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Detailed Modeling of Heterogeneous and
Contention-Constrained Point-to-Point
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Andreas Thune , Sven-Arne Reinemo, Senior Member, IEEE, Tor Skeie, and Xing Cai

Abstract—The network topology of modern parallel computing
systems is inherently heterogeneous, with a variety of latency and
bandwidth values. Moreover, contention for the bandwidth can ex-
ist on different levels when many processes communicate with each
other. Many-pair, point-to-point MPI communication is thus char-
acterized by heterogeneity and contention, even on a cluster of ho-
mogeneous multicore CPU nodes. To get a detailed understanding
of the individual communication cost per MPI process, we propose
a new modeling methodology that incorporates both heterogeneity
and contention. First, we improve the standard max-rate model
to better quantify the actually achievable bandwidth depending
on the number of MPI processes in competition. Then, we make
a further extension that more detailedly models the bandwidth
contention when the competing MPI processes have different num-
bers of neighbors, with also non-uniform message sizes. Thereafter,
we include more flexibility by considering interactions between
intra-socket and inter-socket messaging. Through a series of ex-
periments done on different processor architectures, we show that
the new heterogeneous and contention-constrained performance
models can adequately explain the individual communication cost
associated with each MPI process. The largest test of realistic
point-to-point MPI communication involves 8,192 processes and
in total 2,744,632 simultaneous messages over 64 dual-socket AMD
Epyc Rome compute nodes connected by InfiniBand, for which the
overall prediction accuracy achieved is 84%.

Index Terms—Intra-node communication, performance mode-
ling, point-to-point MPI communication.

I. INTRODUCTION

MODERN platforms of parallel computing are heteroge-
neous at least with respect to the interconnect. Even
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on a system purely based on multicore CPUs, the connectivity
between the CPU cores has several layers. The cores that belong
to the same CPU socket can communicate more efficiently
than those between sockets, because the inter-socket memory
bandwidth is lower than the intra-socket counterpart. At the
cluster level, between any pair of compute nodes, the com-
munication speed is even lower and can depend on the actual
location of the nodes on the network setup. All these levels
of interconnect heterogeneity will translate into vastly different
values of the effective latency and bandwidth of point-to-point
MPI communication.

Another complicating factor for many-pair, point-to-point
MPI communication on today’s parallel platforms is the po-
tential competition between different MPI processes. This is
because each CPU socket can, if needed, support a large number
of concurrent MPI processes. Contention arises when multiple
pairs of sending-receiving processes simultaneously commu-
nicate over the same connection. Such contention may exist,
in different magnitudes, over the entire network. Moreover,
the competition situation is often dynamically changing; for
instance, an MPI process pair communicating a small message
may complete before the other MPI process pairs, resulting in a
reduced level of contention.

This paper aims to detailedly model the per-process over-
head associated with realistic, many-pair, point-to-point MPI
communication. We want to improve the state-of-the-art quan-
titative models of point-to-point MPI communication by a new
methodology for modeling the bandwidth contention due to a
large number of MPI processes that compete against each other.
Here, communication can exist on different levels: intra-socket,
inter-socket and inter-node. In addition, we target the real-world
situation where different MPI processes can have different num-
bers of neighbors to exchange data with, while the size of each
message is also highly non-uniform. One typical example of
such a heterogeneous scenario arises from numerically solving
a partial differential equation (PDE) over an irregular solution
domain. The first step of parallelizing a mesh-based PDE solver
is to partition an unstructured computational mesh, which covers
the irregular solution domain, into a desirable number of subdo-
mains each assigned to an MPI process. The usual partitioning
result is that the number of the nearest neighbors varies from
process to process, and so does the size of each MPI message.

Specifically, we will propose a new modeling methodology
that quantifies both heterogeneity and contention. At the same
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time, we want to inherit a level of simplicity from the funda-
mental postal model [1], [2] that describes a single pair of MPI
processes, and the successor max-rate model [3]. The elegantly
simple postal model relies on only two parameters to quantify
the cost of point-to-point communication, i.e., a start-up latency
τ and a bandwidth value BW . The max-rate model lets BW
depend linearly on the number of competing MPI processes
while limited from above by a maximum bandwidth value,
which is prescribed as the third parameter. Our new performance
models are also based on a fair competition among the MPI
processes, but the value of BW will depend dynamically on
the actual number of competing MPI processes and how these
processes affect each other across two specific levels: intra-
socket and inter-socket. We focus our modeling and experiments
on large messages, that use the rendezvous MPI protocol. The
contributions of our work are as follows:
� We extend the osu_bibw micro-benchmark of MVA-

PICH [4] to easily tabulate the various τ and BW values,
both depend on the connection type and the latter is also a
function of the number of competing MPI processes. These
tabulated values serve as a characterization of the commu-
nication performance of a heterogeneous interconnect.

