others, as most of their working set fits
within the core’s private cache levels. As an example, Fig. 2
illustrates how the application slowdown (left) and the LL-
CMPKC (right) vary with the number of assigned LLC ways
for a cache-sensitive program (soplex), a streaming applica-
tion (lbm), and a light-sharing one (imagick) on our Intel-
based experimental platform (more details on this platform in
Section VI).

LFOC+ features two operating modes: fairness and sampling.
During the fairness mode, per-thread statistics are gathered
using PMCs, and LFOC+’s partitioning algorithm is applied
periodically at a configurable period. Algorithm 1 summarizes
the partitioning strategy, which constitutes a cache-clustering
(or partition-sharing) approach [21], [27]. Strategies of this kind
may map a set of applications (referred to as cluster in Algorithm
1) to the same cache partition. When cache-sensitive programs
are present in the workload, Step 1 of LFOC+’s algorithm takes
care of confining streaming programs (if any) in up to 2 small
LLC partitions. In Step 2, LFOC+ distributes the remaining
LLC space (most of it) to cache-sensitive programs. To deter-
mine the number and size of LLC partitions for cache-sensitive
applications, LFOC+ relies on a lightweight algorithm called
pair clustering, extensively detailed in our earlier work [7].
This algorithm aims to minimize unfairness by assigning each
cache-sensitive application to a private LLC partition or to a
partition shared with another cache-sensitive program. Lastly,
in Step 3, light-sharing applications are distributed among the
various partitions by first populating partitions with streaming
applications.

LFOC+’s sampling mode is used to determine an application’s
class, and is engaged in two specific cases: when an application
enters the system (after a warm-up period), and when a class tran-
sition is detected. A class transition occurs when an application
suddenly exhibits a performance profile that does not match its
current class; for example, a supposedly streaming application
begins to exhibit a low LLCMPKC. When the sampling mode
is triggered, the application that initiated the transition into this
mode is isolated from the rest in a LLC partition, referred to as
the sampling partition, whose size is gradually increased (one
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Algorithm 1: LFOC+’s Cache-Clustering Algorithm.
1: Input: ST , CS, and LS represent the sets of streaming

(str), cache-sensitive and light-sharing applications,
respectively; max_str_parts, gaps_per_str, and
ways_str are configurable parameters (default values 5
and 3 and 2 respectively –see [7]), nr_ways is the
number of ways of the LLC.

2: function LFOC+_part (ST, CS, LS, nr_ways)
3: if |CS| == 0 then
4: Create a single cluster S consisting of nr_ways;
5: Map all applications in ST ∪ LS to S;
6: return {S}
7: Clusters← ∅; StreamingClusters← ∅;

�Step 1: Create as many streaming clusters as needed
8: if |ST | > 0 then
9: parts4str ← min(2, � |ST |

max_str_parts�);
10: <r, used> ← <� |ST |

parts4str �,
parts4str ∗ ways_str>;

11: else
12: <parts4str, r, used> ← <0, 0, 0>;
13: for i← 1 to parts4str do
14: Create new cluster C with ways_str ways;
15: Map up to r apps from ST to C;
16: Remove assigned apps from ST ;
17: Add C to Clusters and to StrClusters;

�Step 2: Distribute remaining space among apps in CS
18: SenClusters← pair_clustering(CS, nr_ways-used);
19: Add every cluster in SenClusters to Clusters

�Step 3: Assign apps in LS to existing clusters
20: for each TargetC ∈ StreamingClusters do
21: gaps_avail← r − |TargetC| ∗ gaps_per_str;
22: if |LS| > 0 and gaps_avail > 0 then
23: Map up to gaps_avail apps from LS to TargetC;
24: Remove assigned apps from LS;
25: Distribute remaining applications in LS in a

round-robin fashion among non-streaming clusters;
26: return Clusters

LLC way each time). Meanwhile, the remaining applications
are confined in a complementary LLC partition that shrinks over
time, covering the remaining LLC space. During the sampling
mode, LFOC+ observes the application performance (IPC) and
the LLCMPKC for different way counts. By doing so, (1) the
OS can quickly identify the application’s class without exploring
all possible LLC sizes (different heuristics are used to achieve
this [7]), and (2) slowdown and miss-rate curves are built just for
cache-sensitive programs. These curves represent normalized
performance (reduction in IPC) and LLCMPKC, respectively,
for different number of LLC ways, and are required for the pair
clustering algorithm. As explained in prior work [7], LFOC+ es-
timates the slowdown of cache-sensitive programs for different
ways by applying Eq. 1, which factors in the IPC observed for
a specific number of ways and the actual IPC achieved by the

application when the sampling partition reaches its maximum
size (an estimate for IPC in isolation).

Unlike other partition-sharing strategies [12], [21], [24], [26],
[27] that also rely on application classification but support
single-threaded applications only, LFOC+ also has the ability
to efficiently deal with regular data-parallel multithreaded ap-
plications, like the ones we experimented with in this work. For
these applications, where all threads exhibit an almost identical
PMC-related profile (as they do the same kind of work with
different data), LFOC+ employs a lightweight classification
method. Essentially, this method relies on tracking the PMC
metrics of a selected reference thread in the application to
guide its online classification. At the same time, LFOC+ al-
ways ensures that threads in the multi-threaded process are
consistently mapped to the same LLC partition in either of
LFOC+’s operating modes. When a change in the application’s
LLC partition is in order, LFOC+ effectively carries out the
partition change by synchronously updating the partition-related
per-core registers associated with all the application’s threads.
The low-level implementation aspects of this feature in LFOC+,
including the selection of the reference thread, are described in
our previous work [7], which also discusses ways to support
additional types of multithreaded applications efficiently.

C. LLC-Partitioning and Mapping in NUMA Platforms

The vast majority of LLC-partitioning policies have been
designed for UMA systems where cores share a single LLC [7],
[12], [21], [26], [31]. Notably, no previous LLC-partitioning pol-
icy makes dynamic decisions on the thread-to-core assignments;
in fact, most of them rely on fixed user-enforced thread-to-core
mappings to function.

A straightforward way to extend these UMA policies to
NUMA systems is to apply the partitioning strategy in question
separately within each NUMA node (provided each one features
a separate LLC), regardless of the specific thread-to-core map-
pings imposed by the user or the operating system. However, we
observed that the effectiveness of a partitioning policy is largely
affected by the underlying thread placement, as the placement
substantially impacts the degree of pressure (contention) on
shared resources within a NUMA node. Specifically, assigning
multiple applications that aggressively compete for the same
shared resource (LLC space and/or memory bandwidth) to the
same node greatly limits the potential of the partitioning policy,
particularly regarding fairness enforcement.

To illustrate this fact, we considered a multi-application
workload consisting of 10 programs, which we ran on our
40-core Intel-based NUMA platform (two 20-core sockets with
an 11-way LLC each) with six different fixed thread-to-socket
assignments, and employing LFOC+’s partitioning algorithm.
Previous work [7] demonstrates that this algorithm provides a
near-optimal cache-clustering solution in terms of fairness for
systems with a single LLC. For our experiment, we created a
direct extension of the LFOC+ policy for NUMA, which applies
the partitioning algorithm separately to the set of threads mapped
to each socket. More information on the implementation of this
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Fig. 3. Per-application slowdown (top), unfairness and throughput figures
(bottom) registered for 6 different thread-to-LLC mappings of a 10-application
workload under the LFOC+ LLC-partitioning policy. The numbers in paren-
theses by the names of the SP and myocyte (parallel) programs indicate the
number of threads they run with.

LFOC+ variant can be found in Section V-A. Fig. 3 shows the
per-application slowdown as well as the value of the Unfairness
and STP metrics for the different mappings. As it is evident, the
degree of fairness delivered by LFOC+ in this context greatly
depends on the mapping. In particular, the worst fairness-wise
mapping (Map2) increases unfairness by 28% compared to
the best one (Map6), which also delivers a higher degree of
throughput with a 6.1% improvement.

