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Abstract—Placing popular data at the network edge helps reduce
the retrieval latency, but it also brings challenges to the limited
edge storage space. Currently, using available yet not necessarily
reliable edge resources is common sense for edge space expan-
sion, while deploying deduplication storage strategies is a general
method for better space utilization. However, a contradiction arises
when jointly implementing data deduplication with unreliable edge
resources. On the one hand, the deduplication policy stipulates that
any data chunk can be stored exactly once; on the other hand, the
use of unreliable resources imposes that data should be backed
up for the seek of file availability. To resolve such contradiction,
we propose MEAN, a deduplication-enabled storage system using
unreliable resources at the network edge. The core idea of MEAN is
to place similar files together for better deduplication and maintain
replicas of popular files for higher reliability. We first formulate
this problem and prove its NP-hardness, then provide efficient
heuristics based on similarity-aware hierarchical clustering. Three
different reliability scenarios are comprehensively considered to
develop our algorithms. We also implement a prototype system
and evaluate the performance of MEAN with a real-world dataset.
The results show that MEAN can fortify the file hit ratio under
unreliable environments by 77% while reducing the file retrieval
delay up to 71%, compared with the state-of-the-art approach.

Index Terms—Deduplication, fault tolerance, storage system,
edge computing.

I. INTRODUCTION

W ITH the flourishment of time-sensitive applications
(e.g., augmented reality, Internet of Things, and self-

driving), placing popular files at the network edge has become
one of the ubiquitous paradigms [1], [2], [3], [4], [5], [6]. This
can reduce the number of data requests to remote data centers,
thereby alleviating network congestion and shortening service
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delays. A key metric for such a system is the hit ratio, which
quantifies the percentage of data requests that can be served at
the network edge. Consequently, popular data is welcome to be
stored there.

Currently, the edge cluster suffers from limited storage space
and cannot cope with the explosive growth of data. It is estimated
that the worldwide number of IoT-connected devices will reach
43 billion by 2023 [7], and 75% of data is projected to be created
and processed outside the cloud by 2025 [8]. While this can be
solved by renting more proprietary resources, it is not always
a cost-friendly option for service providers. Therefore, many
studies [3], [9], [10], [11] suggest expanding edge storage space
by incorporating various available edge resources, even though
some resources may be unreliable. They range from the idle
resources provided by various enterprises and individuals to
the resources reserved for other applications that are not fully
utilized yet. This gives content providers both a cost-efficient and
instant way to expand their storage space. By storing more files
with extended space, this methodology can improve the hit ratio
to some extent. The downside, nevertheless, is that many of these
resources are often unreliable. Some edge servers may erase the
stored content or leave the storage system at any time. Therefore,
redundancy should be generated to guarantee file availability.

As a key technology to achieve space efficiency, data dedupli-
cation has been adopted by many modern storage systems [12],
[13], [14], [15], [16]. A common practice for data deduplication
is to split files into multiple fixed/variable-size chunks, and
only one copy of each chunk is maintained [17], [18]. This
methodology explores similarities between files, allowing the
storage cluster to retain only unique data. In recent years, there
have also been many efforts to implement deduplication for edge
storage systems [2], [19]. It is reported that the redundancy of
IoT and multimedia data can be reduced by over 70% with data
deduplication [2], [14], [20]. In addition, according to the study
conducted by Microsoft [21], the typical space saving is around
50–60% in general file share scenarios, while datasets with high
duplication could see optimization rates of up to 95%, or a
20× reduction in storage utilization. Since more files can be
stored with limited storage resources, the hit ratio is somehow
improved.

In production storage systems, the above methodologies
should be combined together so that the space can be extended
freely and occupied with deduplicated chunks. However, it
should be noted that these two methodologies may present
some contradictions. On the one hand, the deduplication policy
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stipulates that any data chunk can be stored exactly once; on
the other hand, the use of unreliable resources imposes that data
should be backed up for the seek of file availability. For the
extended space, it is not uncommon that a stored chunk becomes
unavailable due to hardware failure, software crash, or the space
is recycled by its responsible application. As a consequence,
all the files which share that chunk will be incomplete and
unavailable. Therefore, a crucial question here is: how should
we use the unreliable space at the network edge, to store more
deduplicated chunks of more files or to back up chunks in case
of failures?

To resolve the above dilemma, we present MEAN,1 a
deduplication-enabled edge storage system using unreliable re-
sources. With the ambition of a high hit ratio, MEAN takes
no extreme policies (neither backing up nor deduplicating all
the chunks), while it goes to the middle (replicating a part of
chunks and deduplicating the rest). Specifically, MEAN selects
the stored files with the joint consideration of file popularity,
file similarity, and server reliability. MEAN improves the avail-
ability of popular files and takes up less extra space through
redundancy, while others tend to be deduplicated for space
efficiency.

We first formulate this problem and prove its NP-hardness.
Thereafter, to reduce the search space in similarity detection,
we propose a similarity-aware hierarchical clustering algorithm.
Based on this algorithm, we elaborately design a set of heuristic
algorithms to determine which files to store and where to place
their chunks or replicas. The algorithms are progressively gener-
alized according to three different reliability scenarios. The core
insight is to dynamically compare the hit ratio gains of adding
replicas of the already-stored files with those of directly storing
a new file. In this way, MEAN can provide a trade-off between
file availability and space efficiency, thus improving the file hit
ratio under the limited storage space.

The examples of MEAN and its comparisons are illustrated in
Fig. 1. We assume that the cloud is a conventional deduplication
storage system utilizing either inline or offline deduplication.
The cloud partitions files into chunks and selects a subset of
frequently accessed files to be placed at the edge. The popularity
of each file is predetermined, indicating its expected access
frequency in the future. For simplicity, we assume that all chunks
are of equal size in this example. The deduplication-aware
scheme (a) [2] stores the most popular files and allocates their
deduplicated chunks across the edge servers evenly. Such a
method can improve the file hit ratio. Nevertheless, it is hard to
guarantee the stored file available (whose expected file hit ratio is
only around 40.7%). We find that production distributed storage
systems [22], [23], [24] typically employ replication for fault
tolerance. Additionally, some deduplicated storage systems [25]
also consider incorporating a fixed number of replicas for unique
chunks to ensure their availability. Inspired by this, one possible
improvement is to add replicas for each popular file, as shown
in Fig. 1(b). Nevertheless, the expected file hit ratio (around

1Mean or moderation is a basic philosophy of Confucian School in Chinese
culture. It suggests taking moderate rather than extreme actions so that contra-
dictions or conflicts can be tactfully avoided.

Fig. 1. Illustrative example of MEAN and some comparison methods. Eight
files (f1 ∼ f8), attached with their popularity (9, 2, 1, 4, 1, 3, 2, 1), are partitioned
into 12 chunks (c1 ∼ c12). The storage resources are composed of two edge
servers (ES1 and ES2), each with a storage size of five chunks. The reliability
of server ES1 and ES2 is 0.7 and 0.6, respectively. The aim is to maximize the
hit ratio when storing a part of the files at the edge.

49.7%) is just slightly improved due to the decreased number of
stored files. Scheme (c) (i.e., MEAN), by contrast, is a relatively
superior solution with a maximum file hit ratio of around 66.2%.
It eliminates a part of redundancies to free up the storage space,
and the most popular file f1 is replicated to enhance the file
availability. Thus, it can achieve an elegant trade-off between
space efficiency and file availability. The strengths of MEAN
lie in its ability to select stored files dynamically and decide
the location and number of replicas for each stored chunk,
considering space efficiency and file availability jointly. The
major contributions can be summarized as follows.
� We are the first to consider the problem of implement-

ing deduplication-enabled storage with unreliable edge re-
sources. We propose MEAN to realize a high file hit ratio by
reaching a balance between replication and deduplication
of data chunks.

� We formulate the data deduplication problem at the unre-
liable edge and prove its NP-hardness. Efficient heuristic
algorithms are designed to generate a feasible solution,
based on similarity-aware hierarchical clustering.

