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Abstract—The traditional migration methods are confronted
with formidable challenges when data deduplication technologies
are incorporated. First, the deduplication creates data-sharing
dependencies in the stored files; breaking such dependencies in mi-
gration may attach extra space overhead. Second, the redundancy
elimination makes the storage system reserves only one copy for
each storage file, and heightens the risk of data unavailability. The
existing methods fail to tackle them in one shot. To this end, we
propose Jingwei, an efficient and adaptive data migration strategy
for deduplicated storage systems. To be specific, Jingwei tries to
minimize the extra space cost in migration for space efficiency.
Meanwhile, Jingwei realizes the service adaptability by encourag-
ing replicas of hot files to spread out their data access requirements.
We first model such a problem as an integer linear programming
(ILP) and solve it with a commercial solver when only one empty
migration target server is allowed. We then extend this problem to
a scenario wherein multiple non-empty target servers are available
for migration. We solve it by effective heuristic algorithms based
on the Bloom Filter-based data sketches. The Jingwei strategy can
suffer from performance degradation when the heat degree varies
significantly. Therefore, we further present incremental adjust-
ment strategies for the two scenarios, which adjust the number
of block replicas and their locations in an incremental manner.
The mathematical analyses and trace-driven experiments show
the effectiveness of our Jingwei strategy. To be specific, Jingwei
fortifies the file replicas by 25% with only 5.7% of the extra
storage space, compared with the latest “Goseed” method. With
the small extra space cost, the file retrieval throughput of Jingwei
can reach up to 333.5 Mbps, which is 12.3% higher than that of the
Random method.

Index Terms—Data migration, data deduplication, replica
storage, heat variation.

I. INTRODUCTION

THE data volume surges exponentially in the “Big Data”
era. This brings a serious impact on the network system
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and has become a nonnegligible hot issue. To handle the “Big
Data” challenge, current storage systems mainly adopt the data
deduplication technologies [2], [3] to save space. It has been re-
ported that, for some multimedia and IoT storing data, up to 70%
storage space can be released when deduplication technologies
are assembled [4]. A common practice for data deduplication
is to split files into multiple fixed- [2], [5] or variable-size
[6] blocks. By doing so, the data-sharing dependencies among
the files are established, and only one copy of each block is
maintained in a storage server.

When a server is overloaded, part of its files must be migrated
out to another server [7], [8]. However, the traditional migration
methods are confronted with formidable challenges when data
deduplication is incorporated to economize the scarce storage
resource. First, the deduplication creates data-sharing dependen-
cies between the stored files; breaking such dependencies may
attach additional space overhead to the system. The reason is
that, the shared blocks must be copied at both the source server
and the migration target server to maintain the file integrity.
Second, redundancy elimination makes the storage system re-
serves only one copy for each storage file. Then, the file retrieval
performance may deteriorate when files become hot, because the
frequent requests of such hot files may overwhelm their stored
servers, heightening the risk of data unavailability.

Therefore, in this paper, we envision the following two ra-
tionales for data migration in the deduplicated storage systems:
1) Space Efficiency – the introduced extra space overhead is
minimized; 2) Service Adaptability – files are allowed to have
multiple replicas to avoid data unavailability, like Ceph [9] and
Google [10] file systems. These two rationales, if both are real-
ized, will bring unprecedented benefits to the storage systems.
To be specific, the scarce storage resources can be economized,
and in the meanwhile, the concentrated data requirements of hot
files can be spread to alleviate the potential request congestion.
Furthermore, the replica generation may attach only a tiny or
even non-amount of extra space overhead when the two ratio-
nales are integrated.

The existing data migration strategies, however, fail to con-
sider these two rationales jointly. The intrinsic reason is that,
these two rationales are mutually exclusive. Eliminating all re-
dundancies would impact the service adaptability, but too many
replicas would bring unnecessary space spending. The current
data migration strategies coupled with data deduplication mainly
focus on the capacity measurement [11], the space reduction [7],
[12], etc. However, they are oblivious to the impact of data
replicas. The storage system without replicas, especially for
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Fig. 1. The illustrative examples of the Jingwei strategy and some existing
methods [7], [17]. Four files (f1 ∼ f4), which are attached with heat degrees
(1, 8, 6, 7), are partitioned into five blocks (b1 ∼ b5). The ambition is to migrate
a part of the four files from server 1 to server 2.

hot files, may impact the service adaptability significantly in
practice [2]. On the other hand, the popularity-aware replication
managements [13], [14], [15], [16] or file assignments [17] im-
prove the service performance undoubtedly. However, they are
currently not incorporated with the space reduction technologies
in the deduplicated storage systems.

Inspired by these observations, in this paper, we propose
Jingwei,1 an efficient and adaptive data migration strategy for
deduplicated storage systems. Jingwei realizes a proper trade-off
between the space efficiency (minimizing data replication in the
migration process) and the service adaptability (building replicas
of hot files to spread the frequent data access requirements).
These two optimization aspects are traditionally carried out
separately, yet it is pathbreaking to realize and couple these two
rationales jointly so as to yield rational data migration strategies.

An example of the Jingwei strategy is illustrated in Fig. 1.
The ambition is to migrate a portion of files from the overloaded
Server 1 to the under-utilized Server 2. Scheme (a) [7] minimizes
the amount of replicated data by allocating files with more
common blocks to one server. Nevertheless, there are no file
copies to guarantee the service adaptability. Furthermore, the
aggregation of hot files f3 and f4 may overwhelm Server 2 with
the accumulated data access requirements. Scheme (b) [16], by

1Jingwei is a famous fictional character in Chinese folklore, who carries
pebbles and branches from the land to the sea for her revenge, meaning migrating
files from one server to others in this paper.

contrast, satisfies the service adaptability through replicating
f2 at the two servers. However, the data deduplication is not
incorporated, leading to much more space occupation for re-
dundancies. Scheme (c) (i.e., Jingwei), fortunately, is a relatively
optimal solution. It detects the file similarity to realize the space
efficiency. Meanwhile, it replicates the hot file f3 to permit the
service adaptability rationale with little extra space, i.e., one
more block than that of Scheme (a).

Furthermore, Jingwei should be able to handle dynamic
changes in file heat. Otherwise, the original file allocation strate-
gies can experience performance degradation. Taking Fig. 1 as
an example, Server 1 in Scheme (c) might suffer from potential
request congestion when files’ heat degrees vary, i.e., the heat
degree of file f1 increases from 1 to 10, while that of file f3
decreases from 6 to 2. Then, we can allocate all requests for file
f3 to Server 2 and release its occupied space (b4) from Server
1. Furthermore, file f1 can be replicated at Server 2 with one
more block b1, as shown in Fig. 1(d). After this incremental
adjustment, the concentrated file requests can be apportioned
to the two servers evenly, thereby avoiding the appearance of
access hotspots.

The major contributions are summarized as follows.
� We design two heterogeneous migration scenarios for Jing-

wei to improve the strategy applicability. The first scenario
is migrating files to an empty server. We model such a
problem as an integer linear programming (ILP) and solve
the NP-hard problem with the ILP solver. The problem is
also addressed in a more general scenario wherein mul-
tiple non-empty target servers are available. We solve it
by effective heuristic algorithms, i.e., space-saving data
migration and heat-aware data replication, based on the
Bloom Filter (BF)-based data sketches.

� To alleviate the performance degradation caused by files’
heat variation, we further provide incremental adjust-
ment techniques that perform additional block dele-
tion/migration/replication operations at a reasonable cost
for both of the two heterogeneous scenarios.

� We also attach the mathematical analyses to guarantee the
theoretical effectiveness of the BF-based data migration
strategies. The analyses theoretically highlight the effec-
tiveness of our Jingwei strategy.

� Trace-driven experiments show that our Jingwei strategy
fortifies the file replicas by 25%, while only 5.7% extra stor-
age space is occupied compared with the latest “Goseed”
scheme. With the small extra space cost, the file retrieval
throughput of Jingwei can reach up to 333.5 Mbps, which
is 12.3% higher than that of the Random method.

The rest of this paper is organized as follows. Section II
introduces the related works. Section III states the Jingwei
overview. Section IV presents the problem formulation for
the first migration scenario. Section V exhibits the heuris-
tic algorithms for general migration scenario. Section VI dis-
cusses the incremental adjustment techniques to deal with
files’ heat variation. Section VII demonstrates the perfor-
mance analyses. Section VIII reports our experimental results.
Section IX provides some discussions. Finally, Section X con-
cludes this paper.
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II. RELATED WORK

Data migration in deduplicated storage systems has at-
tracted more attention in recent years with different concerns.
Harnik et al. [11] provide sketch-based estimations of the
reclaimable/attributed capacity when a group of volumes is re-
moved from/added into the deduplicated storage system. Duggal
et al. [12] deploy cloud-tier systems to decrease the cost of copy
forward in deduplicated data migration. Nachman et al. [7]
propose “Goseed” to generate an optimal plan by minimizing
the extra space occupation for data migration, based on the
data-sharing dependencies. However, these works mainly focus
on the space occupation, but do not take the data popularity
into account. In the worst cases, the frequent data access for hot
data would exhaust the limited service capability of the server,
resulting in significant degradation of user experience.