� We improve the accuracy of the max-rate model [3] for the
case of multiple MPI process pairs concurrently exchang-
ing equal-sized messages. Specifically, the tabulated BW
values replace an often idealized relationship between the
achievable bandwidth and the number of competing MPI
pairs.

� We propose a “staircase” strategy to detail the contention
between many MPI processes with varying numbers of
neighbors and message sizes, when competing over a single
level of interconnect.

� We extend the single-level “staircase” modeling to mixed-
level “staircase” modeling that also quantifies the interac-
tion between two particular communication levels: intra-
socket and inter-socket.

The remainder of the paper is organized as follows. Section II
introduces a new bi-directional multi-pair micro-benchmark,
which can be used to pinpoint the achievable bandwidth as a
function of the competing send-receive pairs. Section III is de-
voted to a new “staircase” modeling strategy that can be adopted
to handle the various types of heterogeneity, more specifically,
non-uniform message size, a varied number of messages per
MPI process, and the interaction between intra-socket and inter-
socket communication. Section IV tests the “staircase” strategy
and the resulting new models in realistic cases of many-pair,
point-to-point MPI communication. Section V places our cur-
rent work with respect to the existing work on modeling MPI
point-to-point communication, whereas Section VI provides
some concluding remarks. The source code that implements the
mixed-level modeling strategy can be found in the appendix,
available online.

II. DETAILING BANDWIDTH CONTENTION

As mentioned above, the postal model [1], [2] provides an
elegant and simple way of quantifying the time needed to pass

a message between a single pair of MPI send-receive processes.
Its formula is as follows:

T (s) = τ +
s

BWSP
, (1)

where the constant parameter τ denotes the start-up latency, s
denotes the size of the MPI message, and the constant parameter
BWSP denotes the communication bandwidth. The subscript
“SP” stands for single-pair and thus highlights the applicability
of the postal model. Experiments (see e.g. [5]) have shown that
this two-parameter model can produce estimates of T (s) that
agree very well with the actual single-message time usages, as
long as the message size s is within the regime of the same
protocol (i.e., short, eager, or rendezvous). It also means that
each protocol is associated with its specific set of τ and BWSP

parameters.
The max-rate model [3] extends the postal model by consid-

ering N competing MPI messages belonging to N send-receive
process pairs. If all the messages are of the same size s, they
will have the same time usage due to a fair competition for the
bandwidth. The simplest formula of the max-rate model is as
follows:

T (N, s) = τ +
N · s

BWMP(N)
. (2)

In the above formula, BWMP(N) is meant to model a shared
bandwidth to be fairly competed among theN messages, and the
subscript “MP” stands for multi-pair. The dependency ofBWMP

on N is considered by the max-rate model in its simplest form
as follows:

BWMP(N) = min (N ·BWSP, BWmax), (3)

where BWmax denotes the upper limit of the achievable com-
munication bandwidth, i.e., a max rate. The existence ofBWmax

illustrates a saturation effect, which applies to both communi-
cation over a network connection and communication through
shared memory.

An extended max-rate model was presented in [6] to consider
variations in the message size and number of messages per
process. It mainly targets inter-node communication

T = M · τ +max

(
stotal

BWmax
,
smax

BWSP

)
. (4)

Here, M is the maximum number of messages per process, stotal

and smax denote, respectively, the total messaging volume per
node and the maximum per-process volume. We note that (4)
only models the slowest process per node.

While the max-rate model is simple to use, it has several weak-
nesses. First, the actual BWMP(N) value may not be linearly
proportional to N before hitting the upper limit BWmax, espe-
cially for intra- and inter-socket traffic. Second, the bandwidth
contention may not be accurately modeled when the processes
have largely varying message numbers and/or sizes. Third, only
the slowest process is modeled by (4), not the earlier finishing
processes.

In the remainder of this section we will improve the max-rate
model with respect to its first shortcoming. This will be achieved
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Algorithm 1: Bi-Directional Multi-Pair Benchmark.
1: P , initial_size, max_size, increase_factor,

num_repeats
2: size = initial_size
3: while size < max_size do
4: if rank < P

2 then
5: for i = 1, . . . ,num_repeats do
6: MPI_Isend(send_data_buffer + i · size, size,

rank + P
2 )

7: MPI_Irecv(recv_data_buffer + i · size, size,
rank + P

2 )
8: end for
9: MPI_Waitall()

10: else
11: for i = 1, . . . ,num_repeats do
12: MPI_Irecv(recv_data_buffer + i · size, size,

rank − P
2 )

13: MPI_Isend(send_data_buffer + i · size, size,
rank − P

2 )
14: end for
15: MPI_Waitall()
16: end if
17: size = increase_factor · size
18: end while

by extending a micro-benchmark of MVAPICH [4]. The other
two shortcomings will be addressed in Section III.