To understand why these divergences in unfairness occur, we
focus on the slowdown associated with the soplex and mcf
programs. Both applications are cache sensitive, and demand
a substantial amount of dedicated space in the LLC to match
the performance they deliver in isolation. Specifically, to reduce
the slowdown of any of these applications below 1.05 (5%)
under a scenario with no memory-bandwidth contention, each
application requires a devoted LLC partition of over 55% of
the total LLC size (i.e., at least 6 cache ways out of 11 – as
depicted in Fig. 2 for soplex). Therefore, in mappings where
both programs are assigned to the same NUMA node, such
as Map2, it is simply unfeasible to simultaneously fulfill the
LLC space requirements of both programs, regardless of the
underlying partitioning algorithm. By contrast, under Map6,
where said programs are assigned to different NUMA nodes,
and memory-bandwidth consumption is balanced across nodes,
LFOC+ can grant a bigger LLC share to both applications
(assigned to different LLCs), thus reducing their slowdown and
improving unfairness. This observation indicates that when the
demand for a particular shared resource (such as the LLC) is
uneven across NUMA nodes, it becomes impossible to fulfill
the requirements of all the programs. This uneven demand
inherently leads to unfairness, thus limiting the potential of the
underlying partitioning policy.

The results also enable us to draw two insightful conclusions.
First, optimizing system-wide fairness is not possible solely by
minimizing unfairness at each socket separately, namely without

explicit control of thread-to-socket placements. Hence, previous
fairness-aware cache-clustering policies [7], [12], [32] designed
for UMA systems cannot automatically optimize system-wide
fairness on NUMA multicores, as they make no decisions
on thread-to-socket placements. Second, an LLC-partitioning
policy that operates independently in different NUMA nodes
cannot guarantee by itself repeatable performance and fairness
across runs. Therefore, to optimize system-wide fairness and
deliver repeatable results, a fairness-conscious LLC-partitioning
policy must be complemented with a consistent strategy to
map threads to sockets, ensuring a balanced demand for the
memory-related resources shared among cores in each NUMA
node.

Notably, leaving the decision to the end user on where to
place threads constitutes a significant burden. Making effective
educated mapping decisions requires the gathering of substan-
tial information about each application, including a detailed
performance profile for different LLC-way counts [27], and
some notions on its sensitivity to different levels of bandwidth
contention [33]. Obtaining this information offline is unrealistic
in many general-purpose settings due to the time required to
conduct the associated experiments, and becomes unfeasible
when the cloud provider has no direct access to the applica-
tions [1]. Moreover, even with detailed information, determining
the optimal placement and LLC-partitioning in these contexts is
largely impractical due to the exponential growth of the possible
choices as the number of cores and NUMA nodes increase. We
elaborate on this aspect in Section IV.

In this work, we propose an OS-level solution to consis-
tently improve system-wide fairness on NUMA multicores by
combining contention-aware thread-to-socket assignments and
LLC-partitioning. The analysis conducted in this section raises a
number of questions on the challenges associated with designing
this approach:

1) Does the optimal fairness-wise mapping alone, without
partitioning the LLC, constitute a good starting point to
leverage fair LLC-partitioning later?

2) Should optimal thread-mapping and optimal LLC-
partitioning (with partition sharing) be treated as sepa-
rate optimization problems to be handled in sequence, or
should they be addressed in a coordinated way to optimize
system-wide fairness?

3) Is LFOC+ still effective in NUMA systems, so that it can
serve as an appropriate building block of a fairness-aware
resource manager?

4) How can we efficiently determine a good thread-to-socket
mapping without extensively exploring all available map-
ping choices?

The simulation-based analysis in Section IV provides answers
to these questions.

III. RELATED WORK

In analyzing related work, we separately discuss cache-
partitioning and contention-aware scheduling strategies, and
then other optimizations and tools for contention mitigation
on NUMA systems. Our work mainly differs from previous
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Fig. 4. Comparison between optimal strict LLC-partitioning and optimal
cache-clustering for different application counts [32].

research in that we focus on how to make coordinated cache par-
titioning and NUMA-aware thread placement decisions within
the OS kernel to improve fairness.

Cache Partitioning: A plethora of LLC-partitioning strategies
was proposed to mitigate contention effects [2], [3], [7], [13],
[19]. Recent works focused on the design of cache-clustering
(also known as partition-sharing) algorithms [21], which con-
stitute a generalization of strict cache-partitioning. While strict
cache-partitioning policies [13], [14], [20], [25], [31] assign ap-
plications to separate partitions, cache-clustering strategies [7],
[21], [24], [26], [27] may map several applications to the same
partition. This type of strategy emerged to deliver better perfor-
mance and fairness [7], [12], [21] on commodity processors with
hardware LLC-partitioning support [22], [23], which allows
creating a fairly limited number of coarse-grained partitions.
Moreover, unlike strict cache-partitioning policies [13], [14],
[20], [31], cache-clustering ones still work when the number of
applications exceeds the number of LLC ways [27].

Garcia et al. [32] demonstrated that the utilization of LLC-
clustering instead of strict LLC-partitioning leads to higher re-
ductions in unfairness as the number of applications grows [32].
This trend is depicted in Fig. 4 (extracted from [32]), which
shows the average increase in unfairness provided by optimal
strict partitioning relative to optimal LLC-clustering for different
workload sizes using the exact same processor model we used
for our experiments (see Section VI). This trend stems from the
fact that strict LLC-partitioning policies [13], [14], [20], [25],
[31], [34] allocate a separate LLC partition of at least 1 way to
every application, which impedes to systematically devote big
LLC partitions to cache-sensitive programs, thereby degrading
unfairness. By contrast, strategies based on cache-clustering [7],
[12], [21], [24], [27] (such as our proposal) address this problem
by allowing different programs to share the same LLC partition
when beneficial.

Unlike our DC proposal, recent cache-clustering strategies
targeting compute-intensive workloads [7], [14], [21], [24] were
implemented and evaluated only on single-LLC UMA systems,
and do not assign threads to specific groups of cores. To partition
the LLC within DC, we adopted a variant of LFOC+ [7]; we cre-
ated this variant (described in Section V-A) to support multi-LLC
systems. We opted to use LFOC+ as one of DC’s building blocks
because it delivers greater fairness than its cache-clustering
predecessors [12], [21], [24], it was the only one successfully
evaluated using a lightweight OS-level implementation [7] –

a better fit for our OS-level proposal–, and explicitly supports
multithreaded programs, unlike [12], [21], [24], [26].

Fairness-aware strategies explicitly targeting container-based
environments have also been proposed. Of special attention is
CoPart [31], which leverages partitioning of the LLC coupled
with memory bandwidth limitation to improve isolation among
containerized applications. As discussed in Section V-D, our
OS-level proposal could be leveraged in container-based en-
vironments as well. In addition, unlike CoPart, DC specifi-
cally targets NUMA systems. Note also that, in contrast to our
cache-clustering based proposal, CoPart employs strict cache
partitioning, so it is subject to its inherent limitations discussed
earlier.

Other proposals exploit cache-partitioning to enforce QoS
constraints in scenarios where high-priority applications, typ-
ically latency sensitive, run together with best-effort pro-
grams [2], [3], [13], [34]. CLITE [34] partitions not only
the LLC but also other resources like disk and memory band-
width. Drawing upon the insights of the PARTIES resource
manager [13], CLITE introduces the capability for simulta-
neous Bayesian exploration of multiple resources, optimizing
their allocation and enabling the co-location of latency-critical
jobs to meet QoS requirements. However, CLITE has some
limitations, including difficulties in adapting to rapid workload
changes, a restricted ability to handle co-locations of more than
5 applications [25], and a considerable computational overhead.
DRLPart [25], a deep-learning based model, exemplifies the
combination of multi-resource management with the enforce-
ment of throughput guarantees. However, DRLPart falls short
in addressing fairness concerns, explicit support for NUMA
platforms, or leveraging the advantages of cache-clustering
strategies in contrast to strict cache partitioning.

Most of these QoS-oriented techniques [2], [25], [31], [34]
were evaluated on UMA platforms. Moreover, the scarce works
employing a NUMA system for evaluation [3], [13], assume
externally fixed application-to-socket assignments; as the pro-
posed techniques simply do not decide on these assignments,
but handle resource partitioning only. Our proposed OS-level
approach does simultaneously leverage dynamic thread place-
ment with LLC-partitioning, to enforce fairness, and guarantee
repeatable results across runs. Given that the effectiveness of
a LLC-partitioning technique largely depends on the mapping
(as shown in Section II-C), our proposal addresses a challenge
that all previous work ignores. Note, however, that QoS-focused
resource management policies are largely complementary to our
research, as they generally adopt a best-effort approach towards
throughput and fairness optimization. As shown by Park et
al. [31] QoS-oriented techniques can be used in combination
with those that focus on the optimization of system-wide met-
rics [7], [12], [21], [24], like our proposal, to improve system
fairness further while enforcing QoS.