Besides, the data popularity plays a vital role in optimizing
the file assignment [17], replication management [13], [14],
[15], and load balancing [18] in the intelligent data management
systems. It measures the frequency of data access and correlates
closely with service-related objectives, such as the hit ratio and
the request throughput [19], [20]. A highlighted solution to avoid
service overload is replication management [13], [14], [15], [16].
Hamdeni et al. [13] provide a comprehensive survey on the data
popularity and emphasize the importance of data replicas. Liter-
ature [14] increases the replicas for hot data and allocates them
evenly across the storage system for convenient data retrieval.
Wei et al. [15] deploy a minimal number of replicas and place
them separately on those servers with the most service abilities.
Shen et al. [16] utilize file replication technologies to reduce hot
spots and improve file query efficiency. However, these solutions
are not incorporated with deduplication technologies, which
is crucial to enhance the space efficiency for storage systems,
especially for the successive backups with a high deduplication
ratio [4].

The previous works have investigated the data migration
strategies integrated with data deduplication technologies, or
how to place the replicas of hot data rationally, but not both. Note
that, optimizing on any one dimension alone is too restrictive.
Literature [2] caches hot data at edge with data deduplication,
which considers the data popularity as well as the space occupa-
tion in deduplicated storage systems. However, it only works in
the granularity of storing files at data centers or edge coarsely.
In addition, the method does not elevate the system’s service
adaptability by adding data replicas in response to the network’s
unstable situations. Literature [21], by contrast, permits data
redundancies in the deduplicated storage system. It builds a two-
tier storage hierarchy, where the Primary cluster is responsible
for storing full file replicas, and the Deduplication cluster stores
the unique blocks. This strategy implements the prefetch/pre-
construct cache algorithm based on the user’s access patterns, but
is still not space-efficient for storing replicas of all involved files.

Unlike the existing strategies, It is path-breaking for our
Jingwei to highlight the importance of data replicas in the
space-efficient deduplicated storage systems. In addition, Jing-
wei achieves an elegant trade-off between the proposed space
efficiency and service adaptability rationales.

TABLE I
COMPARISON OF RELATED WORKS

Fig. 2. The overview of Jingwei.

III. THE OVERVIEW OF JINGWEI

The “Big Data” era has put forward a tough challenge for
the server’s storage and service capacity. When a server is
overloaded, data migration provides an effective way to alleviate
the load burden in the storage systems. Data deduplication
further economizes the scarce space resources by splitting files
as blocks and removing duplicated ones. Two design rationales
are required when the data deduplication is incorporated into the
migration strategy:
� Space efficiency: The data migration strategy should de-

crease the extra space cost caused by breaking the data-
sharing dependencies in the migration process.

� Service adaptability: The data migration strategy should
maintain some replicas of hot files to amortize the frequent
file requests and improve the service quality.

Migration Mode: Some deduplicated systems split the incom-
ing files into blocks, and store the blocks dispersedly without
the constraint of file integrity [22], [23]. Another emerging
deduplication model supports storing all blocks of the original
file at one server, so that accessing a file will not require excessive
rounds of communications to multiple servers [3], [5], [7]. This
also enables a single disk access for block lookup per file instead
of per block to alleviate the disk bottleneck problem [24]. We
track the latter mode in this paper, where a file’s partitioned
blocks are stored on one server, and the migration scheme is
conducted at the file layer. Each storage server manages its
own local fingerprint index and identifies deduplicate blocks by
looking up this index table. The specific comparisons are listed
at Table I.

Jingwei Overview: The overview of our Jingwei strategy
is exhibited in Fig. 2. The data deduplication is conducted at
each involved server, wherein only one copy of each block
can be maintained, and the duplicated blocks are replaced with
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pointers. Thus, the data-sharing dependencies are established.
To comprehensively conduct the efficient and adaptive data
migration strategy, we design two scenarios when migrating out
a part of files from the overloaded source server. Specifically,
when only one empty server acts as the migration target, we
model the problem as an integer linear programming (ILP) and
solve this NP-hard problem with the ILP solver. The specific
problem formulation is exhibited in Section IV.

To adapt to more migration situations and requirements,
we extend the problem into a more general scenario, where
any empty or non-empty server can act as the candidate for
the migration targets. We leverage the space-saving migration
algorithm to determine the migrated files and their migration
targets in priority of low extra space cost. Thereafter, we present
the heat-aware data replication algorithm to replicate hot files
with only limited extra space overhead, which achieves the
service adaptability. The BF-based data sketches assist the above
two algorithms by detecting the content similarity with low
computational overhead. The specific algorithms are exploited
in Section V.

To ascertain the system performance with heat variation,
we further design the incremental adjustment techniques for
the two scenarios in Section VI. Based on the current stor-
age state, these techniques perform additional block dele-
tion/migration/replication operations according to the varied
file’s heat degree, but do not resort to entire reallocating. Thus,
the adjustment cost, such as the extra space cost and bandwidth
consumption, can be reduced. Specifically, the ILP solver is still
adopted for the first scenario. As for the second scenario, we
upgrade the BF-based data sketches with the Counting Bloom
Filter, which facilitates the item deletion operations when files
become cold. The ambition for the incremental adjustment is to
mitigate the performance degradation caused by heat variation,
while reducing the adjustment cost.

IV. MIGRATING FILES TO A SINGLE EMPTY SERVER

In this section, we model the migration problem when only
one empty target server is allowed. Specifically, we first provide
the problem definition in Section IV-A. Thereafter, we formulate
this migration problem in Section IV-B.

A. Problem Definition

In the initial storage state, the source server Ss stores a set of
files Fs = {f1, f2, . . .} with heat degrees Hs = {h1, h2, . . .}.
These files are partitioned into blocks, and only the unique
blocks (after data deduplication) can be contained, which are
represented by Bs = {b1, b2, . . .}. Let size(b) denote the size
of block b, then the storage cost of serverSs is the total size of the
blocks stored on it, i.e., size(Ss) =

∑
bj∈Bs

size(bj). Note that,
this size function generates a constant value for fixed-size block
chunking [2], and varies for the variable-size block chunking
algorithms [6]. Let Is = Fs ×Bs indicate an inclusion relation,
where (fi, bj) ∈ Is means that block bj is included in file fi. We
do not consider the case that a file is replicated several times on
one server, because it has no effect on the access shunt but only
aggravates data redundancies.

Currently, the source server Ss is overloaded, i.e., the storage
capacity Cs cannot afford the stored data size size(Ss). Thus, a
part of files in Fs should be migrated from the source server Ss

to the empty target server St. In our migration mode described
in Section III, the migration is conducted at the file level. Thus,
we should migrate a part of the files from the source server
Ss, and the ambition is to realize the two proposed rationales
simultaneously, i.e., space efficiency and service adaptability.

The critical point lies in how should we choose the files to
migrate in Fs? To do this, we first categorize the possible states
of each candidate file fi ∈ Fs. Then, we deeply analyze the
introduced extra space overhead in breaking the data-sharing
dependencies, and the apportioned access requests for the file
replicas. To be specific, the file states would be in one of the
following three states as follow when enough amount of data is
migrated out from the source server Ss:
� migrated, i.e., fi is migrated to the target server St,

while the space occupied at the source server is released.
We introduce the following Boolean state variable xi ∈
{0, 1}, ∀fi ∈ Fs, to represent this state, such that:

xi =

{
1 if fi is migrated to the target server;

0 otherwise.
(1)

� replicated, i.e., the source server sends a copy of fi to
the target server. This usually appears for hot files, where
the data access requirements may overwhelm the capacity
of the source server. We introduce the following binary
Boolean state variable yi ∈ {0, 1}, ∀fi ∈ Fs, to express
this state, such that:

yi =

{
1 if fi is replicated to the target server;
0 otherwise.

(2)

� unaltered, i.e., fi remains at the source server without being
migrated or replicated, meaning xi = 0 and yi = 0.

Based on the file states indicated by the above Boolean
variables, the deeply-associated state of their partitioned blocks
can also be mathematically expressed. To be specific, a block
can also be migrated, replicated, or unaltered, with its states
being expressed by Boolean variable definitions. To denote
the migrated state of a block, we define a Boolean variable
(mj ∈ {0, 1}, ∀bj ∈ Bs), where

mj =

{
1 if block bj is migrated;
0 otherwise.

(3)

When mj = 1, the block bj should be migrated out from the
source server Ss to the target server St. This state can only
be caused by the migration of its subordinated file fi, where
xi = 1 & (fi, bj) ∈ Is. We further define a Boolean variable
rj ∈ {0, 1}, ∀bj ∈ Bs, as:

rj =

{
1 if block bj is replicated;
0 otherwise.