� We implement a prototype system of MEAN and evaluate
the performance under realistic environments with a real-
world dataset. The results show that MEAN can fortify the
file hit ratio under unreliable environments by 77%, while
reducing the retrieval delay by up to 71%.

The rest of this paper is organized as follows. Section II states
the related work and motivation. Section III presents the problem
formulation and the hardness analysis. Section IV exhibits the
heuristic algorithms for the three heterogeneous edge storage
scenarios. Section V reports our experimental results, and finally,
Section VI concludes this paper. The algorithm of MEAN is
available at https://github.com/JX-Xia/MEAN.

https://github.com/JX-Xia/MEAN
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II. RELATED WORK AND MOTIVATION

In this section, we first introduce the related work and then
present the motivation of MEAN.

A. Related Work

With the explosive growth of digital data, deduplication [17],
[18] has attracted increasing attention in large-scale storage
systems to realize the space efficiency rationale. The typical
chunk-level deduplication process is to split files or data streams
into fixed [26], or variable-size [17], [27] chunks and then
calculate their fingerprints (e.g., MD5 or SHA256). Only chunks
with the unique fingerprint are stored, while duplicate chunks
are eliminated. Such an approach can effectively reduce data
redundancy and free up a large amount of storage space. Studies
conducted by Microsoft [28], [29] and EMC [30], [31] indicate
that about 50% and 85% of the data in the production primary and
secondary storage systems can be removed using the deduplica-
tion technology. In the general file share scenarios, the typical
space savings can be up to 50-60% after deduplication [21].

Due to the competitive advantage, the deduplication technol-
ogy has also been explored for deployment at the network edge
in recent years to address space efficiency. It is reported that
more than 70% of redundancy in IoT and multimedia data can
be eliminated by data deduplication [2], [14], [20]. Li et al. [19]
present a collaborative edge-facilitated deduplication technique
to balance the deduplication ratio and the deduplication through-
put. Luo et al. [32] propose a graph-based approach to maximize
the data deduplication ratio with delay constraints. Cheng et
al. [33] design a lightweight three-layer hash mapping method
to allocate the most similar files into one edge server for better
redundancy elimination. However, these efforts do not take into
account the file popularity and thus cannot achieve a higher hit
ratio with limited edge storage space. In contrast, HotDedup [2]
models the file similarities as a δ-similarity graph, and then
allocates files with higher popularity at the edge network. In this
way, HotDedup allows more popular files to be stored and thus
improving the file hit ratio. Since HotDedup is relevant to the
work in this paper, we mainly compare our MEAN method with
it. Nevertheless, HotDedup is primarily concerned with space
efficiency, while edge storage servers are always assumed to be
reliable.

Expanding storage space is another way to make the edge
hold more files. Due to the diversity of edge resources, many re-
searches propose to expand edge storage space by using various
available resources. For example, Pu et al. [10] advocate edge
storage in cloud radio access networks to facilitate mobile multi-
media services. Liu et al. [9] propose a cost-efficient edge storage
system using embedded storage nodes. Various idle resources
and reserved resources are further emphasized in literature [3] to
achieve cost-effective space expansion. However, these methods
are currently not incorporated with the data deduplication tech-
nologies. Thus, the scarce edge resources cannot be fully utilized
with the duplicated chunks, especially for the stored files with
high similarity. In addition, the diversity of resources makes
server reliability a challenge. The storage system should deal
with unreliable and dynamic resources to ensure file availability.

Fig. 2. Impact of server reliability and the number of replicas on the file hit
ratio under limited storage space.

Unlike the existing strategies, our proposed MEAN is path-
breaking in highlighting both the space efficiency and file avail-
ability in edge storage. With the elegant trade-off between these
two rationales, the file hit ratio can be maximized. More data
retrieval requirements can be served at the nearby edge with
less service latency.

B. Motivation

While space efficiency and file availability can both effec-
tively improve the file hit ratio, the combination of the two
rationals invokes intractable challenges. As illustrated by the
example in Fig. 1, data deduplication assists space efficiency,
but magnifies the negative impact of data failure in unreliable
edge environments. To explore the relationship between the
two, we run tests to compare the hit ratio with different server
reliabilities and redundancies. For simplicity, we consider the
scenario of microservice deployment at the edge, where users
or edge servers pull code images from repositories to deploy
various container-based microservices. Due to real-time service
requirements, these microservices can be short-term and dy-
namically activated and deactivated, making the data retrieval
frequent [34]. We download some popular repositories from the
GitHub website [35], as well as some of their most downloaded
versions to conduct the test. They are split into chunks using the
variable-sized policy [17], which has been widely demonstrated
to be more efficient than the fixed-size chunking method [28],
[29]. Then, we set up 10 Virtual Machines (VMs) to act as edge
storage servers to maintain these repositories. Replication is
adopted for fault tolerance, since it is widely proven to have
better read/write performance [36], [37].

In each round of experiments, these VMs are randomly shut
down according to their reliability. We generate 1,000 retrieval
requests on a new VM, which counts as a hit if the required
file can be retrieved from these VMs; otherwise, as a miss. The
results are based on an average of 100 rounds of experiments.
Fig. 2(a) exhibits the hit ratios under different reliability of VMs.
The first comparison method is the deduplicated storage without
replicas, denoted as NR, where the unique chunks are randomly
distributed across 10 VMs. The second is the 3-replica method,
denoted as 3R, where each deduplicated chunk maintains 3
replicas across different VMs for fault tolerance. This setting
is also implemented by many production storage systems [22],
[23], [24] as the default fault tolerance mode. As shown in



2814 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 10, OCTOBER 2023

Fig. 2(a), the hit ratio of NR experiences a rapid decline from
100% to only 7.56% as the server reliability decreases from 1.0
to 0.8. By contrast, the hit ratio of the 3R method still remains
at a high level (74.80%, to be specific) when the reliability is
dropped to 0.8. Thus, redundancy can have a positive impact on
the hit ratio to some extent.

However, if we supplement the chunk replicas arbitrarily,
the extra occupied space of the redundancies would crowd out
the original stored content, which is not conducive to the increase
of the hit ratio. Therefore, we further conduct tests to observe
the impact of the number of replicas. The results are shown in
Fig. 2(b). In this set of tests, the total storage space of the 10
VMs is set to 40% of the dataset size, and the reliability of
each VM is fixed as 0.8. The file hit ratio grows initially when
one more replica is assembled for each unique chunk. However,
the excessive redundancy unnecessarily consumes a significant
amount of storage space, thereby reducing the capacity of the
cluster to hold more popular files. As a result, the file hit ratio
declines from 28.07% to only 13.42%, when the number of
chunk replicas increases from 2 to 5.

From the above test results, we conclude that server un-
reliability can have a significant negative impact on the hit
ratio of deduplicated-enabled storage, while replication is a
double-edged sword. Therefore, the trade-off between dedupli-
cation and replication should be delicately balanced when imple-
menting deduplication-enabled storage with unreliable storage
resources. This problem is intractable, and its complexity would
be multiplied when the heterogeneity of file popularity and
server reliability is further considered. In addition, although
some studies [25], [38] have emphasized the importance of
fault tolerance in deduplication storage systems and utilized
hash-based mechanisms such as CRUSH or DHT algorithms
to determine file or chunk placement, they fail to take into
account factors such as file popularity and heterogeneous server
reliability, which are crucial for making an elegant balance
between deduplication and replication. For example, to enhance
the hit ratio, we prioritize adding more replicas to highly popular
files to enhance their fault tolerance. We also conduct the dedu-
plication technique for the space-saving purpose, which helps
to accommodate more files at the resource-limited edge. The
combination of these two achieves an elegant balance between
redundancy and deduplication, which promotes the file hit ratio.
However, these optimizations cannot find the corresponding
operations for the hash-based methods. Therefore, they cannot
be directly employed in our scenarios to enhance the hit ratio
for edge storage.

To this end, this paper presents MEAN, a deduplication-
enabled storage system at the unreliable edge. MEAN leverages
replication to enhance file availability, while the deduplication
technology is also assembled to eliminate unnecessary redun-
dancies for space efficiency. As far as we know, it is the first
work to enhance the hit ratio with joint consideration of both
space efficiency and file availability for edge storage. To address
this, our MEAN supplements the chunk replicas according to
the popularity of different files and data-sharing dependencies
with the existing stored content. The chunk locations are also

considered to further promote the file availability with hetero-
geneous server reliabilities.