Contention-Aware Thread Scheduling: A large body of work
has focused on designing contention-aware thread-placement
policies, many of which were conceived for UMA systems con-
sisting of multiple core groups, each one sharing a LLC [9], [11],
[35]. Kundan et al. [36] propose a scheduler tailored explicitly to
oversubscription scenarios on UMA. These are the same scenar-
ios addressed by other recent works [16], [37], which –unlike our
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proposal– leverage co-scheduling on UMA platforms instead
of NUMA-aware thread placement. In the context of NUMA
multicores, Majo et al. proposed N-MASS [6], a strategy that
couples memory management and process scheduling. Unlike
our proposal, N-MASS makes no distinction between bandwidth
and LLC contention.

Blagodurov et al. [5] proposed DINO, a NUMA-aware
strategy, which outperformed previous contention-aware sched-
ulers. DINO combines contention-aware thread-to-core map-
pings with automatic page migration. Unlike DC, DINO does
not partition the LLC. To decide on thread placement, DINO
classifies threads at runtime based on its current LLC misses
per 1 K instructions (LLCMPKI) into three classes: turtles (low
LLCMPKI), devils (medium LLCMPKI) and superdevils (high
LLCMPKI). It spreads threads of the various classes across core
groups so as to even out the aggregated LLCMPKI among them.
To reduce the number of migrations, DINO updates threads
classes and readjusts thread-to-core mappings with a coarse
granularity [5].

To perform an experimental comparison of our OS-level
approach against a state-of-the-art NUMA-aware thread-
placement policy like DINO, we created an OS-level implemen-
tation of the latter. This implementation, like DC’s, uses Linux’s
automatic NUMA balancing feature [38], enabled by default in
recent kernel versions. NUMA balancing exploits lightweight
detection of page reuse and automatic page migration. When
an application is migrated to another memory node, NUMA
balancing automatically migrates referenced remote pages to
the current node. Notably, this kernel feature was unavailable
when DINO was proposed. To detect page reuse and drive page
migration decisions, DINO’s authors resorted to using a user-
level architecture-specific performance-counter based monitor
and had to be carefully configured to keep overheads under
control [5].

Other Techniques: Several works explored complementary
contention-aware solutions to scheduling [39], [40]. Recent
studies [4], [41] –largely orthogonal to ours– exploit page in-
terleaving techniques, page replication and migration to reduce
contention and improve performance on NUMA platforms.
Denoyelle et al. [40] acknowledged the complexity of thread
placement and adopted a statistical approach, predicting whether
a thread was sensitive to locality. This approach required so-
phisticated offline analysis, relying on a machine learning al-
gorithm that had to be trained for the target hardware platform.
NumaPerf [42] is a profiling tool to optimize source code for
NUMA systems, but it requires static code instrumentation,
instead of relying on the OS to abstract the difficulties of NUMA
contention. CuttleSys [43] introduces a distinct approach to
co-scheduling that explicitly targets reconfigurable multicores.
Given its dedicated focus on QoS, it follows a best-effort
approach to maximize throughput that lacks explicit fairness
considerations.

IV. FAIRNESS-OPTIMIZED THREAD PLACEMENT AND

LLC-PARTITIONING IN NUMA SYSTEMS

The design of our resource management proposal was driven
by the conclusions of the simulation-based study described in

this section. The main goal of this study was to determine how
to best combine cache-clustering with thread placement, so as
to optimize system-wide fairness on machines with multiple
groups of cores (or sockets), each one integrating a separate
LLC.

Before presenting the simulation environment and discussing
the results, we summarize the main insights of our study upfront,
which provide answers to the questions formulated at the end of
Section II-C.

1) The thread-to-group mapping that optimizes fairness does
not necessarily constitute the best mapping to apply
fairness-aware LLC-partitioning later. This mapping often
leads to uneven pressure on the different shared resources
in the various core groups, thus limiting the effectiveness
of LLC-partitioning substantially.

2) LLC-partitioning and thread-to-group mappings should
be performed in a fully coordinated fashion to optimize
system-wide fairness. In particular, to maximize the ef-
fectiveness of LLC-partitioning, the various threads must
be assigned to core groups in a way that does not opti-
mize fairness on its own. However, when optimal LLC-
partitioning is applied on top of this mapping, the optimal
degree of fairness can be achieved.

3) The LFOC+ partitioning algorithm, which constitutes a
near-optimal fairness-wise cache-clustering strategy for
single-LLC systems [7], serves as a good building block
for fair NUMA-aware resource managers. Specifically,
this heuristic partitioning algorithm, coupled with an ef-
fective thread-to-group mapping, can deliver fairness val-
ues close to those of the best solution among all possible
cache-clustering choices.

4) The analysis of the global optimal fairness solu-
tion, which combines thread-to-socket mappings and
LLC-partitioning to optimize fairness, reveals that a
good thread-to-group mapping (i.e., amenable to LLC-
partitioning) is one that guarantees a balance across
groups in terms of the degree of competition for memory-
bandwidth and for the demand of space in the LLC. This is
the main idea that our OS-level proposal (DC) leverages to
avoid the extensive exploration of the available mapping
choices.

To arrive at the aforementioned insights, we had to deter-
mine a number of optimal solutions for various workloads,
enforcing specific thread-to-group mappings and/or fairness-
optimized LLC-partitioning. Determining these optimal solu-
tions (described in detail later) requires extensive exploration of
the search space. Unfortunately, the complexity of the optimal
thread placement problem combined with the NP-hard nature
of the optimal cache-partitioning/clustering problems [7], [9],
[27], [36] requires the exploration of a vast search space, whose
size grows exponentially with the number of applications and
LLC ways. This constitutes an important challenge.

To make the problem tractable, we had to use a simulation
tool, whose functionality had to be extended to make our analysis
feasible. Specifically, we employed PBBCache [27], an open-
source tool for rapid prototyping of LLC-partitioning policies.
For a given multi-program workload and partitioning strat-
egy, PBBCache allows obtaining the degree of throughput and
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fairness under different LLC and system configurations. To
achieve this, it relies on offline-collected applications’ perfor-
mance data – such as instructions per cycle, LLCMPKI, etc. –
obtained beforehand for different LLC sizes on a target platform
(a real system in our case). This information, the LLC-space
distribution enforced by the partitioning strategy, and other
system features (e.g., maximum memory bandwidth) are used by
PBBCache to approximate the slowdown an application suffers
as a result of both LLC sharing and competition for memory
bandwidth [27]. Subsequently, it determines different system-
wide metrics to assess the effectiveness of the partitioning
strategy. Moreover, PBBCache implements a parallel algorithm
to find the optimal partitioning/cache-clustering solution for
diverse optimization objectives.

Notably, the original version of PBBCache [27] only supports
the evaluation of partitioning algorithms on systems with a
single LLC. Thus, to carry out our study we had to extend the
simulator’s capabilities in different ways. First, we augmented
the underlying slowdown prediction model to support target
systems consisting of multiple core groups with a separate LLC,
that either make up a UMA platform (with a single DRAM
controller), or a NUMA one (with as many memory nodes and
DRAM controllers as the number of core groups). Second, the
simulator’s API was extended to allow the evaluation of strate-
gies that combine thread-to-group placement with independent
per-group LLC-partitioning. Third, a parallel optimizer was cre-
ated to determine the optimal fairness-wise application-to-group
placement and LLC-partitioning for a workload.