(4)

When rj = 1, the block bj would appear at both the source
and the target server. If any of its affiliated files (the files that
contain bj) is replicated during the migration process, the state
of bj would be labeled as replicated. Furthermore, breaking the
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Fig. 3. An illustrative example of data migration from the source server Ss to
the empty target server St.

data-sharing dependencies of two files (one is migrated, and
the other is unaltered) would also attach block replications in
the shared part. Note that, rj also relates to the extra space
cost caused by file migration, which can be represented as∑

bj∈Bs
size(bj)× rj . If bothmj = 0 and rj = 0, it means that

bj remains unaltered.
To conclude, the state interrelations between files and their

partitioned blocks in Is can be dissected and denoted as one of
the following three cases. Fig. 3 takes intelligible examples to
illustrate these unique instances.
� Case 1: One file remains at the source server Ss, i.e.,
xi = 0, yi= 0, like file f1 in Fig. 3. In this case, all
blocks included in the file are either unaltered (like block
b1) or replicated (like block b3), hinging on the block
sharing dependencies between the unaltered file and the
migrated/replicated files.

� Case 2: One file is migrated to the target serverSt, i.e.,xi =
1, like file f2 in Fig. 3. In this case, all blocks included in the
file would be either migrated (like block b4) or replicated
(like block b2).

� Case 3: One file is replicated at both the source and the
target server, such as file f3 in Fig. 3. In this case, all
involved blocks of file f3, i.e., ∀bj ∈ Bs & (f3, bj) ∈ Is,
would be replicated. Besides, the access requirements of
this file would be spread by its replications with a distribu-
tion parameterγ ∈ [0, 1] (γ = 0.5 in the example of Fig. 3).
This parameter can be adjusted by the widely utilized load
balancer in the network [25], which is responsible for load
balancing across servers in the storage systems.

B. Problem Formulation

With the aforementioned Boolean variables about files and
blocks, we can formulate the migration problem with an empty
target server as follows.
� When block bj is migrated, i.e., mj = 1, then all files that

contain the block would be migrated to the target server:

mj ≤ xi, ∀fi ∈ Fs, bj ∈ Bs & (fi, bj) ∈ Is. (5)

� When file fi is migrated, i.e., xi = 1, then all of its con-
tained blocks would be either migrated or replicated:

xi ≤ mj + rj , ∀fi ∈ Fs, bj ∈ Bs & (fi, bj) ∈ Is. (6)

� When file fi is replicated at both serverSs andSt, i.e., yi =
1, then all of its involved blocks should also be replicated:

yi ≤ rj , ∀fi ∈ Fs, bj ∈ Bs & (fi, bj) ∈ Is. (7)

� The states of files, i.e., xi and yi, and the states of blocks,
i.e., mj and rj , are mutually exclusive:

xi + yi ≤ 1, mj + rj ≤ 1, ∀fi ∈ Fs, bj ∈ Bs. (8)

� The migrated block volume, i.e.,
∑

bj∈Bs
size(bj) ·mj ,

∀bj ∈ Bs should meet the pre-defined migration percent-
age (M ) of the server load in Ss (Cs). This percentage can
be determined by the joint considerations of the storage
burden of server Ss and the actual storage situations in the
deduplicated storage systems.∑

bj∈Bs

size(bj)×mj ≥ M · Cs. (9)

� The final space (C)/service (T ) overhead of both the source
and target server should not exceed the corresponding
capacities for ∀fi ∈ Fs, bj ∈ Bs & (fi, bj) ∈ Is.∑

bj∈Bs

size(bj)× (1−mj) ≤ Cs. (10)

∑
bj∈Bs

size(bj)× (mj + rj) ≤ Ct. (11)

∑
fi∈Fs

hi × (1− xi − γi · yi)) ≤ Ts. (12)

∑
fi∈Fs

hi × (xi + γi · yi) ≤ Tt. (13)

� The state variables are all Boolean: xi, yi,mj , rj ∈
{0, 1}, ∀fi ∈ Fs, bj ∈ Bs.

We develop the objectives of our Jingwei scheme, i.e., re-
alizing an elegant trade-off between the space efficiency and
the service adaptability. The space efficiency is described by
minimizing the extra space cost caused by block replication,
i.e.,

∑
bj∈Bs

size(bj)× rj . The service adaptability can be rep-
resented by maximizing the amount of share data requirements,
i.e.,

∑
fi∈Fs

hi × yi. These two rationales are normalized as
follows.

min

∑
bj∈Bs

size(bj)× rj∑
bj∈Bs

size(bj)
− λ

∑
fi∈Fs

hi × yi∑
fi∈Fs

hi
, (14)

where the parameter λ can be adjusted to adapt to different
optimization tendencies for these two rationales. To be spe-
cific, with the increase of parameter λ, the derived block mi-
gration/replication schemes would tend to enhance the service
adaptability rationale.

With (14) as the migration objective and (5)∼(13) as the con-
straints, the problem can be formulated as an Integer Linear Pro-
gramming (ILP). The ILP problem is known to be NP-hard [26],
and there is currently no known efficient solving algorithm in
polynomial time complexity. In particular, when the variables are
restricted to Boolean assignments (0 or 1), then merely deciding
whether the problem has an optimal solution has been known
to be NP-Complete [27]. Fortunately, commercial optimizers,
like CPLEX [28], lp_solve [29], and Gurobi optimizer [30],
can solve this kind of problems efficiently for instances with
hundreds of thousands of variables. Therefore, we exploit these
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Fig. 4. An illustrative example of the BF-based data sketch. Note that the 8th
bit of the sketch suffers from the hash collisions.

highly-optimized solvers to search out the optimal migration
plan directly.

V. MIGRATING FILES TO MULTIPLE NON-EMPTY SERVERS

The scenario with only one empty target migration server
may not be applicable for large-scale storage systems, where
it is not common for a server to join with an empty state.
In addition, the constraint of migrating all files to one server
may limit performance improvement. Therefore, we design a
more general scenario, where multiple non-empty servers rather
than one empty server can accept the migrated files from an
overloaded server. As a consequence, the above formulation will
not be applicable. Therefore, in this section, we further propose
efficient heuristic algorithms for the general migration scenario
based on the Bloom filter-based data sketches.

A. Bloom Filter-Based Data Sketch

To find the optimal target server for each file to migrate, an
intuitive method is to compare the fingerprints (using MD5 [31]
or SHA-1 [32] coding) of blocks contained by the file and that
stored by the candidate servers. The files prefer to be migrated to
the server with more common blocks. However, the information
comparisons would consume non-trivial computation resources
and lead to unbearable processing latency. For example, for
a file with n blocks, it takes O(n× |Bt|) time-complexity to
determine whether the server contains such blocks or not, where
|Bt| is the total number of blocks in a candidate server. In order
to decrease the computation complexity, we adopt Bloom Filter
(BF) [33], [34], a hashing mapping method that has been widely
utilized in networking and distributed systems, to represent the
blocks on each candidate server. This facilitates data similarity
detection from pair-wise fingerprint checking to the member-
ship queries on the data sketches. Then the time-complexity of
determining whether a server contains the n blocks in a file can
be decreased as O(n · kBF ), where kBF indicates the number
of utilized hash functions in BF.

Fig. 4 provides an illustrative example for a BF-based data
sketch. Given the block set B with three partitioned blocks b1,
b2, and b3, the BF represents B with a bit vector of length d =
19. All d bits in the vector are initially set as 0. The kBF = 2
independent hash functions are employed to map each block into
kBF positions in the bit vector. Those hit positions would be all
set to 1. The binary string derived from the hash functions is
exactly the BF-based data sketch.

Each server would maintain a bit vector, with the same kBF

functions and vector length, to record the membership infor-
mation at the block level. According to the bit vector and the
kBF used hash functions, we can realize the membership queries

against any data block. To be specific, when a file fi in the source
server tries to select its optimal target server from all available
candidates, it would first require the BF vector of each candidate.
For any block bj in file fi, the BF judges that this block does
not belong to the candidate server, if any bit at the kBF hashed
positions in the BF vector is 0. Otherwise, the BF believes that
the queried block bj belongs to the candidate target server with
a rate of false positives.

B. The Effective Heuristic Migration Algorithms

The BF-based data sketch elaborates a feasible and effective
method to detect data similarity through membership queries.
According to the data sketches, we propose effective heuristic
algorithms for migrating files to multiple non-empty servers.
The heuristic algorithms are composed of two parts, i.e., the
space-saving data migration in Section V-B1 and the heat-aware
data replication in Section V-B2.