A. A New Micro-Benchmark

We want to pinpoint the actual BWMP values through mea-
surements obtained by a simple benchmark, instead of using
the often idealized formula (3). Specifically, we will adopt a
new “bi-directional multi-pair” micro-benchmark, as described
in Algorithm 1. It is a modification of the osu_bibw bench-
mark of MVAPICH [4]. The new micro-benchmark involves P
processes to form P

2 sender-receiver pairs, each simultaneously
handling two equal-sized messages of opposite directions. The
total number of competing messages is thus P . To avoid the
unwanted side-effect of MPI messages being cached, each rep-
etition of a message is loaded/stored from/to a different location
in a pre-allocated long buffer.

B. Example: Measuring BWMP(N) on Four machines

We have run the bi-directional multi-pair micro-benchmark
(Algorithm 1) on four machines of dual-socket CPUs. The
specific CPU types are: (1) ARM Cavium 32-core ThunderX2
CN9980; (2) ARM 64-core Kunpeng 920-6426; (3) Intel Xeon
26-core Gold-6230; and (4) AMD 64-core Epyc Rome-7742.
OpenMPI v4.0.5 was used as the MPI installation. Compilation
used GCC v10.1.0 with the -03 -march=armv8-a options
on the ThunderX2 and Kunpeng machines, and GCC v10.2.0
with the-03 option on the Intel Xeon and Epyc Rome machines.
On each machine, we measure the time usage for a series

of message sizes in the regime of the rendezvous protocol.1

This is repeated for some chosen numbers of MPI processes.
For each chosen value N , the series of time measurements
(for the different message sizes) undergo a linear regression
to recover the values of τ and BWMP(N) that can be used
in the max-rate model (2) or later in our new models to be
introduced in Section III. On a given machine and for a specific
communication level, the recovered τ values are very similar for
the different choices of N . So we have consistently used the τ
value associated with N = 2 in Table I and later experiments.
We remark that the models and experiments to be presented in
this paper target message sizes in the regime of the rendezvous
protocol. Our modeling approach remains the same for the other
protocols.

The measurement-determined BWMP(N) values for all the
four machines are summarized in Table I, where we also distin-
guish the scenarios of intra-socket and inter-socket. The former
means that all sender-receiver pairs are placed on the same
socket, whereas the latter means that each pair is split across
two sockets. In this table, and also in the remainder of the
paper, the value N denotes the number of active MPI processes
per socket that concurrently receive incoming messages, i.e.,
running the micro-benchmark of Algorithm 1 with P = N for
the intra-socket measurements and P = 2N for the inter-socket
measurements. The reason for this definition ofN is because the
new performance models to be introduced in Section III consider
a socket as the “base unit” when modeling intra- and inter-socket
communications. The BWmax values in Table I are obtained
from running the same number of MPI processes per socket
as the CPU cores. The intra-socket BWSP value is obtained by
running two MPI processes on just one socket, with only one
uni-directional message.

One clear observation from Table I is that the τ measure-
ments associated with the intra-socket and inter-socket cases
confirm that intra-socket MPI communication is faster than
the inter-socket counterpart. Another important observation is
that the intra- and inter-socket BWMP(N) values do not follow
the formula (3) of the max-rate model, clearly demonstrated
in Fig. 1. These tabulated BWMP(N) values will be heavily
used in our new models of Section III that are capable of
handling varying numbers of incoming/outgoing messages per
MPI process, non-uniform size per message, and the interaction
between intra- and inter-socket traffic.

III. NEW PERFORMANCE MODELS OF MANY-PAIR,
POINT-TO-POINT COMMUNICATION

Apart from replacing the max-rate formula (3) with tabu-
lated BWMP(N) values that are determined by the new micro-
benchmark of Algorithm 1, another improvement is to more
accurately model the bandwidth contention when the competing
MPI processes receive largely different volumes. We will thus
develop in this section a new modeling strategy that detailedly

1Time measurements of messages of size in the regime of the short or eager
protocol will produce another set of τ and BWMP(N) values.
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TABLE I
VALUES OF τ (IN μS) AND BWMP(N) (IN GB/S), OBTAINED FROM A LINEAR REGRESSION OF THE TIME MEASUREMENTS OF THE BI-DIRECTIONAL MULTI-PAIR

MICRO-BENCHMARK (ALGORITHM 1) ON FOUR DUAL-SOCKET CPU MACHINES. THE TABULATED BWMP(N) VALUES WILL IMPROVE THE ACCURACY OF THE

MAX-RATE MODEL (2)-(3) FOR INTRA- AND INTER-SOCKET COMMUNICATION

Fig. 1. Comparison between measurement-pinpointed BWMP(N) values (solid curves) and those suggested by the formula (3) of the max-rate model (dashed
curves). The measurements are obtained on four dual-socket CPU machines: ARM Cavium ThunderX2 (top-left), ARM Kunpeng (top-right), Intel Xeon-Gold
(bottom-left) and AMD Epyc Rome (bottom-right).

quantify the per-process time usage for the cases where the
message size is non-uniform and/or the number of neighbors
per process varies. A more general situation is that many MPI
messages of various sizes are concurrently communicated over
multiple levels of a heterogeneous network. In total three new
models of increasing complexity will be introduced.