For the simulations we considered two small-sized NUMA
platforms, referred to as Platform A and B. Platform A –with
8 cores in total– consists of two memory nodes, each one
featuring four cores that share a 16-way 16 MB LLC; each
group of four cores sharing an LLC (L3) cache has the spec-
ifications of the so-called Core-CompleX (CCX) present in the
AMD EPYC Rome 7742 processor [44], where we gathered the
offline application data for SPEC CPU programs required as
input to the simulations. Platform B –12 cores in total– spans
three memory nodes, each one including a 4-core group with
the same features as in the first platform. For simplicity, our
simulations in these NUMA configurations utilize exclusively
single-threaded programs, and assume that all application pages
are mapped to the local memory node where the program runs.
Moreover, the simulations only consider techniques that en-
force the same application-to-group and application-to-partition
mapping throughout the execution. Nevertheless, our proposed
OS-level approach (DC) does perform dynamic mapping and
LLC-partitioning, as discussed in Section V.

For our study, we randomly generated 240 workloads by
combining SPEC CPU2006 and CPU2017 programs. Specif-
ically, 120 of these workloads consist of 8 applications each
(for Platform A, with 8 cores), and the remaining 120 ones
comprise 12 applications each (for Platform B, with 12 cores).
For program characterization, PBBCache uses the average value
of different performance metrics associated with the execution
of the first 150 billion instructions of each program running alone
on the aforementioned AMD processor with different LLC way
counts (from 1 to 16).

TABLE I
NUMBER OF POSSIBLE SOLUTIONS IN THE SEARCH SPACE FOR THE OPTMAP

AND OPTIMAL SOLUTIONS

For each workload we obtained four theoretical solutions:
OptMap, OptMap+OptPart, Optimal and BestMapLFOC+.
OptMap explores all possible thread-to-group mappings (with-
out partitioning the LLC) and selects the mapping that provides
the optimal (minimal) unfairness. OptMap+OptPart starts off
with OptMap’s mapping solution, and, on top of that, it finds
the best way to partition the LLC (via cache-clustering) so that
unfairness is minimized. Optimal provides the all-encompassing
optimal fairness solution; it combines optimal application-to-
core mapping and optimal cache-clustering for the workloads, by
exploring all possible mappings, and finding the optimal cache-
clustering solution for each mapping. Lastly, BestMapLFOC+ is
the best solution, among all possible mappings, that minimizes
unfairness and where the LLC in each group is partitioned with
LFOC+’s cache-clustering algorithm, summarized in Section
II-B. Notably, if several solutions exist with the same unfairness
value, these theoretical approaches pick the choice that yields
the highest STP value.

Table I shows the size of the search space to be explored when
determining the OptMap and Optimal solutions, respectively, for
a single workload on both platforms. In both optimization prob-
lems, the search space size grows exponentially with the applica-
tion count. However, it is clear that the number of options in the
second optimization problem, which combines thread-to-group
mapping and cache-clustering, is several orders of magnitude
bigger than the first one, reaching more than 20 million pos-
sible choices for Platform B. In a hypothetical 16-core NUMA
platform consisting of 4-core groups, the search space associated
with determining Optimal for a 16-application workload rises up
to 12.5 billion choices. This trend underscores the importance
of utilizing a simulator for our analysis. Moreover, note that
for each explored choice in finding Optimal, the distribution of
LLC ways between clusters (i.e., groups of programs sharing
the same LLC partition) that minimizes unfairness also needs to
be determined. PBBCache enables us to efficiently obtain this
distribution using a parallel branch-and-bound algorithm [27].

Fig. 5 depicts the overall throughput and unfairness numbers
obtained for the workloads by the aforementioned theoretical
approaches, plus the mapping&partitioning algorithm imple-
mented by our DC proposal, described in detail in Section V.
The distribution of unfairness and throughput values in Fig. 5(a)
reveals that a huge gap exists (more than a 20% average reduction
in unfairness) between Optimal and OptMap. Moreover, apply-
ing cache-clustering on top of OptMap (i.e, OptMap+OptPart)
is still far from Optimal. This indicates that Optimal cannot
be reached by solving the optimal thread mapping and opti-
mal cache-clustering problems separately, and so coordinated



2936 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 11, NOVEMBER 2023

Fig. 5. Simulation results for the 240 workloads. Throughput (STP) and
Unfairness values have been normalized to the results provided by a random
application-to-group mapping and using no LLC-partitioning.

TABLE II
CACHE-SENSITIVITY CLASS OF THE DIFFERENT SPEC BENCHMARKS

mapping and LLC-partitioning decisions are paramount to
optimize fairness. The results also highlight that relying on
LFOC+’s cache-clustering algorithm enables BestMapLFOC+
to get very close to Optimal in both throughput and fairness.
Our proposed heuristic policy (DC) operates in a close range of
BestMapLFOC+ (1.5% on average on both metrics), and it does
so without requiring the exhaustive exploration of all possible
mappings.

A thorough analysis of the specific solutions provided by
the theoretical approaches revealed other interesting observa-
tions. To ensure clarity in our discussion, we adopt the cache-
sensitivity application classification used by the LFOC+ strat-
egy, as introduced in Section II-B, which categorizes programs
into three classes: cache sensitive, light sharing and streaming.
Table II shows the cache-sensitivity class of a subset of the SPEC
CPU benchmarks that were used, which are explicitly mentioned
in specific examples. Notably, Section VI indicates the class of
all the benchmarks used for all the experiments in this work.

To begin with, we find that a key to improving fairness is to sep-
arate streaming from cache-sensitive programs. To arrive at this
conclusion we analyzed which kind of applications are assigned
together in the same core group (referred to as co-runners) by
OptMap and Optimal in the 240 workloads. Fig. 6 illustrates the
distribution of co-runners organized by class for a few selected
benchmarks from different classes, considering OptMap and
Optimal across all workloads. For instance, the figure indicates
that in workloads including the astar benchmark, OptMap
predominantly places this application with co-runners that are
either light sharing (47%) or cache sensitive (42%). Specifically,
the results reveal that OptMap separates streaming from cache-
sensitive programs by assigning them to different core groups.
Clearly, more than 87% of the programs that OptMap places
in the same group together with streaming programs –such as
fotonik3d or lbm – are either light-sharing or streaming.

Fig. 6. Distribution of co-runners (by type) assigned to the same core group
for 9 selected programs –3 sensitive, 3 streaming and 3 light sharing (in the order
used in the x axis)–, under OptMap and Optimal.

Fig. 7. Application-to-group mapping and LLC-space distribution within each
group made by (a) OptMap and (b) BestMapLFOC+, for a sample workload.

Conversely, cache-sensitive programs –such as astar or mcf
– seldom have streaming programs as co-runners in the same
group; moreover, when this happens under OptMap, it is because
other core groups are already packed with streaming programs.
By contrast, under Optimal, LLC isolation between streaming
and cache-sensitive programs is effected by spreading both
program types across groups, and ensuring that a streaming
and a cache-sensitive program in the same group never share
the same partition. As shown in Fig. 6(b), Optimal may often
assign streaming and cache-sensitive applications to the same
core group. BestMapLFOC+’s and DC’s solutions exhibit very
similar trends as for using LLC-partitioning for isolating cache-
sensitive from streaming programs.

Fig. 7 illustrates key recurrent mapping and partitioning
patterns used by OptMap and BestMapLFOC+, by depict-
ing the solutions provided for a specific workload, which in-
cludes 4 streaming applications, 2 cache-sensitive programs, 2
light-sharing ones (the class of each benchmark is indicated
in Table II). The example in Fig. 7(b) highlights the main
working principles of our proposed DC approach, which at-
tempts to approximate BestMapLFOC+. Like this theoretical
approach, DC improves fairness by balancing the number of
cache-sensitive and streaming applications assigned to the var-
ious core groups; distributing cache-sensitive programs across
groups allows the allocation of bigger LLC partitions for these
programs, which is crucial to reduce their slowdown (as done
withomnetpp andsoplex in the example). Moreover, getting
as close as possible to fulfilling the LLC-space requirements
of cache-sensitive programs, and reducing LLC pollution by
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Fig. 8. Validation results for the simulations. Throughput (STP) and Un-
fairness values have been normalized to the results provided by a random
application-to-group mapping and using no LLC-partitioning.

isolating them from streaming programs, also enables to min-
imize the memory-bandwidth consumption of cache-sensitive
programs. Finally, the highest consumers of memory bandwidth
–streaming programs– are spread across different groups, which
evens out system-wide memory-bandwidth consumption.