Note that, the prerequisite of this general data migration is that
the candidate targets are all underloaded and have the potential
to accommodate more data blocks. However, as data accumu-
late, some underloaded servers would gradually approach their
storage capacities, and have no extra space to receive new files.
In this case, these high-loaded servers would be kicked out of
our migration/replication candidates. Other candidates would
be selected as the migration/replication targets, even though
they may contain fewer common blocks and occupy more extra
space to accommodate the selected file. One extreme situation,
although unlikely to appear, is that all servers in the storage
systems are overloaded. To counter this special case, we would
suggest adding some empty servers to our storage systems. Then,
this general migration scheme can be transferred to the first
scenario (expressed in Section IV), where the new-added empty
servers act as the migration targets.

1) Space-Saving Data Migration: The space-saving data mi-
gration determines which files to migrate and where they should
be directed to, with the ambition of less extra space cost. To
achieve this, we rank the migration sequence of files according
to a space-saving index. We define this index as the amount of
saved storage resource when a file migrates to a candidate target
server. The index can be represented by the deviation between the
data amount that is freed from the source server and the increased
space on the migration target. We prefer the data migration in
priority of the high space-saving index. This plays a vital role in
improving the systems’ space efficiency.

The specific steps are detailed in Algorithm 1. The in-
put includes the BF-based data sketches and file sets for the
source server Ss and all target candidates S̃t, where S̃t =
{S1, S2, . . . , Sn}. The file set of the candidate server Sk is
denoted by Fk. To derive the migration variable xi and the cor-
responding migration target St(i), we elaborate a space-saving
index to inspire the migration sequence. The function is shown
in Lines 10-14. Let ϕ(i, k) represent the data volume of shared
blocks between fi and Sk ∈ S̃t, which can be derived from
the BF-based membership queries of blocks in fi on the Sk’
data sketch (Ψk). Then, the function returns the index I(i, k)
according to the deviation between ϕ(i, k) and ϕ(i, s), which
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Algorithm 1: Space-Saving Data Migration.

reflects the saved space resources through migrating file fi from
Ss to the Sk. Note that, the value of ϕ(i, s) is calculated based
on the sketch without fi, which can actually reflect the space
overlapping between fi and others in Ss.

With the space-saving index for each file-server matching,
we can determine the files to migrate and their target servers
by calculating the maximum I(i, k), if the storage capacity of
the candidate target server Sk̂ is available. This step would be
processed iteratively until M percentage of the storage volume
in Ss has been migrated (Lines 3-9). Note that, each migration
would release or add blocks on the source server and the tar-
get server. Thus, the data sketches should be locally updated.
Furthermore, the ranking index should also be updated on the
related servers accordingly (Lines 7-9).

Fig. 5 gives an illustrative example of our space-saving data
migration process. When the source server Ss becomes over-
loaded in the initial storage states, we first calculate the space-
saving index (I) for all its contained files (f1, f2, and f3) to in-
spire the migration sequence. To be specific,ϕ(i, k) = 1, ∀fi ∈
{f1, f2, f3}, Sk ∈ {St1, St2}, while ϕ(1, s) = 1, ϕ(2, s) = 2,
ϕ(3, s) = 3. Therefore, we can get one minimum space-saving
index, i.e., I(1, 1) = ϕ(1, 1)−ϕ(1, s) = 0, which reflects that
no more extra space would be occupied for migrating file f1
from Ss to St1. We select this migration, with block b1 being
released from Ss and block b3 being attached to St1. Then, the
load burden of Ss is alleviated, and the migration algorithm
would stop.

2) Heat-Aware Data Replication: After determining the mi-
grated files and their destinations, the next step is to adjust this
migration plan considering the files’ heat degree. Overheated
files should have multiple replicas in the system for apportioning
the frequent file requests. We present a unit-heat value (κ) to
exploit the necessity of file replication. The value of κ can

Fig. 5. An illustrative example of the space-saving data migration and the
heat-aware data replication. There are one source server (Ss) and two target
servers (St1 and St2) in this example. All servers can accommodate at most
four blocks and serve 10 requests per unit of time.

adjust the number of generated file replicas. With a smaller κ,
there can be more file replicas to amortize the frequent data
accesses, thereby enhancing the service quality in the storage
system. We also calculate the quotient between the apportioned
file requests (AFR) and the extra space the replica requires. The
AFR(i) is defined as the evenly apportioned file requests that
each replica of file fi undertakes. Any replication is executed if
the quotient value exceeds the unit-heat value. This ensures the
replica generation of hot files with little extra space cost.

The specific algorithm is expressed in Algorithm 2. For any
file fi with its current storage serverSt(i), we getϕ(i, k), ∀Sk ∈
S̃t & Sk �= St(i). The value of ϕ(i, k) is thereafter sorted in
descending order to construct the server queue Qi, when the
capacities are under the constraints (Lines 1-4). The server
ranking at the front of Qi contains more similar content with file
fi. For each server in queue Qi, we calculate the apportioned
file requests AFR(i) and the extra space cost size(fi)−ϕ(i, k).
If the quotient between these two parameters is larger than κ,
then the file fi would be replicated to Sk, i.e., the kth server
in Qi. Then, the data sketch Ψk would be updated with this
new-added replica of file fi (Lines 5-9). After determining the
replica locations repeat_set(i) for file fi, we further leverage
function Heat_Allocation(fi, repeat_set(i)) (Lines 13-17) to
adjust the allocated amount of data access for each server in
repeat_set(i). This function takes over the role of the load
scheduler, which balances the service load according to the
available service capabilities (ASC) of the involved servers. To
be specific, the server with more available service capability
would undertake more potential data access requirements.

Fig. 5 further illustrates the example for our heat-aware data
replication process. For all files, we calculate the extra space cost
with one more file replica (size(fi)−ϕ(i, k)) as well as their
split data access AFR(i). We find the hot file f1 can be repli-
cated to St2 with one more block, where AFR(1)/(size(f1)−
ϕ(1, 2)) = 4/1 = 4. When setting κ ≤ 4, file f1 would be repli-
cated to St2, with its data access requirements being distributed
to the two affiliated servers (St1 andSt2). TheHeat_Allocation
function further balances the service load according to the
available service capabilities of the involved servers.
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Algorithm 2: Heat-Aware Data Replication.

VI. INCREMENTAL DATA ALLOCATION ADJUSTMENT

STRATEGIES WITH HEAT VARIANCE

Data popularity (heat degree) measures the frequency of data
access requirements. One non-negligible feature of data popu-
larity is its variation, which indicates file’ heat degree varies over
time. This feature is more pronounced for time-sensitive data,
such as hot news and real-time weather.

When files’ heat degrees change significantly, the original data
allocation strategy can suffer from performance degradation.
This can break the service balancing maintained by the original
allocation strategies and lead to the emergence of new access
hotspots. To be specific, for the first scenario wherein only
one server is allowed for migration, the one-side optimization
objective of maximizing the shared amount of data require-
ments

∑
fi∈Fs

hi × yi may be inconsistent with the actual re-
quirements when any heat value hi ∈ H varies. In the same
manner, for the second scenario wherein multiple non-empty
target servers are allowed for migration, the updated heat degree
of any file may inconsistent with the original heat-aware data
replications. The magnitude of performance degradation grows
with the increase of heat variance.

To this end, we present an adjustment strategy that performs
block deletion/migration/replication according to the varied
files’ heat degrees. The core idea is to adjust a part of files in an
incremental manner when the heat variation reaches a thresh-
old, instead of recomputing the entire data allocation scheme.
Such an incremental adjustment technique is more practical and
efficient, since it can respond to frequent changes in file heat
at a reasonable cost. To be specific, our proposed incremental
adjustment technique monitors the heat changes at regular inter-
vals. The extra block deletion/migration/replication is triggered

Fig. 6. Different mappings from the original states to the adjusted states, when
heat degrees are changed from (1, 2, 8, 3) to (3, 7, 2, 4). The adjustment cost is
divided into two categories: the extra space cost and the bandwidth consumption.

whenever the file’s heat change (Δ =
∑ |Δhi|/

∑
hi) crosses a

certain threshold. This threshold (TΔ) is a system parameter, and
can be set according to the sensitivity requirements for heat vari-
ance. When the heat change exceeds this threshold, our adjust-
ment policy would conduct based on the current storage states.

A. Incremental Adjustment for the First Scenario

The incremental adjustment for the first scenario is detailed
in Algorithm 3. When the heat variance (Δ) exceeds a given
threshold (TΔ), the allocation scheme would be recomputed
with the optimization objective expressed in (14). The updated
decision variables are denoted by x′

i, y
′
i, m

′
j , r

′
j . To alleviate

the performance degradation caused by heat changes, we should
adjust the storage state from xi, yi, mj , rj to x′

i, y
′
i, m

′
j , r

′
j .

The puzzle is that there may be two adjusted states based
on our problem formulation in Section IV-B, when the mi-
gration percentage is satisfied. Different mappings from the
original states to the adjusted states would lead to diverse
adjustment costs, such as the extra space cost and the trans-
mission bandwidth. The reason is that the number of block
migration/replication/deletion operations is different in the two
mappings. To reduce these resource-consuming operations, we
compare the different mappings from the original states to the
adjusted states.