III. PROBLEM FORMULATION

In this section, we first formulate the deduplication storage
problem in Section III-A. With the problem being defined, we
analyze and prove the problem hardness in Section III-B.

A. Problem Formulation

We assume that there is a collection of files F = {f1, f2, . . .}
that are frequently fetched by users. Their popularities are esti-
mated through statistical analysis within a specific time frame,
denoted as H = {h1, h2, . . .}. A higher level of popularity indi-
cates that the file will be accessed more frequently for a period
in the future. There exist many studies that have extensively
explored methods to predict the popularity values of files [39].
All these methods can be applied to our work. Since this is not
the main concern of this paper, we assume that they are known
in advance. Let C = {c1, c2, . . .} be the set of unique chunks
(after data deduplication) that are partitioned from files in F .
The Boolean variable xi,j indicates an inclusion relation, where
xi,j = 1 means that chunk cj is included in file fi. A part of
files in F would be stored at the edge to facilitate data requests
and reduce retrieval delays. This constitutes a two-tier storage
architecture: the cloud data center keeps the whole set of files
and is considered infallible, while the edge cluster stores only
some popular files and may suffer from data loss. Due to the
high bandwidth and low latency of edge storage, file requests are
preferentially responded to by the edge servers. If the file is not
stored at the edge, or if the server fails and data is lost, the request
is further forwarded to the cloud data center. The deployment
of edge storage can be performed during off-peak hours to
reduce the traffic pressure on the backbone network [3], [4].
The service provider can specify the update intervals between
two deployments to achieve a balance between traffic overhead
and service performance. The edge metadata overhead due to
deduplication mainly comes from two aspects. The first is called
file recipes, which are effectively a list of per-chunk metadata as
they appear in each file stored at the edge. If one chunk exists in
a file multiple times, its metadata also occurs multiple times in
its file recipe. This helps file reconstruction in the data retrieval
process. The second records the mappings between chunks and
edge servers, which helps to retrieve the specific chunks based
on the recorded address.

The edge resources are composed of a set of edge servers
S = {s1, s2, . . . }. The storage capacity of server sk is denoted
by cap(sk). Let Boolean variable yj,k indicate whether chunk cj
is stored at the edge server sk. We do not consider the case that
a chunk or file is replicated several times at one server, because
it has no effect on the access shunt but only aggravates data
redundancies. Let size(cj) denote the size of chunk cj , then the
storage cost of server sk is the total size of the chunks stored on it,
i.e., size(sk) =

∑
cj∈C yj,k · size(cj). Note that, this size func-

tion generates a constant value for the fixed-size chunking [26],
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TABLE I
NOTATIONS OF MODEL FORMULATION

and varies for the variable-size chunking algorithms [17]. The
specific definitions are summarized in Table I.

A file request can only be hit when all of its referenced
chunks are available at the edge. This depends on two critical
preconditions. The first is that all referenced file chunks are
stored at the edge. We letαi indicate whether this precondition is
satisfied. When αi = 1, any chunk cj of file fi (xi,j = 1) should

be stored on at least one edge server, i.e, xi,j ·
∑|S|

k=1 yj,k ≥ 1.

The file fi contains in total
∑|C|

j=1 xi,j chunks. Therefore, the
Boolean variable αi ∈ {0, 1}, ∀fi ∈ F can be determined by

αi =

{
1, if

∑|C|
j=1 xi,j ·Bool

(∑|S|
k=1 yj,k

)
=

∑|C|
j=1 xi,j .

0, otherwise.
(1)

where the Bool function returns “1” when its variable is not
zero.

The second precondition is that, for
∑|S|

k=1 yj,k servers hold-
ing chunk cj , there must be at least one available server when
retrieving file fi with xi,j = 1. We use R = {r1, r2, . . .} to
denote the reliability of each edge server. In this paper, we
consider that the unreliability of edge servers mainly stems from
two aspects. One is the inherent properties of edge servers. For
instance, service providers may deploy some inexpensive servers
at the edge to reduce costs, and their reliability can typically
be inferred from historical data or equipment manufacturers.
Another type of unreliability stems from the fact that these
storage resources are either idle resources provided by various
enterprises and individuals or proprietary resources reserved for
other applications that have not been fully utilized yet. A dis-
tinctive feature of such resources is that these storage resources
may be reclaimed at any time by the owners or used for other
applications. The reliability of such resources can be ascertained
through prior negotiation, since obtaining permission to use
these resources requires consent from their owners. Therefore,
we assume that the reliability of edge servers is predetermined
in this paper. Let P (fi, x, y, R) indicate the file availability of
fi under the server reliability R. It depends on the data sharing
dependencies between the stored files (Boolean x), and is deeply

associated with the locations of its contained chunks and their
replicas (Boolean y). There is currently a lack of closed-form
quantification, but the state interrelations of P (fi, x, y, R) can
be estimated coarsely as the reliability product of the stored
servers without loss of generality, i.e.,

P (fi, x, y, R) = Πsk∈S(i)rk, (2)

where S(i) denotes the minimum set of servers that can cover
all chunks of file fi.

With the aforementioned Boolean variables about files and
chunks, we can formulate the deduplication storage problem as
follows.
� When a file is stored (αi = 1), all of its partitioned chunk
cj should have at least one replica at the edge:

|S|∑
k=1

yj,k ≥ αi · xi,j , ∀fi ∈ F & ∀cj ∈ C. (3)

� When the chunk cj is not referenced by any stored file, it
is unnecessary to store cj at the edge. In addition, for any
necessary chunks, there are at most |S| replicas across the
|S| edge servers

|S|∑
k=1

yj,k ≤ |S| ·
|F |∑
i=1

αi · xi,j , ∀cj ∈ C. (4)

� The total size of chunks stored on each edge server cannot
exceed its storage capacity∑

cj∈C
yj,k · size(cj) ≤ cap(sk), ∀sk ∈ S. (5)

� The state variables are all Boolean

αi, xi,j , yj,k ∈ {0, 1}, ∀fi ∈ F, ci ∈ C, sk ∈ S. (6)

We develop the optimization objective of our MEAN scheme,
i.e., maximize the file hit ratio, as follows:

max

∑
fi∈F αi · hi · P (fi, x, y, R)∑

fi∈F hi
. (7)

This requires an elegant trade-off between space efficiency and
file availability rationales. The space efficiency is described
as maximizing the number of stored files, i.e., αi. The file
availability can be represented by maximizing the reliability of
each store file, i.e., P (fi, x, y, R). In addition, placing popular
files at the edge can serve more data requests per unit of time,
i.e., hi for file fi, which further augments the file hit ratio. Then
the deduplication storage problem can be formulated with (7) as
the objective and (3)∼(6) as the constraints.

B. Problem Analysis

In this subsection, we analyze that the defined problem is
NP-hard by proving the hardness in a particular case, i.e., there
is no redundancy between the files, and all servers are reliable.

Theorem 1: The problem of deduplication storage with unre-
liable resources is NP-hard.

Proof: We prove that the problem is NP-hard by showing
that a special version of the proposed storage problem can
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be simplified as the knapsack problem, which is known to be
NP-hard [40]. The special case is when zero redundancy exists
between any pair of files, and all servers are reliable. Specifi-
cally, we consider a set of |F | items, each of size size(fi) and
associated with a reward hi. The knapsack size is set as M . The
knapsack problem aims to find a subsetSF ∈ F of the items that
have a total size no greater than M and achieves maximum re-
ward, i.e., to maximize

∑
i∈SF hi under

∑
i∈SF size(fi) ≤ M .

This knapsack problem can directly correspond to the simplified
problem when no duplicated chunks exist between any pair of
files and the storage resources are all reliable. Thus, the server
capacities can be directly quantified as

∑
sk∈S cap(sk) = M .