To conclude, it is worth noting that the original version of
the PBBCache simulator was validated using two Intel-based
platforms [27], one of them featuring the processor model of
the NUMA system employed in our experimental evaluation
of DC (see Section VI). To validate the results provided by
the extended version of the simulator used in this analysis, we
conducted experiments on a real dual-socket system consisting
of two AMD EPYC Rome 7742 processors. This system was
employed to replicate the simulated Platform A (8 cores) by
utilizing two four-core CCXs from different sockets to run
8-application workloads. To conduct the validation experiments,
we ran the first 80 workloads of our simulations, all consisting of
8 applications. For these experiments, we followed an approach
similar to that of earlier work [7]. Essentially, we employed fixed
(static) cache-partitioning and enforced specific thread-to-group
mappings throughout the execution, based on the output data
provided by the simulator for each workload and strategy. This
enabled us to determine the degree of throughput and fairness
for each workload under the different theoretical or heuristic
strategies.

Fig. 8(a) and (b) summarize the results gathered for the
80 workloads on the real system and the simulations, re-
spectively. As we can see, Fig. 8(a) depicts similar trends to
those observed in the simulator’s counterparts. Clearly, Optimal
achieves the best results in both throughput and fairness, and
BestMapLFOC+’s and DC’s fairness numbers closely align with
those of Optimal. The biggest difference between the real system
and simulation results is observed in the relative throughput
gains, which are slightly smaller by up to 2.5% for certain work-
loads. These disparities stem from the inaccuracies in the simula-
tor’s bandwidth-contention model, particularly the underpredic-
tion of the performance degradation for some memory-intensive
applications, as well as from the fact that the simulator does not
consider individual program phases, but instead accepts input
data on the overall program behavior. Despite these divergences,
the insights drawn from our simulation results remain applicable
to the real scenario. In Section VI, we conduct a comprehensive

experimental evaluation of the OS-level implementation of DC
on a real NUMA platform.

V. DESIGN AND IMPLEMENTATION

We developed Divide&Content (DC) in the Linux ker-
nel v5.10.114. For its implementation, we leveraged PMC-
Sched, [45] an open-source OS-level framework that makes
it possible to implement scheduling and resource management
strategies as plugins within a kernel module, which can be loaded
in unmodified (vanilla) versions of the kernel.

To ensure a scalable design, our implementation leverages
the core group abstraction provided by PMCSched. Essentially,
cores in the system are organized into different sets (core groups)
based on the platform’s topology, such as cores sharing LLC or
NUMA node. The framework’s plugins assign threads to specific
core groups by setting affinity masks. Enforcing load balance
across cores within a group is up to the Linux load balancer,
which respects affinity masks. The data structure describing
a core group includes spinlock-protected linked lists to keep
track of active threads and multithreaded processes mapped
to it. This enables us to drive resource management decisions
independently for threads assigned to different groups.

At a high level, DC works as follows. When a thread enters
the system, it is assigned to one of the core groups, relying
on the Linux scheduler’s default functionality, which factors
in the system’s load across cores. As applications run, the OS
continuously classifies them online into the aforementioned
light sharing, streaming and cache sensitive classes. The online
classification procedure is that of the LFOC+ cache-clustering
strategy, summarized in Section II-B, and described in detail
in our earlier work [7]. Periodically, and on a per-core-group
basis, DC checks whether the degree of contention of the local
group differs significantly from that of any of the remaining
core groups. As we discuss in Section V-B, we consider the
overall pressure on the different shared resources within each
core group to determine its degree of contention. If a remote core
group is found such as there is a clear contention-wise imbalance
between groups, a balancing algorithm is executed to address this
imbalance. Thread migrations are triggered as requested by the
contention-balancing algorithm, and once completed in the local
core group, DC applies LFOC+’s partitioning algorithm (see
Section II-B) to improve fairness. This partitioning algorithm is
also re-applied when threads mapped to the core group transition
into a different application class.

In what follows, we first describe how we extended the
LFOC+ cache-clustering strategy for multi-LLC systems, and
enable its full integration within DC. Next, we present DC’s
balancing algorithm, and then describe interactions between
DC’s key building blocks and automatic NUMA balancing.
Lastly, we discuss additional usages of DC beyond automatic
thread placement and resource management for multi-program
workloads at the OS level.

A. Variant of LFOC+ for DC

LFOC+ [7] is one of the key building blocks of DC. Be-
cause LFOC+ was originally designed for UMA systems with
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a single LLC, substantial changes were required in its origi-
nal implementation [7] to allow the independent utilization of
the partitioning strategy within each core group (as done in
the experiments of Section II-C). In particular, all global data
structures to keep track of active applications/threads, to handle
LFOC+’s sampling mode (see. Section II-B), and to perform
application-to-partition assignments had to be replicated for
each core group (LLC). The data structure that represents a
process in our scheduling framework [45] had to be extended
to track the set of LLC partitions associated with the various
threads within the same multithreaded application, as these
threads may be assigned to different core groups/LLC partitions.
Lastly, it was also necessary to replicate a number of Linux
kernel resources used by the implementation, such as spin locks,
kernel timers and workqueues [46], to enable periodic SMP-safe
OS activations and the execution of deferred work in blocking
context (to update per-core LLC-partitioning registers) for each
core group separately.

While these changes make it possible to apply LFOC+ inde-
pendently within each core group, additional modifications were
necessary for its full integration with DC, where thread migra-
tions are triggered across core groups. Specifically, our LFOC+
variant reacts to thread migrations to transfer per-application
statistics (e.g., slowdown curves) to another group when needed
(i.e., the first thread of an application is migrated onto a different
group). Moreover, it exposes LFOC+’s current operating mode
in each group so that DC inhibits contention-related migrations
in the group when LFOC+’s sampling mode is enabled (note
that this mode leads to unstable application performance [7]).

Most recent fine-grained partitioning strategies [12], [14],
[21], [24], [26], including LFOC+, were designed to work on
situations without oversubscription. For this kind of scenario,
DC does not partition the LLC, but just evens out the degree of
contention across core groups by triggering thread migrations
using the algorithm presented in Section V-B.

B. The Contention Balancing Algorithm

The goal of Divide&Content’s balancing algorithm is to
equalize the degree of contention between two core groups –the
local and a remote one–, so as to later improve fairness via
LLC-partitioning. This algorithm is motivated by the insights
summarized in Sections II-C and IV, which indicate that bal-
ancing the pressure for shared resources across core groups
increases the effectiveness of LLC-partitioning.

To approximate the degree of contention in a core group, we
consider the pressure that each program assigned to the group
applies to the local memory channels (measuring memory band-
width demand) and its demand for the shared LLC (representing
the required space to reduce the application’s slowdown). To this
end, we define two per-application indicators: bandwidth load
(LBW ) and LLC load (LLLC). In particular, an application’s
bandwidth load is defined as its total memory-bandwidth con-
sumption reported by the hardware [22], [23] during the current
monitoring interval. The LLC load of an application matches its
LLC critical point as defined in [7]. Specifically, it represents
the number of LLC ways at which the application’s slowdown

due to cache sharing falls below 5%. The higher the LLC load
or critical point, the more LLC space the application requires
to reduce its slowdown. For cache-sensitive programs, LFOC+
automatically updates the critical point when a new slowdown
curve is obtained. For light-sharing and streaming applications
their LLC load is set to be 1 and 2 LLC ways, respectively,
for the specific Intel processor used in our study. By definition,
a light sharing program is characterized by having a working
set that fits entirely or almost entirely in the private cache
levels, so allotting a single LLC way is sufficient to guarantee a
low slowdown (< 1.05); henceLLLC = 1. Regarding streaming
applications, many of them experience a low slowdown as well
using a 1-way LLC partition when running alone. However,
our previous work [7] demonstrated that using 2-way LLC
partitions to confine these type of programs can further increase
system throughput, as that significantly reduces the bandwidth
consumption of these programs, which can be substantial when
using 1-way partitions. This approach allows LFOC+ to deliver
a good throughput-fairness trade-off, especially when the work-
load includes bandwidth-intensive multithreaded programs [7].
Hence, as a conservative measure, we employ 2-way LLC parti-
tions to confine streaming programs (parameter ways_str = 2
in Algorithm 1), and thus assume that LLLC = 2 for streaming
programs.