Take Fig. 6 as an example, in the original file states, there are
f1, f2, f3 in the source server, and f3, f4 in the target server. The
adjusted states separate the files into two parts: f1, f2, and f2, f3,
f4. How to map these two states can lead to a different number of
block migration/replication/deletion operations, which seriously
impact the extra space cost and bandwidth consumption. In
the adjustment, we refer the space minimization as our main
optimization objective, and try to decrease the extra space cost
caused by the replication/deletion operations. When the two
mappings lead to the same extra space, we consider bandwidth
minimization as our secondary optimization objective, where
the number of migration operations should be reduced.

When choosing the mapping denoted by the orange arrows,
the original state of Ss would be mapped to the adjusted state
of Ss exactly. In this case, block b5 should be deleted directly
from server Ss, while b1 should be replicated to St with its
copy migrating between the two servers. We assume that the
size of all partitioned blocks (b1 ∼ b5) is 1. Then, server Ss

reduces its space cost by one block deletion (b5), and Server
St increases its space cost with one block replication (b1). The
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Algorithm 3: Incremental Adjustment Strategy for the First
Scenario.

conducted migration between these two servers occupies one
unit of bandwidth resources (b1). Otherwise, for the mapping
represented by the blue arrows, there are in total three block
migrations, i.e., b1, b2, and b4, while the space cost remains
unchanged for the two servers. Therefore, we would select the
state mapping denoted by the orange arrows, because the two
mappings lead to the same extra space, but the former causes
less bandwidth consumption.

When the heat variance (Δ) exceeds the threshold (TΔ),
our adjustment algorithm would first recompute the files’ and
blocks’ states, and derive the adjustment cost in different map-
pings. Our algorithm would map the states with less adjustment
cost, where the recomputed Boolean variables are denoted by
x′
i, y

′
i, m

′
j , r

′
j . The adjustment process after the state mapping

is listed as follows.
� For each block bi ∈ Bs, if m′

j = 1, block bj should be
migrated from Ss to St when uj = 1, and be deleted from
Ss when it has been replicated at both Ss and St (rj = 1).

� When r′j = 1, block bj would be first replicated, and then
its copy should be migrated to the other server whenuj = 1
or mj = 1.

� When u′
i = 1, the unaltered block bj should be migrated

back to the source server Ss when the original state is
migrated (mj = 1). Otherwise, if rj = 1, the replicated
block bj should be deleted from the target server St.

� In the remaining cases, the block states remain unchanged.

B. Incremental Adjustment for the Second Scenario

1) Data Sketches Based on Counting Bloom Filters: When a
file gets cold, fewer replicas are sufficient to meet the potential
access requirements. Thus, part of its replicas should be deleted
from the storage system for the space-saving purpose. However,
the traditional Bloom filter used in our previous algorithms
cannot support the item deletion function. The reason is that
resetting the corresponding 1 s to 0 s may lead to false-negative
results for other elements. Therefore, we employ the Counting
Bloom Filter (CBF) [35] instead in this section to support
deletion operations.

The CBF extends the BF by replacing each bit as a counter.
In the framework of CBF, when inserting an element, the
corresponding kCBF counters in the vector increment by 1.
In contrast, the deletion of an element will be supported via
decreasing the corresponding counters by 1. In this way, the
deletion of an element will not affect the membership queries
of other elements. It has been proved that 4 bits for a counter
are enough to achieve eligible overflow probability [33]. CBF
also supports constant-time membership queries. To answer a
membership query, the CBF checks the kCBF corresponding
counters. If all of them are non-zero, CBF judges that the queried
element is a member; otherwise, negative.

We employ CBF to construct the data sketches for each
candidate server in our incremental adjustments for the second
scenario. We use CΨ to denote the CBF-based data sketches.
According to the CBF-based server sketches, we can realize
the membership queries against any data block. In addition, the
update operations, especially element deletions, can be realized.
For example, when a data block is deleted from its stored server,
the CBF vector of the server would be updated by decreasing
the corresponding kCBF counters by 1.

2) CBF-Based Incremental Data Allocations: The incre-
mental adjustment strategy for the second scenario is expressed
in Algorithm 4. We first build an adjustment sequence HQ by
sorting |Δhi| in a descending order (Line 1). We adjust the
data allocation for files in HQ, until the variance percentage
Δ is below the threshold TΔ. For the file with the maximum
heat variance (fq), we judge whether the variance is positive
or negative. If the file is getting hot, i.e., positive variance,
we would find several additional candidate target servers for
file replicas to alleviate the request congestion. Specifically,
we get ϕ(q, k), ∀Sk ∈ S̃t & Sk �= repeat_set(q), and sort the
values descendingly to construct the server queue Qq (Lines
5-6). Thereafter, we calculate the division between the split data
access AFR(q) and the extra space cost size(fq)−ϕ(q, k′). If
the division between these two parameters is larger than κ, then
the file fq would be replicated to the underloadedSk′ , i.e., the kth
server in Qq , with the data sketch CΨk′ being updated (Lines
7-14). The new replicas support data access requests for the
hotter file fq . This process is the supplementary operation for
Algorithm 2.

In contrast, when the file fq is getting cold, some replicas
would be removed from the systems for the space-saving pur-
pose. Specifically, for all servers that store the file replicas of fq,
i.e., repeat_set(q), we would recalculate whether or not they
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Algorithm 4: Incremental Adjustment Strategy for the Sec-
ond Scenario.

meet the criteria for storing replicas (Lines 18-19). If not, the
occupied space would be released from the server, with sketch
CΨk′ being updated (Lines 20-21). After updating the replica
locations repeat_set(q) for file fq , we further leverage function
Heat_Allocation(fq, repeat_set(q)) (Line 22) to adjust the
allocated percentage (γq) for each server in repeat_set(q). The
heat variance Δ and the adjustment sequence HQ would also
be updated (Line 23-24).

VII. PERFORMANCE ANALYSIS

In this section, we perform mathematical analyses to guaran-
tee the theoretical effectiveness of our BF-based data migration
strategies. We first prove that the BF-based data sketch would
negligibly impact the similarity detection through Theorem 1.
After that, we demonstrate the rationality of utilizing the space-
saving index through Theorem 2. At last, we analyze the time
and space complexities of the provided algorithms.

A. Impact on Data Similarity Due to Data Sketching

Theorem 1: Given a block b that does not exist in server SA,
and the data sketch ΨA of SA with length d, the probability that
judging the block b belongs to server SA through indexing the
server sketch ΨA is negligible.

Proof: We assume there are ε blocks stored at server SA,
and these blocks are sketched into a d-bit string (ΨA) by kBF

BF-based hash functions. When inquiring whether server SA

contains the block b, the corresponding kBF positions of sketch
ΨA would be checked. The sketch judges that this block does
not belong to server SA, if any bit at the kBF hashed positions is
0. Otherwise, the BF believes that the queried block b belongs to
SA with a rate of false positives. The false positives are caused
by hash conflicts, as the 8th bit in Fig. 4. For block b, all of
its kBF hash positions in the bit vector may be set as 1 when
representing other blocks in server SA. The probability that a
bit in ΨA is not set to 1 by the kBF independent hash function
is (1−1/d)kBF . When inserting the ε blocks into the sketch,
the probability becomes (1−1/d)ε·kBF . Then, for block b, all
of its kBF hash positions are projected by other blocks with a
probability p = [1−(1−1/d)ε·kBF ]kBF . This probability is also
called the false-positive rate [33].

When the sketch lengthd is set with a large value, for example,
d = 100000 in experiments in Section VIII, the false-positive
rate tends to zero. Therefore, the impact of sketch-based data
similarity mining is negligible, which validates the rationality
of our heuristic algorithms using Bloom filters or Counting
Bloom filters.

B. Accuracy of File Ranking on Space Efficiency

Theorem 2: Given two files (f1 and f2) in the source server
with their maximum ranking index I(1, k1) and Is(2, k2), where
I(1, k1) > I(2, k2), then the migration of file f1 is more space-
efficient than that of file f2 in the current step.

Proof: We assume that the data sketches for all involved
servers are set with a fixed length d. The chosen migration
target for file f1 is server Sk1

, and that for file f2 is server Sk2
.

I(1, k1) = ϕ(1, k1)− ϕ(1, s), where ϕ(1, k1) represents the
data volume of shared blocks between f1 and Fk1

, and ϕ(1, s)
expresses the data volume of shared blocks between f1 and
Fs\{f1}.