A. General Many-Pair, Point-to-Point Communication

First let us define the general situation of many-pair, point-
to-point MPI communication in Algorithm 2. More specifically,
MPI process with rank i will simultaneously receive M in

i mes-
sages from M in

i different neighbors. Each process thus has a

list of neighbor identities {neighin
j }M

in
i −1

j=0 . The neighbors can
be of mixed types, i.e., some may reside on the same socket

as process i, others may reside on a different socket but inside
the same compute node, whereas the rest may reside on other
compute nodes. Each process is also assumed to send M out

i

outgoing messages to M out
i neighbors (can be different from the

M in
i “inward” neighbors). All the messages can be of varying

sizes, and the sizes of the “inward” and “outward” messages do
not have to match. For this purpose, we have for each process

two sets of message sizes {Rsizej}M
in
i −1

j=0 and {Ssizej}M
out
i −1

j=0 .
An example of the resulting sparse communication matrix is
Fig. 2, which involves 16 processes. It should be remarked that
Algorithm 2 describes irregular point-to-point MPI communica-
tions that frequently arise in scientific computations. One such
example can be found in the copyOwnerToAll function of
the DUNE software framework [7], [8], [9], in connection with
parallelizing sparse matrix-vector multiplications.
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Fig. 2. An example communication matrix involving 16 MPI processes. Each
black box represents an MPI message, and the number inside the box is the
message size.

Algorithm 2: Many-Pair, Point-to-Point Communication.

1: On each process i: {neighin
j }M

in
i −1

j=0 , {Rsizej}M
in
i −1

j=0 ,

{neighout
j }M out

i −1
j=0 , {Ssizej}M

out
i −1

j=0

2: for j = 0, . . . ,M out
i − 1 do

3: MPI_Isend(Sbufferj , Ssizej , neighout
j , send_reqj)

4: end for
5: for j = 0, . . . ,M in

i − 1 do
6: MPI_Irecv(Rbufferj , Rsizej , neighin

j , recv_reqj)
7: end for
8: for j = 0, . . . ,M out

i − 1 do
9: MPI_Wait(send_reqj)

10: end for
11: for j = 0, . . . ,M in

i − 1 do
12: MPI_Wait(recv_reqj)
13: end for

B. A Staircase Modeling Strategy

Before developing new performance models of increasing
complexity for quantifying the per-process time usage associ-
ated with Algorithm 2, we need to first introduce a “staircase”
modeling strategy. The purpose is to quantitatively describe the
dynamically changing scenarios of competition, i.e., the number
of competing processes and the available communication band-
width are both dynamic. The following principles are associated
with this modeling strategy:

1) The time needed by process i to complete all its com-
munication tasks is determined by either how soon it can
finish receiving all its M in

i incoming messages, or how
soon all its M out

i outgoing messages are received at the
destinations. The maximum of the two time usages will
apply. The reason for also considering the delivery of the
outgoing messages at the destinations is motivated by the
most common situation that uses the rendezvous protocol
without intermediate buffering, where experiments show
that a sending process cannot complete until all its outgo-
ing messages are delivered.

2) The “expected” order of which the M in
i incoming mes-

sages are received by process i is determined by the sizes
of these messages. (The actual order is stochastic, thus not
modelable.) The smallest incoming message completes
first, followed by the second smallest message, and so
on. The completion time points for the different incoming
messages can be estimated using a staircase strategy,
which will be detailed by formula (9). If theM in

i incoming
messages are of the same size, they are considered to
complete simultaneously, due to fairness.

3) When multiple receiving processes, each with one or more
incoming messages, compete for the same network con-
nection, another staircase principle applies as will be de-
scribed in formula (5). The process with the least amount
of incoming communication will complete first, letting
the remaining processes continue with their remaining
communication. This procedure repeats itself until all the
processes are completed. At all times, the bandwidth is
shared evenly between the still active processes, while the
actually available bandwidth can depend on the number
of concurrently competing processes.

C. Model for One-Level, Single-Neighbor, Non-Uniform
Message Size

The staircase modeling strategy will be first applied to the
scenario of each MPI process having exactly one incoming
message and one outgoing message. The messages sent/received
by the different processes can be of various sizes. For this simple
scenario we consider that all the MPI processes communicate
on the same level, i.e., either all intra-socket, or all inter-socket,
or all inter-node.

To model the per-process time usage, we first group the MPI
processes that share the same bandwidth, i.e., the processes
that reside on the same socket for the level of intra-socket
communication, or the processes on one socket that share the
same inter-socket bandwidth, or the processes that reside in one
compute node that share the same inter-node bandwidth. We let
N denote the number of processes in a group. The bandwidth
under contention is characterized by a set of pre-tabulated val-
ues of BWSP, BWMP(2), . . ., BWMP(N), as well as a latency
constant τ .