In DC’s contention balancing algorithm, applications cur-
rently running on the local and remote groups, are (one by
one) re-assigned to one of the groups. Application placement
decisions are based on the aggregated bandwidth load, and
aggregated LLC load –denoted as AGBW and AGLLC– of each
group; this is, the sum of the associated contention indicators
(LBW and LLLC , respectively) for all the applications already
assigned to a group in previous steps of the algorithm. The per-
group AGBW and AGLLC are properly updated after assigning
each application, and so is each group’s slot counter, which
records the number of free slots (i.e., yet unassigned cores) on
it.

DC’s contention balancing algorithm comprises 4 steps:
Step 1: The algorithm traverses all active applications in both

core groups, and builds 3 linked lists for light-sharing, streaming
and cache-sensitive programs, respectively. Henceforth, we will
refer to these lists as LS, ST and CS. Applications in ST and
CS are sorted in descending order by its LBW and LLLC ,
respectively. For efficiency reasons, an MT linked list is also
maintained to keep track of active multithreaded applications
irrespective of its class. Notably, in this first step of the algo-
rithm –and in an attempt to reduce the number of migrations–
applications that have been migrated recently (according to the
min_migration_period parameter) or those with user-
provided CPU affinities are automatically assigned to their
current core group; these applications are not included in any
of the aforementioned lists.

Step 2: The algorithm goes through all multithreaded appli-
cations in MT, and for each one it tries to improve data locality
by ensuring that all of its threads are packed onto a single group
(as in [5], [41]), while reducing the number of migrations. This
thread compaction procedure is only possible if the number of
slots in one of the groups is greater or equal than the application’s
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thread count. If so, all threads will be assigned to one of the
groups. Otherwise, threads will remain assigned to their current
group. Notably, in placing threads from applications in MT, DC
handles applications in decreasing order by their thread count;
applications whose thread count exceed the number of cores in
a core group are skipped in this step. This makes it possible to
improve the locality of many multithreaded programs.

Step 3: The algorithm now places single-threaded applications
that have not been assigned yet. It first traverses applications in
CS; each application is assigned to the core group with the lowest
AGLLC , provided that their slot counter≥ 0. In doing so, it tries
to even out the competition for LLC space between groups, thus
maximizing the opportunities for the application to be mapped
to a large LLC partition by LFOC+, which reduces its slowdown.
Next, applications in ST are processed; each streaming program
is assigned to the group with available slots that exhibits the low-
est AGBW , so as to balance memory bandwidth consumption
across groups. Finally, the remaining sequential programs (LS
list) are assigned so as to minimize the number of migrations.
We should highlight that as soon as a group runs out of slots
when assigning applications, the algorithm prioritizes the group
with the greatest slot counter.

Step 4: Lastly, the algorithm tries to even out the memory-
bandwidth consumption across groups further, but it does so
only if the difference between the AGBW of both groups
exceeds a certain bw_load_thr threshold. This imbalance
may be present due to the fact that streaming multithreaded
applications typically have much higher bandwidth consumption
than single-threaded programs [7]. Because Step 2 may pack all
the threads from a streaming multithreaded application into a
single group, this could introduce a large imbalance between the
memory-bandwidth demands in both core groups, which could
still persist even after Step 3. To address this issue, the algo-
rithm iteratively swaps threads from a streaming multithreaded
application assigned to the group with the highest AGBW with
light-sharing threads from the opposite group (preferably from
another multithreaded application), until a balance is reached or
no further swap partners are found.

C. Interactions Between DC’s Building Blocks

Algorithm 2 shows the pseudo-code of the function that
our resource-management strategy executes periodically on a
per-core-group basis. Essentially, no actions are performed when
the group is in a contention-wise unstable state, namely, when
the LFOC+ instance for the current group is now going through
sampling mode, or when thread migrations are yet pending
on the group. Otherwise, the function (lines 5-8) traverses the
set of remote groups until one group eligible for balancing is
found and the balancing algorithm is able to address the de-
tected contention imbalance via thread migrations. The function
balance_groups() implements the balancing algorithm
presented in Section V-B, and returns the number of threads
migrations triggered.

A remote group is considered eligible for balancing (see
Algorithm 3) when the following conditions are met (i) it is
not in a contention-wise unstable state, (ii) it was not recently

Algorithm 2: Divide&Content Algorithm.
1: function divide_and_content(cur_group)
�Ensure it is safe to balance groups or partition the LLC

2: if in_sampling_mode(cur_group) or
3: migrations_pending(cur_group) then
4: return;
�Find a remote group so as to even out contention

5: for each remote_group ∈ AllGroups− {cur_group}
do

6: if eligible_for_balancing(remote_group, cur_group)
7: and balance_groups(remote_group, cur_group) > 0
8: then return;
�If no balancing was performed, apply LFOC+

partitioning
9: lfoc_plus_partitioning(cur_group);

Algorithm 3: Auxiliary Functions Used by Di-
vide&Content.

1: function eligible_for_balancing(remote, local)
�Check if balancing is feasible at the remote side

2: if in_sampling_mode(remote) or
migrations_pending(remote)

3: or recently_balanced(remote)
4: then return false;
�Check if a clear imbalance in terms of AGBW or

AGLLC exists
5: return compare_llc_load(remote,local) or
6: compare_bw_load(remote,local);
�Returns true if the AGLLC in both groups is high and

uneven
7: function compare_llc_load(group1, group2)
8: if AGLLC(group1) ≤ LLCways and

AGLLC(group2) ≤ LLCways

9: then return false;
10: return |AGLLC(group1)−AGLLC(group2)| >

llc_load_thr;
�Returns true if the AGBW in both groups is high and

uneven
11: function compare_bw_load(group1, group2)
12: if AGBW (group1) ≤ low_bw_thr and
13: AGBW (group2) ≤ low_bw_thr
14: then return false;
15: return |AGBW (group1)−AGBW (group2)| >

bw_load_thr;

selected for contention balancing, and (iii) its pressure on the
LLC or its memory-bandwidth consumption is substantial and
differs significantly from that of the local group. To detect if such
contention-wise imbalance exists, the compare_bw_load()
and compare_llc_load() functions leverage the current
AGBW and AGLLC of the local and remote groups, the number
of ways in the LLC (LLCways), as well as 3 configurable thresh-
olds (bw_load_thr, low_bw_thr and llc_load_thr).
If the loop of Algorithm 2 (lines 5-8) does not carry out any
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balancing actions, then LFOC+’s partitioning algorithm is in-
voked (line 9). This algorithm is also called when all migrations
triggered by a previous invocation of balance_groups()
complete.

Notably, DC has been implemented so as to work in synergy
with Linux’s automatic NUMA balancing feature [38]. DC’s
min_migration_period parameter –used in Step 1 of the
balancing algorithm– was introduced to ensure that applications
that have been migrated recently between core groups remain
pinned for some time to their current group. This allows to keep
automatic page migrations under control, and permits NUMA
balancing to migrate a substantial amount of the application’s
reused pages, which improves locality and reduces interconnect
contention [5], [41].

To establish the value of min_migration_period we
conducted a simple experimental study. Specifically, to track
the activity of NUMA balancing in our experimental platform
we monitored the remote memory bandwidth of different appli-
cations after migrating them between core groups. For memory-
intensive programs from SPEC CPU, NUMA balancing takes
6.2 s on average to complete page migrations of the application’s
used pages. For other programs (mostly light sharing ones)
automatic page migration is not even engaged due to their small
working set, often stored in the cache hierarchy. Based on our
study’s conclusions, we set min_migration_period to 8
seconds, thus allowing memory-intensive programs to enjoy
a 30% of extra time over the aforementioned average with
improved locality.

D. Considerations on Affinities, Containers and VMs

In this work we assess the benefits of DC when deliver-
ing fully automatic thread-to-socket placements and resource-
management to compute- and memory- intensive multiprogram
workloads running natively on top of the OS. Nevertheless, DC
could be leveraged in other workload scenarios. In particular, our
implementation respects user-provided affinities, so users could
forcefully assign specific applications/threads to particular core
groups if required. Applications with a huge memory footprint or
those exploiting custom page placement policies [4], [41] could
greatly benefit from specific user-driven static mappings. In this
scenario, DC’s contention-balancing algorithm tries to even out
the degree of contention by migrating (if needed) threads that
do not have user-provided mapping constraints, and by still
partitioning the LLC dynamically.