Let ϕ(i, k) denote the data volume of shared blocks between
fi andSk ∈ S̃t. This can be derived from the BF-based member-
ship queries of blocks in fi on data sketchΨk. Then, the function
returns the index I(i, k) according to the deviation between
ϕ(i, k) and ϕ(i, s), which reflects the saved space resources
through migrating file fi from Ss to the Sk. However, these val-
ues contain false positive results caused by hashing conflicts. We
let ϕ̂(i, k) and ϕ̂(i, s) represent the real values of the estimated
ϕ(i, k) and ϕ(i, s). Then ϕ̂(i, k) = (ϕ(i, k)− pkVi)/(1− pk),
where Vi represents the data volume of file fi, and pk indicates
the false positive ratio of membership queries on the sketch of
server Sk. The aim is to prove ϕ̂(1, k1)− ϕ̂(1, s) > ϕ̂(2, k2)−
ϕ̂(2, s) when I(1, k1) > I(2, k2). We rewrite the space-saving
ranking indexes as follows:

I(1, k1)− I(2, k2)

= (1− pk1
) ϕ̂(1, k1)− (1− pk2

) ϕ̂(2, k2)

+ (1− ps) [ϕ̂(2, s)− ϕ̂(1, s)]

+ (pk1
− ps)V1 − (pk2

− ps)V2 > 0. (15)
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TABLE II
TIME AND SPACE COMPLEXITY ANALYSIS

Based on this inequation, the real saved storage space between
file f1 and f2 can be represented as follows:

[ϕ̂(1, k1)−ϕ̂(1, s)]− [ϕ̂(2, k2)−ϕ̂(2, s)]

> pk1
ϕ̂(1, k1)− pk2

ϕ̂(2, k2) + ps [ϕ̂(1, s)− ϕ̂(2, s)]

+ ps (V2 − V1) + pk1
V1 − pk2

V2. (16)

When the data sketches for all involved servers (Ss, Sk1
, and

Sk2
) are set with a fixed and large length d, the false positive

ratios (ps, pk1
, and pk2

) are all tend to zero. With this premise,
ϕ̂(1, k1)− ϕ̂(1, s) > ϕ̂(2, k2)− ϕ̂(2, s) with a high probabil-
ity, and then Theorem 2 can be verified.

Theorem 2 can also be applied for the heat-aware file repli-
cation algorithm, where the server queue Qi is sequenced by
index ϕ(i, k) for file fi. The server with a higher ϕ(i, k) is
more space-efficient to store a replica of file fi under the same
conditions.

To conclude, Sections VII-A and VII-B together indicate that
our Jingwei method picks up a rational sketching method to
reduce the computation overhead, and ranks the file migra-
tion/replication sequence rationally based on data sketching.
These guarantee the theoretical effectiveness of our Jingwei in
the general scenario.

C. Time and Space Complexity Analysis

We analyze the time and space complexity of our proposed
data allocation strategies in this subsection, including the BF-
based data sketch, space-saving data migration, and heat-aware
data replication. The specific comparisons are shown in Table II.

The time complexity of the BF-based data sketch is
O(|Bt|max · kBF ), where kBF indicates the number of utilized
hash functions and |Bt|max represents the maximum number of
blocks at any candidate server. Note that, the sampling technolo-
gies can be assembled to reduce the time complexity by a factor
of the sample ratio. The space complexity of the BF-based data
sketch is O(d), where d expresses the BF length.

The time complexity of the space-saving data migration is
O(|Fs|2 · |S̃t|2 · nmaxkBF ), where nmax indicates the maxi-
mum number of blocks in any file. Note that, after each file
migration, the storage states of both the source server and the
targets are updated partially. This would not augment the overall
time complexity of the algorithm. In addition, the space com-
plexity is O(d|S̃t|+ |Fs||S̃t|), where d|S̃t| records the server
sketches and |Fs||S̃t| records the space-saving indexes.

As for the heat-aware data replication algorithm, the
time complexity is O(|Fs| · |S̃t|2 · log2 |S̃t|). Here, O(|S̃t| ·
log2 |S̃t|) is caused by ordering the target servers based on the
shared block volume. The complexities |Fs| and |S̃t| are caused
by the maximum migration times and the maximum replication

times for each file in Fs. The space complexity is O(|Fs||S̃t|).
Note that, our incremental adjustment strategies incrementally
conduct the update operations on only a part of the original
blocks. Thus, their complexities would be lower than these two
algorithms.

In the case of having a great number of servers in a large
storage system, both the time and space complexities would
increase linearly or even quadratically. It is unavoidable that our
Jingwei would require more time to conduct a feasible migration
strategy. However, it may be unnecessary to incorporate all
servers as our migration candidates. The reason is that the data
migration between the two remote servers would involve signif-
icant network transferring cost. The common solution [36], [37]
is partitioning the storage servers into smaller clusters to confine
the transmission distance. Then, we can perform our data mi-
gration schemes within each cluster, which reduces the network
cost and decreases the algorithm complexities significantly.

VIII. PERFORMANCE EVALUATION

In this section, we empirically evaluate the performance of
our Jingwei strategy using a real-world dataset. We describe
our experimental settings and then present the experimental
results, which show the efficiency of our proposed data migration
strategy over other comparison methods.

A. Experimental Settings

We implement a prototype system of Jingwei, which includes
11 virtual machines (VMs) to evaluate the system performance.
Ten VMs represent the storage servers, which store the allocated
data blocks in schemes derived from different comparison meth-
ods. One VM acts as a file requester, which sends file retrieval
requests to the storage servers according to the files’ heat de-
grees. This VM is also a management node, which maintains
the affiliation information between files and blocks, as well as
the mappings from each block and to their storage servers. In
our prototype system, the VMs are deployed on a Desktop PC,
equipped with a 3.50 GHz Intel(R) Core(TM) i9-11900 K CPU
with 8 cores and 64 GB RAM using 500 GB SSD. Each VM is
allocated 4 GB of RAM and 30 GB virtual disk drive, running
Ubuntu Linux 20.04 x64. The CPU cores are shared by all VMs.

Datasets: We use the real-world dataset [38] for the evaluation
to demonstrate the universality of our Jingwei strategy. The
dataset is downloaded from the GitHub website, which consists
of the zip-compressed source codes of 403 randomly selected
projects on some hot topics, such asAtom [39] andAzure [40].
Each project contains several historical versions of the source
code file, with a great number of duplicate chunks between them.
There are in total 55,797 files in this dataset, with a maximum
size of 30.65 MB and a minimum size of 1B. We partition the files
using the variable-size chunking approaches [6]. The average
block size is 3.87 KB, and the global deduplication ratio (the
ratio of saved space after data deduplication to the original space)
is 55.79%.

Comparison Methods: To illustrate the performance of Jing-
wei more comprehensively, we consider three other comparison
methods in this paper.
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� Goseed [7], which provides an optimal solution with the
commercial optimizer to minimize the extra space occu-
pation in the migration process. However, it can only be
applied to migrate files to a single empty server.

� SARA (Service-Aware Replication Allocation scheme),
where replicas are generated for hotter files [14] and are
allocated to the servers with more available service ca-
pabilities [15]. We assign the migration status of Jingwei
to SARA directly to compare its performance in the file
replication stage.

� Random, which is the baseline of all these comparisons. In
the Random method, files are ranked randomly and then
migrated/replicated to a randomly chosen server.

We also compare Jingwei_ILP for the first scenario, which
exhibits the optimal migration strategy derived from the ILP
solver. In addition, the optimal result of our heuristic algorithms,
Jingwei_opt, is also compared. It detects content similarity
through pair-wise fingerprint checking, but not membership
queries on the bit arrays. Thus, Jingwei_opt avoids the false
positives caused by the BF-based hash mappings.

Metrics: First, we verify the performance of space efficiency
rationale with the Data Replication Ratio (DRR), which is
defined as the ratio between the extra space cost attached by
file moves and the initial space occupation at the source server.
The second comparison metric is the Replica Heat (RH), which
indicates the total heat degree of the file replicas. A high value
of RH indicates that more replicas are generated for hot files,
which is vital for the service adaptability. Furthermore, RS-ratio
is a comprehensive index of the DRR and RH, which reflects
the amount of RH per extra storage unit in the file replication
stage. This quantifies the performance balance between the
space efficiency and the service adaptability. The Migration
Count (MC) and Replication Count (RC) are also considered
for counting the file migration and replication when a certain
amount of data has been migrated from the overload source
server.

To evaluate the performance of our incremental adjustment
strategies, we consider the Data Unavailable Ratio (DUR),
which is triggered by the heat variance, so that the total available
service capacities cannot meet the frequent file requests. We also
emphasize the adjustment cost, which is mainly composed of
the extra space cost and bandwidth consumption. We continue
to utilize the DRR metric to represent the extra space cost, and
we newly define Extra Migration Volume (EMV) to represent
the bandwidth consumption.

For our prototype system, we evaluate the file retrieval behav-
iors. The file requests are sent with different frequencies based
on their heat degrees. Using the iPerf and ping tools, we
test the bandwidth between these VMs is 543 Mbps, and the
network latency is 0.275 ms on average over ten rounds. Then,
we evaluate the file Retrieval Throughput and Retrieval Delay
for different comparison methods.