As a result, the knapsack problem can be exactly viewed as
a special case of the proposed deduplication storage problem,
which implies NP-hardness. �

Although the knapsack problem has been extensively studied,
the deduplication storage problem in this paper is much more
complex than the knapsack problem. The similarity of files
can significantly increase the complexity, and the placement of
chunks can lead to different file reliability, which further com-
plicates the problem. Therefore, we provide efficient heuristic
algorithms based on the similarity-aware hierarchical clustering
in Section IV to enhance the file hit ratio for the deduplication-
enabled storage in unreliable environments.

IV. THE MEAN METHODOLOGY

In this section, we first present similarity-aware hierarchical
clustering (SHC). Based on this, we propose the MEAN method-
ology according to three different reliability scenarios. The three
scenarios are progressive, where the latter is a generalization of
the former.

A. Similarity-Aware Hierarchical Clustering

The algorithms of MEAN are derived from the greedy idea
that the storage scheme with the highest gain is selected at each
step until the storage space is full. We define a ranking index
h ·Δp/Δc, which indicates the gain of the hit ratio per unit of
storage space. The files with higher ranking indexes are more
beneficial to be stored at the edge, where h indicates the file
popularity, Δp represents the increment of file availability, and
Δc denotes the extra space cost. The popularity of a file can
be estimated based on its access frequency within a specified
period [39], which is assumed to be predetermined in this
paper. Δp is calculated by comparing the file’s reliability before
and after adding new chunks to the storage system, which is
discussed in detail in Section IV-B2. Δc denotes the data size
required for storage by the system.

However, two main challenges exist when employing the
ranking index directly for searching candidate files. The first is
that the Δc value is determined based on the difference with the
existing stored data. This makes it hard to select a set of closely
related (with a great portion of shared chunks) but big-volume
files, because there are few co-existing data chunks with the
stored files. The second challenge is that the searching process
is time-consuming for the numerous file candidates, especially
when calculating the Δc value by comparing the contained

Fig. 3. Illustrative example of hierarchical clustering.

chunks between the file candidates and the stored content. Be-
sides, the calculation is repeated because the Δc value would be
updated after each decision with the stored chunks increase. To
handle these two challenges, we first propose a Similarity-aware
Hierarchical Clustering (SHC) method, which clusters multiple
closely related files in advance. This can improve the chance for
big-volume files to be selected through deduplication among
them. Then, we design an acceleration scheme based on Bloom
Filter to reduce the time complexity of file comparison.

1) Clustering Based on Ranking Index: We show the exam-
ple in Fig. 3(a) to illustrate the first challenge, assuming that
all chunks have the same size of one unit. For simplicity, we
ignore the server reliability here. The edge storage capacity is
assumed to be 5 chunks. Based on the ranking index, file f1
will be selected first, with the maximum ranking index value
of h/Δc = 3/1 = 3. Since chunk c1 has been chosen, files
containing this chunk will have a Δc value smaller than their
actual size in the following computation. Therefore, files similar
to file f1 can have a higher probability of being selected to be
stored at the edge. Therefore, file f2 is chosen, which only needs
to store two new chunks c3 and c4, with ranking index value
h/Δc = 6/2 = 3. In the same manner, file f3 will be selected
in the next round, which requires a new chunk c2 to be stored. As
a result, file f1, f2, and f3 would be successively selected to be
stored at the edge with the total popularity of 3 + 6 + 3 = 12.
However, a superior solution can be to store files f4, f5, and
f6, with a total popularity of 6 + 8 + 5 = 19. The reason for
this difference is that files f4, f5, and f6, which are popular and
closely related, cannot be detected. Each of these files consists of
multiple chunks and therefore has a large Δc value. Thus, each
of them has a small ranking index value, making them ignored
by the ranking-based heuristic.

To improve the performance of the heuristic, we propose
a similarity-aware hierarchical clustering. Hierarchical cluster-
ing [41] is an iterative clustering process. In each iteration, it
merges the most similar pair of clusters or files (share a large
portion of their chunks) into a new cluster. Considering the
popularity of different files, we improve it in a popularity-driven
manner, i.e., the most similar cluster pairs are merged only if
the combined ranking index is greater than each previous one.
The updated popularity h is the sum of that of the two original
clusters, while c is the size of their union set. The reliability of
the updated cluster should be recalculated based on the locations
of the chunks in this union set (see Section IV-B). In this way,
the number of generated clusters is much fewer than the number
of original files, thus significantly decreasing the computation
complexities in comparing the ranking indexes. In addition,
the updated index value of the cluster is generally larger than
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before, because the value of c can be greatly reduced after data
deduplication. This facilitates the detection of large-volume but
closely-related files, like f4 ∼ f6 in Fig. 3(a).

The similarity-aware hierarchical clustering relies on a sim-
ilarity function that indicates which pair of clusters to merge
in each iteration. For this purpose, we use the commonly used
Jaccard similarity coefficient [42]. For two clustersA andB, the
Jaccard similarity coefficient of them is defined as J(A,B) =
|A ∩B|/|A ∪B|. To derive the intersection set and union set
of the two clusters, an intuitive method is to compare the chunk
fingerprints (e.g., using MD5 [43] or SHA-1 [44] coding). The
intersection of two files can be calculated as the sum of the sizes
of chunks in both files that have the same fingerprint. The union
of two files is the sum of the sizes of their unique chunks. In
each round, we can choose the two files with the largest Jaccard
similarity coefficient to merge. If the merged ranking index is
larger than either of the previous ones, the two files are merged to
generate a new cluster. Otherwise, the Jacquard index between
them is set to 0, and the two files are not considered to be merged
in the following rounds.

Take Fig. 3(a) as an example, the Jaccard similarity coefficient
of files f2 and f3 is J(f2, f3) = 2/4. After merging them, the
ranking index value is (6 + 3)/4, which is greater than each of
their values, i.e., 2 and 1, respectively. Therefore, files f2 and f3
can be merged to generate a clusterϕ1. Thereafter,ϕ2 andϕ3 are
sequentially constructed, resulting in a final set of three clusters:
{f1, ϕ1, ϕ3}, as shown in Fig. 3(b). Therefore, we can choose the
cluster ϕ3 with the maximum ranking index to store at the edge.
The total popularity is 6 + 8 + 5 = 19, which is greater than
that of the basic heuristic, i.e., 12 as aforementioned. It is worth
noting that the maximum number of clustering hierarchies can
be preset so that the cluster sizes are within a reasonable range.
For the example in Fig. 3, we can stipulate that the files are
merged at most once. Thus, SHC outputs only two clusters, i.e.,
ϕ1 and ϕ2. When the total storage space is 4 chunks instead of
5 chunks, this approach can still achieve elegant performance.

2) BF-Based Sketch and Acceleration: Although hierarchi-
cal clustering can reduce the space of comparison, the calcu-
lation of the Jacquard index may still bring significant time
overhead. For example, for two clusters ϕ1 and ϕ2 with |ϕ1|
and |ϕ2| chunks, it takes O(|ϕ1| × |ϕ2|) time-complexity to
determine the number of shared chunks. To further decrease
the computation complexity, we adopt Bloom Filter (BF) [45],
[46] to sketch the fingerprints of chunks in each cluster. The
basic BF is a hashing mapping method that has been widely
utilized in various networking and distributed systems. We
transfer a similar idea to the process of file comparison and
propose the BF-based sketch. This facilitates the computa-
tion of the Jaccard similarity coefficient from pair-wise fin-
gerprint checking to the membership queries on the cluster
sketches.

When calculating the intersection set between cluster ϕi and
ϕ′
i, it would first require the BF vector of ϕ′

i. For any chunk
cj in ϕi, the BF judges that this chunk does not belong to ϕ′

i,
if any bit at the kBF hashed positions in that BF vector is 0,
where kBF denotes the number of hash functions used by BF.
Otherwise, the BF believes that the queried chunk cj belongs to

Fig. 4. Illustrative example of the BF-based cluster sketch. Note that the 8th
bit of the sketch suffers from the hash collisions.

ϕ′
i with a rate of false positives. Then, the belonged chunks of

ϕ′
i are exactly the intersection set between ϕi and ϕ′

i.
Fig. 4 provides an illustrative example of the BF-based sketch.