Modeling of the per-process time usage will start with sorting
the N processes of each group with respect to the size of the
per-process single incoming message: s0 ≤ s1 ≤ . . . ≤ sN−1.
Then, the per-process time usage Ti can be estimated as a
“staircase,” more specifically

trecv
0 =

N · s0
BWMP(N)

,

trecv
i = trecv

i−1 +
(N − i) · (si − si−1)

BWMP(N − i)
, i = 1, 2, . . . , N − 1,

(5)

Ti = τ +max
(
trecv
i , tsend

i

)
. (6)

The recursive formula in (5) accounts for a decreasing degree
of bandwidth contention in the form of a staircase, when more
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Fig. 3. Single-neighbor, intra-socket messages on an ARM Cavium Thun-
derX2 CPU. The experiment involves six processes exchanging messages bi-
directionally in three pairs. The measured times and model estimates are plotted
with dotted and solid lines against the “middle” message size s. Pairs 0, 1 and
2 exchange, respectively, 2 s, s and s

2 bytes of data.

and more processes complete. Also, we have used BWMP(1) =
BWSP. In (6), tsend

i denotes the time needed for the outgoing
message of process i to be delivered on the destination process
with rank k = neighout

i (see Algorithm 2), which is considered
the same as the receiving time trecv

k on process k. We note that
the time usage model in (5)-(6) is only valid for single-message
per-process communication, but it can be extended to account
for multiple message sources and destinations per process. This
will be covered in Section III-D below.

C. Verification example: As the verification experiments for
this new model, as well as for verifying the other new perfor-
mance models later, we have always run a benchmark code
that implements Algorithm 2. (The total number of MPI pro-
cesses, the number of neighbors per process and the sizes of
the messages may differ from experiment to experiment.) More
specifically, each experiment executes Algorithm 2 ten times
and the average time usage per iteration is recorded individually
for each MPI process.

We have tested the new model (5)–(6) by quantifying the
per-process time usage of 6 MPI processes running on one
ARM Cavium ThunderX2 processor (all the messages are intra-
socket). The 6 processes form three sender-receiver pairs, where
each pair exchanges the same amount of data in the two opposite
directions. However, the three pairs simultaneously work with
three different message sizes: s

2 , s and 2 s, with s ranging
between 2 bytes and 2 MB. The actual time usages for the three
pairs are plotted against the model estimates in Fig. 3.

In Fig. 3 we can see that the model estimates agree very
well with the actual time measurements for most of the message
sizes. The model (5)–(6) is able to estimate the time usage of
each individual process. The two processes of each pair have the
same time measurements and estimates, thus we only see three
sets of measurement-estimate curves. For each set, we can also
observe two clear jumps in the time measurements and estimates,
each corresponding to a change in the message protocol, first
between the short and eager protocols, then between eager
and rendezvous. For example, the eager-rendezvous protocol
threshold at 8 KB is clearly visible for the mid-sized pair in the
plot.

D. Model for One-Level, Multi-Neighbor, Non-Uniform
Message Size

Now let us consider a more general situation where each
process communicates with multiple neighbors. For this situ-
ation, we modify the recursive formula in (5) by replacing the
single-message size si with a per-process incoming message

volume Vi =
∑M in

i −1
j=0 si,j , where M in

i denotes the number of
“inward” neighbors for process i, and si,j denotes the size
per incoming message. The MPI processes are organized into
groups as in the previous model. Again, N denotes the number
of processes in a group, and the processes inside the group is
now sorted with respect to V0 ≤ V1 ≤ . . . ≤ VN−1. The time
usage estimate in (5) for single-neighbor, non-uniform message
size communication can now be extended to model the multi-
neighbor situation

trecv
0 =

N · V0

BWMP(N)
,

trecv
i = trecv

i−1 +
(N − i) · (Vi − Vi−1)

BWMP(N − i)
, i = 1, 2, . . . , N − 1,

(7)

Ti = M in
i · τ +max

(
trecv
i , tsend

i,0 , tsend
i,1 , . . . , tsend

i,Mout
i −1

)
. (8)

In (8), tsend
i,j denotes the delivery time needed by each out-

going message, and it equals the time needed by destination
process (with rank neighout

i,j) to receive this message. Since each
process can have multiple incoming messages, we thus need
to “theoretically” pinpoint the individual time points at which
the different messages are received on each destination process.
Take for instance process i. It is the destination forM in

i incoming
messages, and the total receiving time (without the latency
overhead) has been calculated as trecv

i using (7). The following
recursive formula, which is again based on a staircase principle,
will be used to pinpoint the individual time points at which the
M in

i incoming messages are received

trecv
i,0 =

M in
i · si,0
Vi

· trecv
i ,

trecv
i,j = trecv

i,j−1 +
(M in

i − j) · (si,j − si,j−1)

Vi
· trecv

i ,

j = 1, 2, . . . ,M in
i − 1. (9)

In the above recursive formula, we have sorted the M in
i in-

coming messages for process i with respect to the message sizes

si,0 ≤ si,1 ≤ . . . ≤ si,M in
i −1, where

∑M in
i −1

j=0 si,j = Vi. We re-
mark that the completion time point for the largest incoming
message, which is theoretically expected to finish last, equals the
total receiving time needed by process i, i.e., trecv

i,M in
i −1

= trecv
i .