Parameter Setting: We first unzip and partition the files in the
dataset into variable-size blocks. Each block is represented by its
fingerprint using MD5 [31]. We sketch the data blocks at each in-
volved server using Bloom filters withkBF = 2 andd = 100000
by default. We employ the widely utilized Zipf distribution

to govern the file popularity in heat degree generation [41],
where the concentration degree of data access is set as 1. We
randomly allocate the files to 10 servers. The storage and service
capacities of the migration targets are set to twice the initial
usage. We set λ = 0.4 and κ = 0.02 to unify the RC value as 4
for all comparison methods in the first scenario. For the second
scenario, we set κ = 5 by default, and the replication count
(RC) follows that of Jingwei for other comparison methods. The
unity of RC facilitates the performance comparisons at the file
replication stage.

B. Numerical Results

We conduct large-scale experiments to test the respective
performance of Jingwei and its competitors in two migration
scenarios, separately. The performance with heat variation is
also exhibited.

1) Performance in the First Scenario: For the first scenario,
we only utilize one project in the dataset. The reason is that
the performance advantages of Jingwei and its competitors are
more significant for a dataset wherein the files are pretty similar
with numerous shared blocks. Otherwise, the migration can be
viewed as separating the two irrelevant sub-datasets without
data-sharing dependencies. We utilize the Azure project [40],
there are 20 files with 16,328 unique blocks, where each file
contains a maximum of 3,635 blocks and a minimum of 18
blocks.

Fig. 7 depicts the performance of Jingwei and its competitors
in the first scenario. The performance of data replication ratio
(DRR) is exhibited in Fig. 7(a). The data volume when DRR=1
represents the original file volume in the source server without
data deduplication. Jingwei consistently achieves a similar DRR
compared with Jingwei_ILP and Jingwei_opt, while only about
6% extra DRR is triggered compared with the Goseed method.
This verifies the space efficiency of Jingwei, which does not
cause much additional space overhead during data replications.
By contrast, SARA and Random, which construct file replicas
without consideration of data deduplication, lead to 2× and even
3× space occupation in the worst cases.

Fig. 7(b) reflects the replica heat (RH) and Fig. 7(c) exhibits
the RS-ratio. The Jingweis perform well in both of these two
metrics. The reason is that, Jingweis prefer to replicate files
with a relatively high heat degree, and allocate the replicas to the
server with high similarity. The SARA method, although achiev-
ing higher RH through replicating the hottest files, performs
unsatisfactorily in terms of the RS-ratio (around 101.7 times
lower than that of Jingwei). It is because the replica allocation of
SARA considers just the available service capacities, but ignores
the potential space reduction with deduplication technologies.

The migration and replication times are finally counted in
Fig. 7(d). The migration count (MC) is represented by his-
tograms with patterns, while the replication count (RC) is not.
The Goseed method only considers the migration stage, thus
with the RH always being zero. We adjust parameters λ and κ
to align the RC of the comparison methods as 4, which avoids
the performance impact caused by the RC variance. When the
migration percentage is 25%, about 25% (5/20) file replicas are
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Fig. 7. The performance with different migration percentages in the first scenario.

Fig. 8. The performance with different migration percentages in the general scenario.

TABLE III
THE PERFORMANCE OF JINGWEI WITH DIFFERENT λ (THE ADJUSTING

PARAMETER IN THE OPTIMIZATION OBJECTIVE)

extra generated in Jingwei_ILP, with only 5.7% of the extra
space cost compared with Goseed (as shown in Fig. 7(a)). This
exhibits that Jingweis conduct space-saving file replications. The
MCs of our heuristic methods (Jingwei and Jingwei_opt) are
sometimes higher than the optimal Jingwei_ILP. The reason is
that the space-efficient data migration of the heuristic methods
may not be globally optimal. Some extra migration of similar
files may increment the migration count, but fortunately, it has
little benefit on other metrics. It is because the extra migrated
files may have numerous shared blocks with their targets.

Table III shows the performance of Jingwei with different λ

when the migration percentage is fixed as 0.35. Note that, λ is an
adjusting parameter to adapt to different optimization tendencies
for the space efficiency and the service adaptability rationales.
With the increase of parameter λ, the derived data migration
schemes would tend to enhance the service adaptability ratio-
nale. To be specific, the RC and DRR increase gradually, which
indicates that more file replicas are generated to apportion the
file requests.

2) Performance in the Second Scenario: For the general
migration scenario, all files in the dataset are initially randomly

allocated to ten servers to construct the original storage states.
Goseed and Jingwei_ILP are not compared in this subsection,
because they are only applicable to the first migration scenario.
The migration count (MC) of SARA follows that of Jingwei.
The reason is that the SARA method does not involve the
migration stage. We assign the migration states of Jingwei to
SARA directly, so as to test its performance in replica generation.

Fig. 8 illustrates the evaluation performance for the general
scenario. Specifically, in Fig. 8(a), Jingwei_opt and Jingwei
achieve the DRR with a negative value, which means that the
total space occupation dramatically decreases after data migra-
tion and replication. This benefits from the similarity-aware
file allocation and verifies the space efficiency of our Jingweis.
Furthermore, the saved space progressively increases as the mi-
gration percentage grows up. When 45% of data migrates, about
26.3% of the occupied space can be freed from the source server.
However, the methods without deduplication incorporated, i.e.,
SARA and Random, lead to several times storage occupation.
Fig. 8(b) illustrates that SARA outperforms others in terms of
the replica heat (RH). The reason is that it chooses the hottest
files to replicate, which rises the average RH for each replica.
Jingwei’s RH follows that of SARA because it considers both the
heat degree and the extra space cost that each replica requires.

Jingwei achieves absolute advantages in RS-ratio, as shown
in Fig. 8(c). Specifically, the RS-ratio of Jingwei is around 104

times higher than that of SARA and Random. The reason is that
the replica allocations of the latter two methods fail to realize
the space reduction through similarity detection between the
migrated files and data in the candidate targets. Fig. 8(d) further
illustrates the MC performance in the general scenario. When
M = 5%, the migration task of Jingweis can be accomplished by
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TABLE IV
THE PERFORMANCE OF JINGWEI WITH DIFFERENT κ (THE UNIT-HEAT VALUE

THAT CONTROLS THE NECESSITY OF FILE REPLICATION)

TABLE V
THE PERFORMANCE OF JINGWEI WITH DIFFERENT SAMPLE RATIOS

migrating four files (log10 4 = 0.6), while the Random method
requires more than 400 times. The reason is that Jingweis tend
to migrate files that release more space from the source server,
which accelerates the migration process. The MC of Jingwei is
slightly higher than that of Jingwei_opt. This phenomenon is
caused by the potential false positives of Bloom filters. Such
false positives may disorder the file ranking in Algorithm 1. We
do not compare the RC performance in the general scenario. The
reason is that the RCs are all kept as a constant value for these
comparison methods.

The performance of Jingwei with different κ values is ex-
hibited in Table IV. The value of κ exploits the necessity of
file replication. With a smaller κ, more file replicas would be
generated to amortize the frequent file requests. As κ decreases
from 7 to 3, the RC grows up from 16,474 to 17,822, and the RH
increases from 303.04× 103 to 321.17× 103. These indicate
that more replicas are generated with a small κ, especially for
hot files. The smallest DRR and largest RS-ratio are achieved
when κ = 7. The reason is that files are replicated in a priority
of high heat degree and less extra space cost. The first few
generated replicas provide the highest efficiency in space saving
and request apportionment.

Table V shows the performance of Jingwei with different
sample ratios when the migration percentage is fixed at 0.35.
Note that, the sampling technologies can be further assembled to
alleviate the computational overhead, especially for real-world
storage systems with a large number of variables and constraints.
One notable change is that the MC increases gradually with
fewer blocks being sampled for similarity detection. The lead-
ing cause is that the sampling technologies would weaken the
accuracy in file rankings. To be specific, the sampled blocks in
files and servers are chosen randomly, and the chosen blocks in
files may not be sampled at their optimal targets. This retards the
migration process with less space being freed from the source
in each migration.

TABLE VI
THE PERFORMANCE OF JINGWEI WITH DIFFERENT BF LENGTHS

Fig. 9. The adjustment cost in the first scenario.

Thereafter, the performance of Jingwei with different BF
lengths is exhibited in Table VI, with the migration percentage
being fixed as 0.35. As the BF length grows from 12,500 to
400,000, the MC is abbreviated from 1232 to 35. Note that, the
MC of Jingwei_opt is exactly 35 under the same conditions. This
declares that the impact of false positives can be alleviated with
a larger bit array. The metrics are impacted seriously when the
BF length is set as 12,500. The reason is that a large number of
false positives appear in similarity detection, when data blocks
are mapped to a Bloom filter with this short length.