Given a cluster with the chunk set ϕ = {c1, c2, c3}, the BF
representsϕwith a bit vector of length lBF = 19. All lBF bits in
the vector are initially set as 0. The kBF = 2 independent hash
functions are employed to map each chunk into kBF positions
in the bit vector. Those hit positions would be all set to 1.
The binary string derived from the hash functions is exactly
the BF-based sketch. These sketches would be updated with the
XOR operations when the clusters are merged. In this way, each
cluster maintains a bit vector to record the membership infor-
mation at the chunk level. According to the mapped bit vector
and the utilized hash functions, we can realize the lightweight
membership queries against any clusters, which accelerates the
computation for the Jaccard similarity coefficient. To achieve
this, we maintain two variables,d∩ andd∪. The former is initially
0, while the latter is the sum size of the two clusters. When
calculating the Jaccard similarity coefficient of a cluster ϕi with
the current clusterϕ′

i, we only need to hash each chunk of cluster
ϕi to the BF-based sketch of ϕ′

i in turn. If the query finds that
the chunk has been recorded, the value of d∩ is updated to the
original value plus the size of the chunk, and the value of d∪ is
updated to the original value minus the size of the chunk. In this
way, the Jaccard similarity coefficient of the two clusters can be
represented as d∩/d∪. The time complexity can be decreased as
O(|ϕ| · kBF ), where kBF indicates the number of utilized hash
functions.

The penalty of such an approach is the false positive, i.e.,
for any chunk c 
∈ C, all of its kBF hash positions in the bit
vector may be set as 1 when representing other chunks in set
C. This is caused by the unavoidable hash conflicts, as the
8th bit in Fig. 4. The false-positive probability, denoted as p,
can be derived by p = (1−(1−1/lBF )

n·kBF )kBF [45], where n
represents the number of represented chunks in set C.

B. SHC-Based Heuristics for Different Scenarios

SHC elaborates on a feasible and effective method to ac-
celerate cluster generation and index calculation. Based on
this, we propose effective heuristic algorithms to improve the
file hit ratio in deduplication-enabled storage at the unreliable
edge. We consider three heterogeneous scenarios to develop the
algorithms of MEAN, where the former scenario is a special
case of the latter: 1) all servers are reliable (Section IV-B1); 2)
all servers have the same reliability (Section IV-B2); 3) servers
are with heterogeneous reliabilities (Section IV-C1).

1) Scenario One: All Servers are Reliable: When all edge
servers are reliable, i.e., r1 = r2 = · · · = 1, it is unnecessary to
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Algorithm 1: Heuristic for Scenario One.

maintain chunk replicas because each chunk is available without
the risk of server crashes. Therefore, the ranking index can be
directly simplified ash ·Δp/Δc = h ·Δc. Besides, the location
of chunks would no longer affect the file availability, because
users can retrieve these chunks no matter which edge server they
are placed on. To this insight, we only need to consider how to
store more popular files with limited storage space, regardless
of the mapping between each chunk and the edge server. The
specific algorithm is detailed in Algorithm 1.

The algorithm’s inputs include the generated set of clusters Φ
from SHC and the set of edge servers S. For simplicity, the file
that is not clustered is also treated as a cluster. The objective is to
select a part of clusters to be stored at the edge, with the objects
shown in (7). We first select an initial cluster ϕinit with the
maximum ranking index (Line 1). Thereafter, we calculate and
update the ranking indexh/Δc for all candidate clustersϕi ∈ Φ,
whereΔci = size(ϕi−Ω ∩ ϕi) is derived from the intersection
operation between the set Ω and the current cluster ϕi. Based
on this, we select the cluster with the maximum ranking index
consecutively, until the size of set size(Ω) reaches the total
storage capacity

∑
sk∈S cap(sk) (Lines 4-10). The set Ω and

candidate clusters Φ are also updated in each round of cluster
selection (Lines 9-10). At last, the set of selected clusters Ω
would be distributed to the edge servers randomly with the
constraint of their storage capacities (Line 11).

2) Scenario Two: Homogeneous Reliability: In contrast to
Scenario One, the impact of server reliability is further taken into
account. As edge servers are no longer assumed to be reliable,
files stored on them may be susceptible to loss. Therefore,
enhancing file availability by incorporating chunk replicas is
necessary.

Specifically, when all servers have the same reliability, i.e.,
r1 = r2 = · · · = r, a critical measure to enhance the file avail-
ability is to hold chunks of a file on as few servers as possible.
The reason is that, as the number of servers inS(i) (the minimum
set of servers that can cover all chunks of file fi) reduces, the file
availability can be strengthened, as shown in (2). By contrast,
when chunks of a file are distributed across many servers, the file

can be acquired only if all of these servers are available. Based
on this, an effective approach to improving the availability of
a file is to place all its chunks on the same server. However,
a significant drawback of this approach is that it can result
in a significant number of redundant chunks being repeatedly
stored across multiple servers, which is not conducive to the
edge cluster storing more files.

We design a dynamic trade-off solution to tackle such a
conflict. The basic idea is that, for the file with high popularity,
we tend to store all of its chunks in the same server to improve
reliability. If some files are extremely popular, we can even
keep their replicas on multiple servers to further address the
file availability. By contrast, less popular files can be stored
using data deduplication, where only the unique chunks that
make up these files are added to the edge cluster (which may
not reside on the same server), thereby enabling the edge cluster
to accommodate more files. We further propose three judging
metrics to determine the specific storage solution for each file
according to three different cases. In addition, the mapping
relationship between chunks and servers should be taken into
account in this scenario, i.e., which chunks are stored by each
server. To this end, we number these servers beforehand and
then determine which chunks each server should store. Since
the reliability of servers is assumed to be consistent, we ignore
the effect of the numbering sequence on the results. For the first
server, it dose not know what chunks the other servers will store.
Therefore, we still use the method presented in Algorithm 1 to
determine which chunks it should store. Starting with the second
server, we show three storage cases of how to select and store
the file/cluster dynamically as follows.
� Store the remainder of a new cluster ϕi. This storage

scheme suggests that we store a new cluster at the edge
with deduplication. The space overhead can be denoted as
Δci = size(ϕi−ϕi ∩ (Ω ∪Ωk̄)), where Ω and Ωk̄ repre-
sents the involved chunks that have been stored at previous
servers, and the remainder that will be stored at the current
server sk̄, respectively. In addition, we can calculate the
minimum number of servers that have stored the cluster’s
involved chunks, which is denoted as θ (θ = 0 when there
is no involved chunk on other servers). Thus, the cluster can
be retrieved with the reliability of rθ+1, since retrieving this
cluster requires all involved servers (including the current
server) to be available.

� Store the chunks of cluster ϕi that are already stored on
previous servers to the current server. This storage scheme
suggests that we should hold the entire data of an already-
stored clusterϕi at the current server, rather than spreading
its chunks across multiple servers with deduplication. This
enables clusterϕi can be retrieved from a single server. No-
tably, this scheme is the reverse process of deduplication in
the first case, rather than storing a new cluster. It improves
the availability of an already-stored clusterϕi from rθ+1 to
r, and the space overhead, i.e., data that is stored repeatedly,
can be represented by Δci = size(ϕi ∩Ω).

� Add a full replica of an already-stored cluster ϕi. This
storage scheme suggests that we should add a full replica
of cluster ϕi at the current server, instead of storing a



XIA et al.: DOCTRINE OF MEAN: REALIZING DEDUPLICATION STORAGE AT UNRELIABLE EDGE 2819

Fig. 5. Illustrative example of three storage cases for the file/cluster ϕ.
Currently, we need to determine which chunks are stored on the server ES3.
The dashed chunks represent the chunks that will be stored next, and the solid
chunks represent the ones that have been stored.

Algorithm 2: Heuristic for Scenario Two.

new cluster at the edge. For particularly popular files,
this method can effectively improve their availability. The
space overhead of such a scheme can be calculated as
Δci = size(ϕi−ϕi ∩Ωk̄). The availability of cluster ϕi

can be increased from 1−(1− r)λ to 1−(1− r)λ+1, where
λ represents the number of replicas of cluster ϕi at the
preceding servers.