D. Verification Examples: To demonstrate the single-level,
multi-neighbor model (7)-(9), we have conducted three experi-
ments, each consisting exclusively of intra-socket, inter-socket
or inter-node traffic. All the results were obtained on a cluster of
Epyc Rome CPUs, described in Section II-B. For the intra-socket
experiment, a synthetic communication pattern with 64 MPI
processes, spread over two sockets, has been used. As shown
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Fig. 4. Actual time measurement (blue bar), staircase model estimate (green bar) and max-rate estimate (purple dots) for each process on Epyc Rome CPUs. The
intra-socket experiment (a) uses a synthetic communication pattern shown in (b), while the inter-socket (c) and inter-node (e) results are obtained using realistic
communication patterns shown in (d) and (f), respectively.

in Fig. 4(b), each process sends and receives 3 intra-socket
messages of different sizes. The per-process time estimates
are plotted against the actual time measurements in Fig. 4(a).
For comparison, the plot also includes per-process estimates
produced by the extended max-rate model (4), marked as purple
dots. More specifically, we have used the following variation

of (4)

Ti = Mi · τ +max

(
min (Vtotal, NVi)

BWmax
,

Vi

BWSP

)
. (10)

That is, the total messaging volume stotal in (4) is replaced by
min(Vtotal, NVi). The maximum per-process volume smax is
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TABLE II
INFORMATION ON THE VERIFICATION EXAMPLES PRESENTED IN FIG. 4. THE COLUMNS DISPLAY THE COMMUNICATION TYPE, NUMBER OF MPI PROCESSES,

TOTAL NUMBER OF MESSAGES, MAXIMUM/MINIMUM MESSAGES PER PROCESS, TOTAL/MAXIMUM/MINIMUM(NON-ZERO) PER-PROCESS COMMUNICATION

VOLUME, AND THE TOTAL RELATIVE PREDICTION ERRORS FOR, RESPECTIVELY, THE STAIRCASE MODEL AND THE EXTENDED MAX-RATE MODEL (10).

replaced by per-process volume Vi. Note that (10) is the same
as (4) for the slowest process.

The inter-socket experiment uses 64 MPI processes (also
spread over two sockets) that exclusively send and receive
inter-socket messages, see Fig. 4(d). The number of neighbors
per MPI process and the message sizes arise from partitioning a
realistic unstructured computational mesh into 64 pieces, where
the maximum number of neighbors per process is 7, and two
processes have no neighbors. The message sizes also vary con-
siderably. The actual and estimated per-process times by (7)-(9)
are displayed in Fig. 4(c). Max-rate estimates are also included
in Fig. 4(c).

The inter-node experiment involves 256 MPI processes spread
over four nodes, and the results and inter-node communication
pattern are presented in Fig. 4(e)–(f). This example also arises
from a realistic case of partitioning an unstructured computa-
tional mesh. Every MPI process only sends and receives inter-
node messages, where the number of neighbors per process and
the message sizes vary considerably. (The maximum number
of neighbors per process is 58 whereas the minimum is 0.)
The extended max-rate model (4) has been used to estimate the
slowest process time usage per node. Per-process estimates are
not included to prevent cluttering the plot.

To quantify the accuracy of our model (7)–(9), we calculate
a total relative error defined as follows:

Total relative error =

∑P−1
i=0 |T actual

i − Ti|∑P−1
i=0 T actual

i

, (11)

where T actual
i denotes the measured actual time usage on process

i and Ti denotes the per-process model estimate. Using this
error definition, we have calculated the modeling error for the
experiments shown in Fig. 4 to be 11.5% for the intra-socket
experiment, 13.0% for the inter-socket experiment and 12.8%
for the inter-node experiment, see Table II.

As shown in Fig. 4(a)–(c), the extended max-rate model
under-estimates the per-process time for the intra- and inter-
socket scenarios. This is not surprising because it incorrectly
models the bandwidth contention. Thus our one-level model
(7)–(9) gives better accuracy than the extended max-rate models
for intra- and inter-socket traffic. For the third experiment, shown
in Fig. 4(e), our model has approximately the same accuracy as
the extended max-rate model. This result is expected because
two competing MPI processes can already saturate the maximum
inter-node bandwidth on this system. A more elaborate model
of the bandwidth contention thus does not pay off.