Moreover, due to its integration into the Linux kernel, DC
could be leveraged for efficient resource management of mul-
tiple containers (e.g., Docker-based) or KVM-based virtual
machines, with or without user-enforced CPU affinities. After
all, VMs and containers are exposed to the Linux scheduler as
multithreaded processes or groups of tasks, respectively. In the
context of virtual environments consisting of multiple servers,
our node-level proposal could be extended to harmoniously work
with higher-level coarse-grained approaches that mostly focus
on VM-to-node mappings [1] but do not address or react to
program phases unlike DC.

VI. EXPERIMENTAL EVALUATION

In this section we begin by describing our experimental setup,
the workloads and the methodology employed in our experi-
ments (Section VI-A). The detailed discussion of the results can
be found in Section VI-B. Finally, Section VI-C analyzes the
overhead of the evaluated resource-management strategies.

A. Experimental Setup, Methodology and Workloads

Our evaluation was performed on a dual-socket NUMA ma-
chine (2 core groups) with 96 GB DRAM that integrates two
20-core Intel Xeon Gold 6138 (Skylake) processors where cores
run at 2Ghz. Each processor has an 11-way 27.5 MB LLC (L3)
with way-partitioning support (via Intel RDT [22]). All cores
have two private cache levels (64 KB L1 + 1 MB L2).

To assess the effectiveness of Divide&Content (DC), we
experimentally compared it with three strategies: Stock-Linux,
the unmodified Linux kernel, which does not partition the LLC;
DINO [5], a contention-aware thread-placement NUMA-aware
strategy that does not leverage LLC-partitioning either; and
DINO/LFOC+, a variant of DINO that partitions the LLC
with DC’s LFOC+ version. We created DINO/LFOC+ to an-
alyze the impact of combining two existing complementary ap-
proaches [5], [7] that make uncoordinated contention-aware de-
cisions, namely where thread placement is done without know-
ing that the LLC is going to be partitioned afterward. Notably,
DINO was originally evaluated via a user-space prototype [5],
which relied on Linux’s affinity-related Linux system calls. For
our evaluation, we created a kernel-level version of DINO, by
leveraging the PMCSched framework [45]. This implementation
is not subject to system-call related overheads, as migrations are
handled directly in the kernel with the same mechanism used
for DC’s implementation.

To pick appropriate values for DC’s configurable parame-
ters (see Section V), we conducted multiple sensitivity stud-
ies, whose conclusions we summarize here. The value of the
memory-bandwidth related parameters was set as a percent-
age of the maximum per-socket bandwidth reported by the
stream benchmark (76 GB/s in our platform). In particular,
the low_load_thr and bw_load_thr parameters were set
to 15% and 35% respectively. The llc_load_thr parameter
was established to 5 cache ways (roughly 45% of the total way
count). As for LFOC+’s settings, we used exactly the same
parameter values as in LFOC+’s original work [7], where a UMA
machine was used but with the same processor model. Lastly,
to conduct a fairer comparison with DINO we set the activation
period of the balancing algorithm in both DC and DINO to 1 s,
as in DINO’s first evaluation [5]. The low and high LLCMPKI
thresholds for application classification in DINO were set to 3
and 24 respectively for our platform, which features a much
bigger LLC than the platform used by DINO’s creators [5].

For our evaluation, we followed the standard practice when
assessing the effectiveness of LLC-partitioning strategies for
compute-intensive workloads [2], [7], [12], [21], [24], [26],
[31], namely, we consider randomly generated mixes compris-
ing long-running programs from standard benchmark suites.
Specifically, we used workloads that combine single-threaded
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Fig. 9. Each table row Mi depicts the composition of the i-th workload used in our experiments. For each benchmark, the dominant application class observed
during the execution is displayed in the associated column. When a program is not included in a workload a blank cell is used in the corresponding row. The “xN”
mark indicates that the associated benchmark runs with N threads. A suffix has been added to each benchmark’s name to indicate the corresponding suite (e.g.,
“17” denotes SPEC CPU2017, “-p3” is for PARSEC3 and “-npb” for NAS Parallel Benchmarks).

Fig. 10. Normalized unfairness and STP values obtained by the various strategies.

and multithreaded applications, and utilize 61 different pro-
grams from 6 benchmark suites: SPEC CPU2006, CPU2017,
PARSEC3, SPEC OMP2012, NAS Parallel Benchmarks and
Rodinia. Fig. 9 depicts the composition of the 30 randomly gen-
erated program mixes used for our experiments, which combine
varying amounts of streaming, cache-sensitive and light-sharing
applications. In all workloads, the total thread count was set to
match the number of cores on our platform (40). Particularly,
as indicated in Fig. 9 all workloads include 2 multithreaded
programs, and a varying number of single-threaded applications
(20 in M1-M10, 8 in M11-M20 and 16 in M21-M30). Mul-
tithreaded programs run with 10 (M1-M10), 16 (M11-M20) or
12 threads (M21-M30). These workloads allow us (1) to perform
a fair comparison with DINO [5], where similar workloads
were used, (2) to explore scenarios with different degree of
competition for shared resources, including a varying number
of programs of diverse contention classes (as shown in Fig. 9),

and (3) to demonstrate that DC delivers fairness and does not in-
troduce important overheads, even with large application counts.
Notably, our experimental platform features a larger core count
than any of those used in prior work on cache-clustering [2], [7],
[12], [21], [24], [26].

In running the workloads we follow a similar methodology
to that of [7], [17], [47], which deals with the divergences
in the applications’ completion times by keeping the system
load constant throughout an experiment. Specifically, we en-
sure that all applications in the mix are started simultane-
ously, and when one of them completes, it is restarted repeat-
edly until the longest application in the set completes three
times. We then measure unfairness and STP, by considering
the completion times for each program. All the workloads
were launched 10 times under each strategy so as to assess the
strategy’s degree of variability across multiple runs of the same
workload.
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TABLE III
AVERAGE, AND MAXIMUM GAINS/REDUCTIONS FOR VARIOUS METRICS WITH

RESPECT TO STOCK-LINUX

B. Discussion of Experimental Results

Fig. 10 shows the degree of unfairness and throughput
(normalized w.r.t. Stock-Linux) delivered by the different
contention-aware strategies. For each workload and strategy,
the figure shows the arithmetic mean of the various metrics
recorded in the multiple runs of each workload. Note that we
use separate charts (discussed later) to illustrate the enormous
performance variability provided by Stock-Linux from run to
run. Results in Fig. 10 clearly reveal that our DC approach
outperforms the remaining strategies in terms of fairness for
the vast majority of the program mixes. As reported in Table III
A, DC reduces unfairness by up to 44.35% (M26 workload) and
18.67% on average relative to Stock-Linux. Compared to DINO
and DINO/LFOC+, DC improves fairness by 17% and 13.3% on
average, respectively. As for throughput, the differences among
approaches are smaller; in fact, for most of the workloads, all
strategies operate in a tight 4% range. Nevertheless, DC is able
to provide substantial fairness gains vs. Stock-Linux without a
significant impact on average throughput (see Table III b).

For the sake of completeness, Table III c and III d provide the
average and maximum reductions in other popular system-wide
metrics [12]: the Average Normalized Turnaround Time (ANTT),
and an alternative metric to assess the degree of unfairness, re-
ferred to as UnfairnessCoV, based on the Coefficient of Variation
(CoV) across per-application slowdowns. Regarding ANTT, DC
is able to reduce it by almost 2% on average. We also observed
that the UnfairnessCoV metric greatly magnifies fairness im-
provements with respect to the Unfairness metric, so providing
both values as a reference is in order for proper comparison
across works. In particular, DC averages a 33.24% reduction in
UnfairnessCoV, whereas the other approaches achieve a similar
average value than Stock-Linux.