C. Time and Space Complexity

The three storage cases are illustrated in Fig. 5, where a new
file/cluster ϕ is required to be stored at the edge. Currently, we
should determine how to store the file/cluster ϕ on the edge
server ES3. In the first case, we consider storing a new cluster
ϕ at the edge by only adding the un-stored unique chunks into
the edge cluster. Since the involved chunks c1 and c2 are already

stored, we only need to store chunk c3 on the current server
to achieve space efficiency. The limitation of this scheme lies
in the fact that retrieval of the file/cluster is contingent upon
the availability of all participating servers. We assume that each
server has a reliability of r. Thus, the increased availability Δp
of cluster/file ϕ can be calculated as rθ+1 − 0 = r3, and the
storage cost Δc is the size of chunk c3. In the second case, we
consider storing a file/clusterϕ completely on the current server,
i.e., replicating chunks c1 and c2 on the current server ES3. In
this way, although the redundancy is increased, the reliability
of file/cluster ϕ is improved. The increased availability Δp of
file/cluster ϕ can be approximately computed as r − r3. It is
worth noting that if the file/cluster is stored this way, we will
remove it from the set ΦP and record it in the set ΦF , which
indicates this file/cluster is fully stored on a single server. In the
third case, we consider adding a full replica of an already-stored
file/cluster in the setΦF to the current server ES3. If a file/cluster
is stored using this scheme, it indicates that the file/cluster may
have a high popularity and therefore is not suitable for distributed
storage. In order to ensure high availability, all chunks of this
file/cluster replica should be held on a single server. In this
way, as long as any involved server is available, the file/cluster
ϕ can be obtained from the edge, which further enhances the
availability of popular files. The increased availability Δp can
be calculated as (1− r)λ−(1− r)λ+1 = (1− r)2−(1− r)3,
where two replicas of ϕ have already been stored on the servers
ES1 and ES2.

In particular, considering more cases can potentially promote
better solutions, but can bring significant iteration time. There-
fore, we mainly consider the above three storage schemes for
each file, where the gains of hit ratio are most significant. After
evaluating these three storage cases for each file/cluster, we can
select the optimal file/cluster and the corresponding storage
scheme to maximize benefits and implement it on the edge
server. This iterative process sequentially selects one storage
scheme at a time until all servers have reached their maximum
storage capacity.

The specific procedure is elaborated in Algorithm 2. The input
bears resemblance to that of Algorithm 1, while the output de-
termines the stored content at each edge server. We select files to
store at the first server according to Algorithm 1 directly (Line 2).
Subsequently, we compute the ranking index for each remaining
server across all potential clusters in three cases. The cluster with
the highest ranking index signifies that its corresponding storage
method yields greater benefits by improving the hit ratio while
minimizing storage costs. Therefore, we select the cluster with
the highest ranking index consecutively, until the size of the
stored data reaches the storage capacity of each server (Lines
4-16).

1) Scenario Three: Heterogeneous Reliability: When all
servers have heterogeneous reliabilities, i.e., r1 
= r2 
= . . . r|S|,
placing files on different servers can result in distinct file avail-
ability. The files with higher ranking indexes should be stored on
more reliable servers, since such files tend to yield higher storage
gains with less space overhead. Otherwise, the availability of
these popular files can only be ensured with replicas across
multiple unreliable servers, which extra occupies a large volume
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TABLE II
TIME AND SPACE COMPLEXITY ANALYSIS

of precious storage resources. To this insight, we sort these
servers in descending order according to their reliability. Starting
with the most reliable server, we progressively select files based
on improvements to the scheme in Scenario Two. The three
different cases in this scenario are presented as follows.
� Store the remainder of a new clusterϕi. The space overhead

can be denoted as Δci = size(ϕi−ϕi ∩ (Ω ∪Ωk̄)). The
file availability can be derived by rk̄ ·Πsk∈θirk, where the
minimum number of servers that have stored its involved
chunks is denoted as θi (θi = 0 when there is no involved
chunk on other servers).

� Store the chunks of cluster ϕi that are already stored on
previous servers to the current server. It improves the avail-
ability of an already-stored cluster ϕi from rk̄ ·Πsk∈Θi

rk
to rk̄, and the space overhead, i.e., data that is stored
repeatedly, can be represented by Δci = size(ϕi ∩Ω).

� Add a full replica of an already-stored clusterϕi. The space
overhead can be calculated as Δci = size(ϕi−ϕi ∩Ωk̄).
The availability can be increased from 1−Πsk∈Λi

(1− rk)
to 1−(1− rk̄) ·Πsk∈Λi

(1− rk), where Λi represents the
set of previous servers that store the replicas of ϕi.

The algorithm in this scenario is quite similar to Algorithm 2.
The difference is that servers in the set S should be pre-ordered
based on their respective reliabilities, and Δpi in lines 7, 9, and
11 should be replaced with the above three formulas. Therefore,
the algorithm is omitted here. Furthermore, it is worth noting that
MEAN can actively create replicas for highly popular files. This
increases their availability, and the replicas also help avoid server
hot spots. In this way, retrieval requests for popular files can be
effectively balanced across multiple servers, thus avoiding the
overload on a single server.

We analyze the time and space complexities of the above algo-
rithms in this subsection, with the results being shown in Table II.
The similarity comparison between two files/clusters adopts the
BF-based sketch. The time complexity of the similarity-aware
hierarchical clustering is O(|F |2 · |CF |max · kBF ), where |F |
denotes the number of files, kBF indicates the number of utilized
hash functions for the BF-based sketch, and |CF |max represents
the maximum number of chunks of any file. The space complex-
ity is O(|F | · lBF ), where lBF expresses the BF length.

The time complexity of the heuristic algorithm in Sce-
nario One is O(|Φ|2 · |CΦ|max · kBF ), where |Φ| denotes the
number of generated clusters and |CΦ|max indicates the maxi-
mum number of chunks in any cluster. The space complexity
is O(|Φ| ·m). For Scenario Two, the time complexities are
multiplied by S, while |S| · lBF additional space is occupied
with recording the integrated sketches for data storage at the |S|
servers. As for Scenario Three, the space complexity |Φ||S| is

caused by maintaining a list of possible storage servers for each
cluster.

V. PERFORMANCE EVALUATION

In this section, we implement a prototype of MEAN and
evaluate the performance using a real-world dataset. We describe
our experimental settings and then present the numerical results
of different methods.

A. Experimental Settings

We implement a prototype system of MEAN to evaluate
the performance in real-world environments. The prototype
includes a cloud and an edge cluster to simulate the file retrieval
behavior of edge storage. This constitutes a two-tier storage
architecture, where requests for files are first responded to by
the edge storage cluster, and the missed requests are further for-
warded to the cloud. The edge cluster stores a subset of popular
files, while the cloud keeps a complete backup of all files. In our
prototype system, the cloud is deployed on the Elastic Compute
Service (ECS) of Alibaba Cloud [47], which is equipped with
2.5 GHz 8 vCPU, 16 GB RAM, and 40 GB SSD. The ECS runs
Ubuntu Linux 16.04 x64. The edge storage consists of 11 VMs
deployed on a Desktop PC, equipped with a 3.50 GHz Intel(R)
Core(TM) i9-11900 K CPU with 8 cores and 64 GB RAM using
500 GB SSD. Each VM is allocated 4 GB of RAM and 30 GB
virtual disk drive, running Ubuntu Linux 20.04 x64. The CPU
cores are shared by all VMs. We use the iPerf and ping tools
to measure the network performance. The bandwidth between
the ECS and the local VMs is 91.6 Mbps, and the latency is
29.05 ms, while the bandwidth between any two local VMs is
1.24 Gbps, and the latency is 1.43 ms, based on the average of
10 measurements.

In our experiments, 10 VMs act as the edge storage servers,
and the remaining one acts as a data requester to retrieve files
from these edge servers or the cloud. This VM also acts as a man-
agement node, which is responsible for monitoring the status of
other edge servers through heartbeat packets among them. The
management node maintains the mapping information between
each file and its chunks, as well as the mapping between each
chunk and servers in the edge cluster. When the requested file
cannot be served by the edge cluster due to failures, the request is
further forwarded to the cloud server by the management node.