E. Model for Mixing Intra- and Inter-Socket Messages

The two new models (5)–(6) and (7)–(9) can be used to
quantify the per-process time usage when all the point-to-point
communication happens on one level. However, communica-
tions that concurrently take place on different levels can affect
each other. We will thus develop a third model to handle a
mixture of intra-socket and inter-socket (intra-node) messages.
This is important in practice because point-to-point MPI com-
munications on these two levels are particularly subject to the
bandwidth contention, which is in essence the contention for the
shared memory bandwidth.

The main idea is that the available communication bandwidth,
which is to be shared among N competing processes, is neither
the pure intra-socket BW on

MP(N) value nor the pure inter-socket
BW off

MP(N) value. For process i, its achievable bandwidth will
depend on the ratio between these two traffic types, more specif-
ically

BWmix
MP (N, θi) =

θi
N

·BW on
MP(N) +

1− θi
N

·BW off
MP(N),

θi =
V on
i

V on
i + V off

i

, (12)

where V on
i and V off

i denote, respectively, the total intra- and
inter-socket incoming volumes on process i. To model the per-
process receiving time usage trecv

i , when intra- and inter-socket
traffic is mixed, we start with dividing all the MPI processes
into groups based on which socket they reside on. As in the
two preceding models, N denotes the number of processes in
a group. The challenge now is that we can no longer easily see
beforehand the exact order in which the processes will finish
receiving their incoming traffic. This is due to a more dynamic
competition for the available bandwidth. We will thus adopt a
modeling algorithm that is based on yet another staircase strategy
consisting of N steps, where in each step we can find out, “on-
the-fly,” which process will be the next one to finish.

For step k = 0, 1, . . . , N − 1 :

Find an unfinished process q that gives

tkstep = min
i

V on
i − V on,recv

i + V off
i − V off,recv

i

BWmix
MP (N − k, θi)

; (13)
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Fig. 5. Plot (a) shows the actual time (blue) and model estimate (green) for an experiment on the dual-socket ThunderX2 machine using 48 processes (evenly
spread over two sockets), with the communication pattern shown in plot (b). Plot (c) shows the actual time and model estimate for an experiment on the dual-socket
Kunpeng machine using 64 processes (evenly spread over two sockets). In this experiment each process sends and receives three messages of a varying size. The
amount of on- and off-socket traffic each process receives is displayed in plot (d).

Compute trecv
q =

k∑
�=0

t�step; (process q finishes after step k)

(14)

Compute Tq = M in,on
q · τ on +M in,off

q · τ off

+max
(
trecv
q , tsend

q,0 , t
send
q,1 , . . . , t

send
q,M out

q −1

)
; (15)

For all unfinished processes:

V on,recv
i + = tkstep · θi ·BWmix

MP (N − k, θi); (16)

V off,recv
i + = tkstep · (1− θi) ·BWmix

MP (N − k, θi). (17)

In the above model, we have used V on,recv
i and V off,recv

i to
record the accumulated volumes of intra- and inter-socket data
received so far on process i. The values of V on,recv

i and V off,recv
i

are increased during each step using (16)–(17). After each step, a
process q will finish, as expressed by (13)–(14). On each process,
its individual ratio θi remains the same throughout the entire
process. A source code that implements the above mixed-level
model can be found in the appendix, available in the online
supplemental material.

E. Verification examples: We illustrate the mixed intra/inter-
socket model (12)–(17) with two simple examples, one using the
dual-socket ThunderX2 machine and the other using the dual-
socket Kunpeng machine (see Table I in Section II-B). In the
first experiment we use in total 48 processes, where 32 processes
(16 on each socket) send and receive intra-socket messages and
the remaining 16 processes (8 on each socket) send and receive
inter-socket messages. The results are presented in Fig. 5(a), and
the communication pattern is presented in Fig. 5(b). The plot
in Fig. 5(a) includes actual per-process time measurements as
blue bars and the staircase model estimate as green bars. Notice
that the mixed intra/inter-socket model correctly predicts that
the off-socket processes complete after the on-socket processes.
Using the error metric defined in (11), the total relative error is
found at 6.6% for the staircase estimate.

In the second experiment, we use 64 processes spread over
two Kunpeng sockets. The process connectivity is the same as
shown in Fig. 4(b), but this time we deliberately “reshuffle” the
process mapping (by the OpenMPI option-map-by socket)
to incur a mixture of intra- and inter-socket communication. The
per-process message sizes and types are displayed in Fig. 5(d).
The actual time measurements and staircase model estimates are
displayed in Fig. 5(c). The resulting total relative error is 3.6%.
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TABLE III
EXPERIMENTS WITH REALISTIC COMMUNICATION PATTERNS ON THUNDERX2, KUNPENG, XEON-GOLD AND EPYC ROME. THE RESULTS ARE OBTAINED ON ONE,
TWO AND FOUR NODES, USING UP TO 256 PROCESSES ON THUNDERX2, UP TO 512 PROCESSES ON KUNPENG AND EPYC ROME, AND UP TO 208 PROCESSES ON

XEON-GOLD. THE TABLE DISPLAYS THE TOTAL NUMBER OF MESSAGES (
∑

M), MAX PER-PROCESS MESSAGES, TOTAL COMMUNICATION VOLUME (IN MBS),
THE ON-SOCKET (INTRA-SOCKET), OFF-SOCKET (INTER-SOCKET) AND INTER-NODE PERCENTAGES OF THE TOTAL VOLUME, AND THE TOTAL RELATIVE

PREDICTION ERROR

IV. REALISTIC TESTS

So far, we have mostly used synthetic experiments, with
the only exception being those shown in Fig. 4(c)–(f). In this
section, we will apply the new performance models to realistic
communication patterns.