3) Performance With Heat Varies: To test the performance
with heat varies, we fix the migration percentage as 0.35 and
change the heat degree up or down by [1.2, 1.5, 2, 2.5, 3,
3.5, 4, 5] times randomly. We evaluate the data unavailable
ratio (DUR) against heat variation to illustrate its impact on
file access. Note that, we do not exhibit the DUR value for
the first scenario, because the ILP formulation constraints the
occupation of the service capacities. Then, all file requests can be
responded to within the service capabilities. We also present the
adjustment cost (DRR and EMV) to ascertain the effectiveness of
our adjustment strategies. The comparison methods include: 1)
the Jingwei method without incremental adjustments, which is
denoted by No_incre; 2) the Jingwei method integrated with the
incremental adjustments, and the variance threshold TΔ varies
from 100% to 300%. For the incremental adjustments, no action
will be taken until the heat change (Δ) reaches its threshold TΔ,
and the adjusting stops when the heat variance falls below the
threshold.

Fig. 9 illustrates the data replication ratio (DRR) and extra
migration volume (EMV) of our incremental adjustments for
the first scenario. We can observe that when the storage system
suffers from a drastic heat change, for example, with 250% or
300%, the incremental method with a larger TΔ would incur
more block replication and migration per time. The reason is
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Fig. 10. The data unavailable ratio in the second scenario.

Fig. 11. The adjustment cost in the second scenario.

that the significant heat variance would widen the gap between
the original allocation scheme and the recomputed scheme. One
noticeable point lies in that the system storage volume maintains
unchanged when hundreds of data blocks are migrated. It may
be because the extra occupied volume taken up at the migration
target is the same as the released volume from the migration
source.

The data unavailable ratio (DUR) in the second scenario is
exhibited in Fig. 10. All methods experience gradual increments
in DUR when the heat change grows up. This reflects the severe
impact of heat variance on the system performance. The DUR
of the methods with incremental adjustments (TΔ) follows that
of No_incre until the heat change reaches their corresponding
variance threshold. Then our incremental adjustments are em-
ployed to add or delete file replicas adaptively. The method
with TΔ = 100% generates the lowest DUR (always less than
0.3‰) compared to other methods. The reason is that this method
adjusts the file allocations more promptly and thoroughly with
a small variance threshold. On the contrary, when the threshold
is large, e.g., TΔ = 300%, the DUR value is close to that of
No_incre. The reason is that this incremental method works
when the heat variance reaches Δ = 300%, and stops adjusting
when the heat change falls below the threshold. Therefore, the
storage system still undertakes significant heat variance, which
is not conducive to data availability.

Fig. 11 thereafter highlights the adjustment cost for the second
scenario. The DRR for all methods is below 0.3× 10−3, which
is relatively smaller than that of the first scenario. The reason is
that more similar files and candidate servers are involved in the

Fig. 12. The file retrieval throughput and delay.

second scenario, where the adjustment on a small part of data
blocks can change the state of a large number of files. The values
of DRR and EMV are relatively similar in different methods,
and the advantage in methods with a small threshold (TΔ) is
less obvious than that in the first scenario. The intrinsic reason
is that the adjusted schemes are recomputed based on the ILP
technologies for the first scenario, where all methods share the
same recomputed states. A large heat variance would widen the
gap between the original scheme and the recomputed scheme.
However, the adjustments in the second scenario only deal with
the newly appeared heat variance incrementally, leading to indis-
tinctive adjustment cost for methods with different thresholds.

4) Performance of the Prototype System: Finally, Fig. 12
reports the average file retrieval throughput and delay for the
comparison methods. With the request rate increasing from 60
to 300 per minute, the retrieval throughput of all methods de-
creases, while the retrieval delay grows up gradually. The reason
is that the frequent file requests may congest the transmission
links to servers with limited service capacities. The rational
file replication schemes can apportion the requests to different
servers, so that the congestion can be alleviated. To be specific,
the retrieval throughput of our Jingwei strategy can reach up
to 333.5 Mbps when the arrival rate is 180 per minute. It is
12.3% higher than that of the Random method, and 5.2% higher
than that of the SARA method. Furthermore, the rational file
replication of Jingwei decreases the retrieval delay by 5.1%
compared with SARA, and 11.2% compared with Random.
Note that, the performance improvement is realized when the
occupied storage space of our Jingwei is far below that of
others, as shown in Fig. 8(a). This strongly demonstrates that
our Jingwei can retrieve files effectively, even though its storage
space is limited.

In summary, Jingwei realizes an effective combination of
space efficiency and service adaptability, enabling it to generate
replicas for hot files with less extra space cost. To be specific,
Jingwei generates 25% replicas with only 5.7% of the extra
space utilization compared with Goseed. The incremental ad-
justments can handle up to a 250% of heat variance by replicating
around 7% of the original data volume. With the small extra
space cost, the file retrieval throughput of Jingwei can reach
up to 333.5 Mbps, which is 12.3% higher than that of the
Random method.
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IX. DISCUSSION

Several uninvolved aspects of our Jingwei strategy warrant
further discussion. We introduce them from two design stand-
points, which also suggest avenues for future work.

Diverse Migration Policies: We carry out in-depth literature
collection and policy classification on the migration policies in
deduplicated storage systems, including replication cost [7],
[12], fault tolerance [42], [43], migration traffic [44], load
balance [7], [44], [45], and energy consumption [43], [46].

The replication cost is the total size of duplicated blocks
that are created as a result of migrating or replicating files [7],
[12]. The energy consumption is considered to be saved by
reducing data volumes for running large storage systems [43],
[46]. These two policies are in reality the same as our emphasized
space efficiency rationale. As for migration traffic [44], i.e.,
the amount of data that is moved across servers, we think it
is implicitly consistent with our space efficiency rationale. The
intrinsic reason is that replicating a block means transmitting this
replica across the network, leading to more migration traffic.

The fault tolerance policy [42], [43] can be enhanced by
generating data replicas, which has some parallels with our
service adaptability rationale. It is because the generated data
replicas in our work provide the opportunity for block copies
to work when a block suffers from hardware failure or software
crash. Load balance [7], [44], [45] is a major concentration in
distributed storage systems, which often conflicts with our space
efficiency rationale. To be specific, the system’s space cost can be
minimized by mapping all files to a single server, which enables
detection and deletion of all duplicate blocks. However, this
approach results in poor load balancing as only one server is
utilized while others remain under-utilized. We only confine the
server load below the capacity constraints in this paper. The
reason is that the strictly balanced server load may miss the
opportunity of generating file replicas with less extra space cost.

These guideline policies more or less provide insight to
improve the system performance for the deduplicated storage
systems. We believe the incorporation or trade-off of these
policies provides an exciting avenue for future work.

Extended Scenarios: In this paper, we focus on a class of
deduplication storage systems that holds all blocks of a file on
one server [3], [5], [7], [24]. In such a distributed setting with
multiple storage servers, every incoming file is allocated to a
single storage server only. This enables a single disk access
for block lookup per file instead of per block. Jingwei can also
be extended to handle the scenarios where blocks of a file are
distributed across servers. In such a scenario, the shared blocks
are not necessary to be copied at both the source server and
the target server during data migration. The reason is that these
shared blocks can be retrieved from any server in the system,
without the constraint of the server-level file integrity. This is
essentially a special case of the problem presented in our work,
which can be solved by releasing some constraints of Jingwei.

Specifically, we can modify the Jingwei strategy by ignoring
the affiliation relationships between files and blocks, and each
block is set as the unit of migration and replication. Specifically,
in the first-phase data migration process, when the source server

is overloaded, the blocks in the source server can be migrated
out to the underweighted servers until the pre-defined migration
percentage is reached. The migration priority can be defined
according to the current storage and service burden of the source
server. For the second-phase data replication, we first calculate
the heat degree of each block, which is the heat sum of all its
affiliated files. Then, we can directly replicate the popular blocks
to the underweighted servers. Which blocks to replicate and how
many replicas for each chosen block can refer to Algorithm 2,
i.e., the heat-aware data replication.

X. CONCLUSION

In this article, we report Jingwei, an efficient and adaptive data
migration strategy to migrate and replicate files to the proper
servers. This contributes to the space efficiency and service
adaptability rationales simultaneously in the deduplicated stor-
age systems. We first design the migration strategy based on
the ILP technologies when only one empty migration target is
allowed. We further extend the problem into the general scenario,
wherein multiple non-empty servers are available for migration.
We solve the general migration using effective heuristics based
on Bloom filters. To alleviate performance degradation caused
by heat variance, we further propose incremental adjustment
strategies to adjust the number of file replicas and their locations
in an incremental manner. The trace-driven experiments show
that our solution can significantly lessen the extra space cost in
migration while increasing the replicas for hot files. When heat
varies, our adjustment strategies can guarantee data availability
with a small adjusting cost.
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