Datasets: We evaluate the performance of MEAN using
two real-world datasets from the GitHub website [35], which
are extracted from 357 popular repositories. The first dataset
comprises code images in the .zip format, referred to as
SRC. The second dataset encompasses released installers in
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formats such as .rpm, .deb, .apk, etc., denoted as RLS.
These repositories are selected randomly under some hot topics,
e.g., Azure, Amazon Web Services, Docker, etc. We download
multiple popular versions from each repository. The SRC dataset
comprises a total of 3,099 files with file sizes ranging from
2.74 KB to 12.6 MB. Meanwhile, the RLS dataset contains 1,617
files with file sizes varying between 3.26 KB and 24.1 MB. We
chunk these files using the variable-size chunking method [17],
which declares chunk boundaries based on the byte contents
and is widely proven to be more efficient than the fixed-size
chunking method [28], [29]. The SRC and RLS datasets exhibit
an average chunk size of 4.07 KB and 3.84 KB, respectively,
with deduplication ratios (the size of duplicated data divided by
the total size, where a larger value indicates that deduplication
can eliminate more redundancy) of 53.01% and 26.03%. The
popularity of each file is generated with the widely utilized Zipf
distribution [18], [48].

Comparison Methods: We implement the following compar-
ison methods to determine which files the edge cluster stores.
� HotDedup, which is an implementation of the HotDedup

algorithm [2]. The popularity of the stored files is maxi-
mized with the capacity constraints of edge servers. These
files are deduplicated in a global sense, and the unique
chunks are distributed across the edge servers evenly.

� PopF, which selects the most popular files to store at the
edge. Such a Popularity-First strategy is widely adopted
by many edge storage systems [4], [5], [6]. We improve
this strategy by emphasizing file availability and space
efficiency. All chunks of the selected file are stored on
one server and deduplication is used to eliminate duplicate
chunks on each server.

� PopF_3R, which is assembled with the replication theory
to enhance file availability based on the PopF method. The
number of replicas is set to 3, which is the default value
in many production distributed storage systems [22], [23],
[24].

� Cloud_only, which retrieves all requested files from the
cloud, regardless of the edge storage.

Settings and Metrics: The results are based on the average
from 10 rounds of experiments. The default reliability of the 10
edge servers is set as [0.8; 0.5; 0.7; 0.7; 0.8; 0.6; 0.5; 0.9; 0.4; 0.6],
and their total storage capacity defaults to 20% of the dataset
size. In each round, we evaluate the performance of different
comparison methods by randomly generating 500 file retrieval
requests based on their popularity. Then, we randomly shut down
part of the edge servers according to the reliability and retrieve
files in the retrieval list according to the Poisson distribution. The
arrival rate λ is set as 90 by default, which indicates the expected
number of retrieval requests in one minute. Our metrics include
the file hit ratio, the average retrieval delay, and the average
retrieval throughput. Besides, we also consider the balance of
service load for the involved edge servers. In each round, we
record the total amount of data sent by each server as its service
load. Then, we calculate the balance metric ε, which is defined
as the deviation between the maximum and the average service
load.

Fig. 6. Impact of different levels of reliability on file hit ratios across two
datasets.

Fig. 7. Impact of different levels of reliability on the file retrieval performance
under the SRC dataset.

B. Experimental Results

1) Performance at Varying Levels of Reliability: We first
evaluate the sensitivity of different methods to server reliability.
To facilitate comparison, we maintain uniform reliability levels
across all edge servers and vary this parameter from 0.5 to 1.0.
This corresponds to the scenario of homogeneous reliability.
When the reliability is set as 1.0, MEAN adopts the algorithm
of Scenario One in Section IV-B1. Other reliability settings
correspond to the algorithm in Scenario Two, as illustrated in
Section IV-B2. The total storage space is set to the default
value, i.e., 20% of the dataset size. The results are presented
in Figs. 6 and 7, with the former presenting the average file hit
ratio across both datasets, while the latter displays the average
retrieval delays and throughput for the SRC dataset.

The enhancement of server reliability positively impacts file
hit ratio and retrieval performance, while low reliability results in
varying degrees of performance degradation for these methods.
HotDedup is the most sensitive to server reliability, whose hit
ratio is at a low value when the reliability of servers is below 0.9,
as shown in Fig. 6. Because of this, the average retrieval delay
is just slightly lower than that of Cloud_only, with more than
0.7 seconds per file (in Fig. 7(a)), and the throughput is below
73 Mbps (in Fig. 7(b)). The optimal hit ratio can only be attained
under the condition that all servers are reliable. The main reason
is that HotDedup assumes that these edge servers are reliable,
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Fig. 8. Impact of different storage capacities on file hit ratios across two
datasets.

and the chunks of each file are evenly distributed across these
servers. Such an approach is not friendly to file availability. The
failure of any one server can make a large number of associated
files unavailable, which significantly impacts the file hit ratio.

The PopF and PopF_3R methods exhibit a superior hit ratio
compared to HotDedup in unreliable environments, resulting in
better retrieval delay and throughput performance when server
reliability falls below 0.9, as shown in Fig. 7. In particular,
PopF_3R exhibits only a slightly superior hit ratio to PopF
when the server reliability is at 0.5. This can be attributed to
the fact that the three-way replicas policy further bolsters file
availability in an unreliable environment, with each popular file
being able to withstand up to two server failures. However, such
a fault-tolerant approach also brings disadvantages due to extra
space occupation. With the growth of server reliability, the PopF
method surpasses PopF_3R. When the server reliability exceeds
0.9, there is a significant difference in hit ratio of over 20%
and a throughput difference of more than 50 Mbps between the
two methods, as illustrated in Figs. 6(a) and 7(b). The reason
for this is that with the improvement of server reliability, the
advantages of replication decrease. Maintaining three replicas
requires a significant amount of space, which limits the number
of files stored at the edge and results in a high volume of
requests that must be served by the cloud. In contrast, MEAN
demonstrates superior file retrieval performance across a wide
range of reliability settings due to its ability to efficiently execute
data deduplication while adjusting the number of chunk replicas
for varying reliability scenarios. However, since the RLS dataset
has a lower deduplication ratio than the SRC dataset (i.e., fewer
duplicated chunks), the gap in hit ratio between the MEAN and
PopF methods is smaller in the RSL dataset compared to that in
the SRC dataset, as Fig. 6 shows.

2) Performance Under Different Storage Capacities: We set
varied storage capacities to evaluate their impact on file retrieval
performance. The total storage capacity of edge servers is in-
creased from 5% of the dataset size to 30%, with the server
reliability remaining in default. MEAN adopts the algorithm of
Scenario Three, as described in Section IV-C1. The results are
presented in Figs. 8 and 9.

Fig. 8 depicts the impact of storage capacity on the average file
hit ratio. MEAN consistently has the highest hit ratio, since it

Fig. 9. Impact of different storage capacities on the file retrieval performance
under the SRC dataset.

considers both space efficiency and file availability, followed
by PopF and PopF_3R. The PopF method has a higher hit
ratio than PopF_3R when the edge storage capacity is low.
Nevertheless, when the capacity exceeds 25%, the PopF_3R
method achieves the reverse in the SRC dataset. This is because
when the storage space is large enough, replication can increase
the file availability and cope with more server failures. However,
neither of the two methods can effectively exploit file similarity
to increase space efficiency. Thus, their hit ratios are lower than
MEAN under the same server capabilities. In contrast, HotD-
edup exhibits a relatively low hit ratio, with only approximately
10% in the SRC dataset and close to zero in the RLS dataset.
This is due to the fact that the failure of any involved server of
a file can easily result in a missed hit. When storage capacity
reaches 30%, MEAN and HotDedup differ significantly in their
average file hit ratios, with up to a 77% discrepancy observed
across both datasets.