As discussed in Section I, Stock-Linux fails to provide repeat-
able results across multiple runs of the same workload. Fig. 11(a)
and (b) depict the variability in unfairness and throughput for the
first 10 workloads. As it is evident, DINO and DC are capable to
deliver more consistent results (so is DINO/LFOC+, despite the
omission of its results here for the sake of clarity in the charts).
However only DC reaps substantial fairness benefits across the
board. Stock-Linux’s variability stems from the fact that the
Linux scheduler initially performs random thread-to-core-group
mappings, and then tries to keep threads on the same core they
run for as long as possible. Thread migrations are only trig-
gered to enforce load balance, while avoiding migrations across
NUMA nodes if possible. These actions do not ensure a balanced
and consistent degree of LLC and memory-bandwidth con-
tention. As an illustrative example, Fig. 11(c) shows the impact
of Stock-Linux’s random mappings for workload M4. Clearly,
cache-sensitive programs (like mcf) and bandwidth-intensive
ones (e.g., milc) are highly exposed to this variable degree of
contention which causes substantial slowdown divergences from
run to run. By contrast, DC effectively addresses this variability
while reducing the per-application slowdown significantly; take
for instance the case of the M4 workload, depicted in Fig. 11(d).

We turn back our attention to Fig. 10, which reveals DINO’s
mixed results. Particularly, we observe that DINO provides
modest throughput improvements over Stock-Linux in many
cases, while ensuring consistent performance across runs. These
improvements are the result of spreading among core groups
those applications with a substantial LLCMPKI (superdevils
and devils). In doing so, DINO evens out the aggregate num-
ber of LLC misses across NUMA nodes, which contributes
to reducing the degree of bandwidth contention and, in turn,
improves the performance of streaming bandwidth-intensive
programs. DC also reduces bandwidth contention, but it may
slightly degrade the performance of streaming programs (hence
the lower throughput in some cases). This stems from its re-
liance on LFOC+ [7], which confines streaming programs into a
few LLC partitions for effective isolation from cache-sensitive
applications.

While in some scenarios DINO reduces unfairness by more
than 15% w.r.t. Stock-Linux (e.g. M5, M9 or M27), it has a
substantially unfairer behavior than DC in most cases. One of
the main reasons behind this trend is DINO’s reliance on the
LLCMPKI metric to classify applications at runtime, which
poses a number of issues. Specifically, the LLCMPKI is known
to be a misleading indicator of the application’s degree of
sensitivity to shared-resource contention [7]. This metric does
not enable contention-aware strategies to distinguish between
cache-sensitive and streaming programs, as both types of pro-
grams could exhibit an equally high LLCMPKI at runtime [7].
In spreading superdevils and devils across multiple core groups,
DINO seldom separates streaming from cache-sensitive pro-
grams, which severely degrades the performance of the latter.
This stands in contrast with what the theoretically optimal
fairness-wise placement does when cache-partitioning is not
used (see Section IV), where this separation is paramount. Of
special attention is the case of M4, where DINO systematically
maps the cache-sensitive mcf program and streaming aggressor
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Fig. 11. Variability of the unfairness -Fig.(a)- and the STP metric -Fig.(b)- across multiple runs of workloads M1-M10 with Stock-Linux (SC), DINO and
Divide&Content (DC). Figs (c) and (d) show the distribution of the per-application slowdown values observed in different runs of the M4 workload with Stock-Linux
and DC, respectively.

applications on the same core group, slowing down mcf by
a factor of 3.35x, which introduces substantial unfairness. Note
also that the DINO class assigned to an application at runtime de-
pends –as the LLCMPKI– on its actual LLC occupancy, which,
in turn, largely depends on their group co-runners at that time
(recall that DINO does not partition the LLC). Take for instance,
the xalancbmk or mcf programs which are classified most of
the time as superdevils when the cache occupancy is lower than 3
cache ways, and as devils for high LLC-space allocations. This,
in turn, causes class oscillations triggered by changes in the
behavior of the remaining programs, which ultimately leads to
extra thread migrations (hence to overheads). By contrast, under
DC, these applications are classified as cache sensitive most of
the time, and the LFOC+ policy effectively assigns them to a
partition not shared with streaming programs, irregardless of
their current LLCMPKI or their cache occupancy.

Lastly, we zoom in on DINO/LFOC+’s results in Fig. 10.
Applying the LFOC+ partitioning policy on top of DINO does
bring substantial fairness benefits in some cases (e.g., an extra
32% improvement in M5). However, and contrary to our initial
expectations, DINO/LFOC+ underperforms DINO in many pro-
gram mixes. Two main factors are behind this behavior. First,
the thread-to-group mappings performed by DINO based on
the application’s classes often lead to an uneven distribution
of cache-sensitive programs among core groups, thus concen-
trating many of these programs in one group. As pointed out in
Section II-C, reducing unfairness is challenging under such a
high degree of LLC-space competition. So, the LFOC+ strategy
does not yield substantial benefits in this context. Second, in
many workloads– such as M13, M21 or M28– DINO/LFOC+
substantially increases the number of cross-group migrations
w.r.t. DINO, and the associated overhead negates the benefits

TABLE IV
AVERAGE STATISTICS OBTAINED FOR WORKLOADS M1-M10

of using LFOC+. Essentially, the higher migration rate comes
from frequent oscillations in the application classes caused by
the effect of LLC-partitioning. Under DINO/LFOC+, the LLC
is not partitioned while cross-group thread migrations are in
progress, and once completed the cache-partitioning algorithm
is executed. Since the DINO class is heavily dependent on an
application’s LLC occupancy, changes in occupancy lead to
oscillations in the application classes, and, in turn, to extra
migrations. These two issues are not present in Divide&Content,
which makes the most out of the LFOC+ cache-clustering policy
by carefully balancing the degree of competition for LLC space
across core groups.

C. Overhead Analysis

Table IV shows the average cross-group thread migration
rate, as well as other key overhead indicators for the various
strategies, gathered during the execution of the first 10 work-
loads, which include the largest number of applications (i.e. 22)
across all program mixes. These statistics were collected with
the SystemTap kernel tracing tool in separate launches of the
workloads. As it is evident, the cross-group thread migration
rate under DINO and DINO/LFOC+ is roughly 2.5 times higher
than that of DC. DC’s lower migration rate is the result of
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its various mechanisms to avoid migrations (see Section V),
coupled with LFOC+’s classification method, which does not
lead to as many class changes as in DINO. Table IV also reflects
that DINO’s contention-aware placement algorithm takes almost
twice as much to run on average (21.16µs) than DC’s contention
balancing algorithm (11.15 µs). Nevertheless, devoting tens of
microseconds every second on one core of the system does not
constitute a substantial overhead.

A detailed overhead analysis of LFOC+’s partitioning algo-
rithm can be found in [7], where the same processor model was
used, but in a single-socket setting. By following the same proce-
dure for the overhead analysis, we corroborated that our LFOC+
implementation within DC introduces a similarly low overhead
in our NUMA setting. PMCs –required by LFOC+’s classifi-
cation method– are sampled continuously using coarse-grained
instruction windows as in [7], which introduce negligible over-
heads. LFOC+’s sampling mode was engaged on average on
a per-core-group basis only for 0.42% of the workloads’ total
execution time. Its partitioning algorithm (invoked twice per
second and per core-group under DC’s) has an average execution
time of 12.99 µs (as shown in Table IV), which leads to low
overhead.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced Divide&Content (DC), a
novel OS-level resource manager that effectively combines
contention-aware thread placement and cache-partitioning so
as to improve fairness in NUMA multicores. DC’s design was
driven by the insights drawn from our comprehensive simulation
study on how to best combine LLC-partitioning and thread
placement. We conclude that coordinated thread-mapping and
cache-partitioning decisions are paramount to optimize fairness.
Our experimental evaluation demonstrates that DC substantially
improves fairness with respect to Linux and a NUMA-aware
contention-conscious strategy [5], while providing consistent
performance and throughput across runs. Notably our DC imple-
mentation in a kernel module, which leverages the PMCSched
framework [45], can be loaded in unmodified (vanilla) versions
of the Linux kernel with standard tracing support enabled.

As for future work, we plan on exploiting hardware extensions
for bandwidth limitation [22] together with LLC-partitioning to
improve isolation among applications/VMs in CMPs. We will
also conduct an experimental demonstration of the scalability
and fairness benefits of DC on NUMA systems including more
than two LLC core groups, like processors with the EPYC Milan
microarchitecture, which feature multiple core groups/LLCs
within a single socket.
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