Fig. 9 reports the average retrieval delay and throughput in
the SRC dataset. When all files are retrieved from the cloud,
the average delay is around 0.9 seconds with a throughput
of about 19 Mbps. Storing files at the edge can significantly
reduce the average retrieval delay. With the storage capacity
only accounting for 5% of the dataset size, MEAN can decrease
retrieval delays by over 50%, to around 0.43 seconds, while
the average retrieval throughput can reach up to 135 Mbps.
As the storage capacity increases, this gap gradually widens.
Specifically, when the storage capacity accounts for 30% of
the dataset size, MEAN exhibits an average retrieval delay
of approximately 0.15 seconds. This represents a reduction in
retrieval time by 83% compared to cloud-based file retrieval and
a reduction of 71% compared to HotDedup. Furthermore, this
delay is roughly half of that observed with PopF and PopF_3R
methods.

3) Load-Balancing Performance: To facilitate comparison,
we utilize the SRC dataset as a benchmark for evaluation in
subsequent experiments. The load-balancing performance of
the compared methods under the SRC dataset is depicted in
Fig. 10. Specifically, Fig. 10(a) illustrates the load-balancing
performance of the compared methods under different reliability
settings. As the server reliability increases, MEAN prioritizes
storing new files over adding replicas of stored files. Conse-
quently, the ε score of MEAN experiences a gradual and slight
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Fig. 10. Impact of reliability and storage capacity on load-balancing perfor-
mance.

TABLE III
EVALUATION OF THE AVERAGE RETRIEVAL DELAY AT DIFFERENT ARRIVAL

RATES

increase. However, when server reliability is set at 1, MEAM
reverts back to Scenario One’s algorithm where chunks are
evenly and randomly distributed across all edge servers. This
results in uniform traffic distribution among different servers
and promotes better load-balancing performance. In unreliable
settings, HotDedup fails to achieve optimal load balancing due
to the fact that only a small number of servers handle users’
requests while the majority are idle. Therefore, the measurement
results will exhibit a relatively large ε score.

Fig. 10(b) presents the load-balancing performance under
varying storage capacities. PopF and PopF_3R methods exhibit
superior load-balancing performance due to their even distribu-
tion of stored files across different servers. In contrast, MEAN’s
ε score is slightly higher as it tends to store popular files on
more reliable servers while less popular files are placed on lower
reliability ones. Nonetheless, MEAN’s ε score remains relatively
stable and reasonable due to its ability to distribute retrieval
traffic based on chunk replicas of stored files.

4) Performance Under Different Workloads: We further
evaluate the impact of different workloads on file retrieval
performance by setting different arrival rates λ. A large arrival
rate can effectively reflect a large number of retrieval requests
during peak hours. We increase the arrival rate λ from 60 to 210
and then measure the average retrieval delay and throughput of
different methods for retrieving 100 files.

Table III illustrates the average retrieval delay under different
arrival rates, and the corresponding throughput is presented in
Fig. 11(a). With the increase in arrival rates, the retrieval delay
of all methods exhibits an upward trend. However, the number
of requests that edge storage can serve varies due to different
methods of file allocation. As a benchmark, the Cloud_only

Fig. 11. Average retrieval throughput and CDF of retrieval delays.

method forces all retrieval requests to be served by the cloud
server, leading to severe congestion on the backbone network.
Therefore, it experiences a more rapid increase than others.
Besides, since server failures are not considered, HotDedup can
only slightly reduce the latency to a limited extent. When the
arrival rate is set to 210, the average retrieval delay reaches
9.351 seconds, followed by HotDedup at 7.622 seconds. This is
almost 30 times higher than MEAN. The high volume of requests
competing for the limited bandwidth of the backbone network
also resulted in the inefficiency of average throughput, both of
which are lower than 50 Mbps. In contrast, the other three meth-
ods can improve file availability because of their fault-tolerant
mechanisms. They experience only a slight increase in retrieval
delays, while MEAN can further achieve a delay reduction of
more than 40%, compared to PopF and PopF_3R.

Fig. 11(b) exhibits the CDF of retrieval delays in one round
of experiments, where the arrival rate is fixed as 120. MEAN
completes up to 87.5% of requests within 0.5 seconds, compared
to only around 65% for the PopF and PopF_3R methods, and less
than 20% for the Cloud_only method. In addition, Cloud_only
and HotDedup both suffer from long-tail distributions. Their
maximum delay is up to 3.5 seconds, compared to around 2.23
seconds for other methods.

5) Failure of the Management Node: In the above experi-
ments, we assume that the management node is deployed on a
highly reliable server (such as the proprietary metadata server
provided by the service provider) and disregard any potential
impact resulting from its failure. Nevertheless, the management
node can be a single point of failure in the practical deployment,
as it is responsible for retaining all metadata related to files
stored at the edge. If the management node fails, it may cause
a complete system failure and all retrieval requests will have to
be handled by the cloud.

To mitigate the impact of single-point failure, there are two
viable approaches. The first is to deploy multiple management
nodes at the edge. We vary the reliability of management nodes
from 0.8 to 1.0 and conduct 100 rounds of experiments to
evaluate the impact of management node reliability. In each
round, we randomly designate some nodes (including the man-
agement nodes and the storage nodes) as failures based on their
reliabilities and generate 1,000 file requests according to the file
popularity to simulate data retrievals. The results are presented
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Fig. 12. Effect of two distinct metadata deployment approaches on the average
file hit ratio.

in Fig. 12(a), where MEAN-1 M, MEAN-2 M, and MEAN-3 M
correspond to the MEAN method with 1, 2, and 3 management
nodes, respectively. The storage capacity of the edge cluster is
set at 20% of the dataset size while the reliability of each storage
server is set at 0.8.

When there is only one management node (MEAN-1 M),
variations in reliability can have a significant impact on the
average file hit ratio. A decrease in reliability from 1.0 to 0.8
can lead to a reduction of over 10% of the average hit ratio. De-
ploying more management nodes can significantly enhance the
system’s robustness and effectively mitigate single-point failure.
When the reliability of management nodes is 0.8, deploying two
management nodes can achieve a 10% increase in the average
hit ratio compared to using a single management node. This
indicates that increasing the number of management nodes is
an effective strategy for managing the failure of management
nodes. However, adopting more management nodes may yield
diminishing marginal returns. When the reliability of manage-
ment nodes exceeds 0.85, there is a negligible difference in the
average hit ratio between utilizing two or three management
nodes.

The second approach involves utilizing the distributed hash
table (DHT) or its variants [49] to store metadata in a decen-
tralized manner. In such a deployment, the metadata of edge
files is distributed among edge storage servers based on the hash
values of files, following a consistent hashing algorithm. The file
can only be retrieved from the edge if both the server retaining
its metadata and the servers storing its referenced chunks are
available. The experimental results are depicted in Fig. 12(b),
where MEAN-DHT employs a DHT-based approach, while the
other three comparisons utilize a management node with varying
degrees of reliability (e.g., MEAN-0.9 indicates a management
node reliability of 0.9). The effectiveness of the DHT-based
approach is highly sensitive to the reliability of storage nodes,
with an average hit ratio increase of over 40% as the reliability of
storage nodes increases from 0.5 to 0.9. When the reliability of
storage nodes is 0.9, the DHT-based approach can yield a slightly
higher hit ratio compared to employing a management node with
the same reliability. However, MEAN consistently achieves the
highest hit ratio when the management node is reliable. The

average hit ratio can reach up to 93.44% when storage nodes
have a reliability of 0.9. This suggests that implementing a highly
reliable management node is an effective strategy for enhancing
the performance of MEAN.

VI. CONCLUSION

In this paper, we present MEAN, a deduplication-enabled
storage system using unreliable resources at the network edge.
MEAN improves the file hit ratio by jointly considering space
efficiency and file reliability. Thus, it can effectively reduce
file retrieval delays under unreliable environments and alleviate
the congestion of the backbone network. We provide efficient
heuristics based on similarity-aware hierarchical clustering and
elaborate our MEAN strategy with three different reliability
scenarios. The comprehensive experimental results based on the
prototype and the real-world dataset demonstrate the superiority
of MEAN in the file hit ratio, average retrieval throughput, and
average retrieval delay.
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