A. Mixing Intra-Node and Inter-Node Messages

The most general point-to-point MPI communication can
simultaneously take place at all the levels: intra-socket, inter-
socket and inter-node. Our approach is to use the one-level
model (7)–(9) for estimating the inter-node cost per process as
T inter−node
i , whereas the mixed-level model (12)–(17) is used

for estimating the mixed intra/inter-socket cost as T intra−node
i .

The total time per process is given by

T total
i = T inter−node

i + T intra−node
i . (18)

The above model of total time cost assumes that the intra-node
and inter-node communication tasks cannot proceed simultane-
ously, whereas the intra-socket and inter-socket messages can
compete for the same memory bandwidth (while dynamically
affecting each other). We remark that summing up the inter-node
costs with the intra-node costs is the same approach as adopted
in [6].

B. Realistic Communication Patterns

For realistic communication patterns, we have adopted some
examples of partitioning of realistic 3D unstructured meshes that
have been used for reservoir simulations [10], [11], [12]. This is
in connection with an MPI parallelization of a reservoir simu-
lator, where Algorithm 2 needs to be repeatedly executed when
numerically solving the involved partial differential equations.
We refer the reader to [12] for the details. Given a decomposition
of the mesh, based on a specified number of MPI processes,
we can create the corresponding communication pattern of the
irregular point-to-point MPI communication operations. Each
MPI message is classified as on-socket, off-socket or inter-node.

Fig. 6. One example of realistic per-process communication volumes when
using 128 MPI processes spread over two compute nodes (with four sockets in
total).

C. Small-Scale Experiments

To test the performance model (18) on realistic communica-
tion patterns, we compare the per-process execution times of
Algorithm 2 with the model estimates when running different
numbers of MPI processes on four computing platforms: Thun-
derX2, Kunpeng, Xeon-Gold and Epyc Rome (see Table I in
Section II-B), using up to four compute nodes. One realistic
example of per-process communication volumes can be seen in
Fig. 6.

Table III shows that the performance model (18) achieves
good prediction results. The total relative error ranges from 7.5%
to 18.9% on ThunderX2 and Kunpeng, from 12.2% to 15.6% on
Xeon-Gold, and from 9.3% to 14.3% on Epyc Rome. A more
detailed comparison for two ThunderX2 and two Kunpeng nodes
is presented in Fig. 7. Here, the per-process execution time and
model estimate are displayed in bar plots. In Fig. 7(a), execution
times and model estimates for 128 processes on two ThunderX2
nodes are displayed, while the plot in Fig. 7(b) displays the
timing results and model estimates for 256 processes on two
Kunpeng nodes. We can observe good correspondence between
the model estimates and execution times for most cases.
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Fig. 7. The per-process execution times (blue bars) and model estimates (green bars) for two realistic communication patterns on, respectively, two ThunderX2
nodes (a)–(b) and two Kunpeng nodes (c)–(d).

D. Large-Scale Experiments

We have also tested our model on the Betzy supercom-
puter [13], which is a BullSequana XH2000 system with in toal
1344 compute nodes. Each compute node has two 64-core AMD
Epyc Rome CPUs for a total of 172,032 CPU cores. The system
uses an Infiniband HDR 100 network connected in a Dragonfly+
topology [14], which consists of 14 groups each with 96 nodes.
The Dragonfly+ topology improves scalability over the original
Dragonfly, while maintaining the cost benefits when compared
with the Fat-tree topology [15]. The Dragonfly+ topology also
provides full bisection bandwidth for intra-group communica-
tions, but inter-group communications are oversubscribed and
require the use of non-minimal routing to achieve good per-
formance. This means that the Betzy system will see excellent
inter-node communication for MPI processes running inside a
single group, but performance may suffer with regards to both
bandwidth and latency when the MPI processes are spread across
two or more groups, depending on the overall network load.

The prediction accuracy of our model (18) has been tested
on Betzy using communication patterns that include a larger
proportion of inter-node messages arising from partitioning a
large reservoir mesh that is ten times larger than that used for
the experiments on ThunderX2, Kunpeng and Xeon-Gold in

Section IV-C. Fig. 8 shows a breakdown of the per-node com-
munication volumes for this large case when being partitioned
into 1024 and 8192 subdomains, using 8 and 64 compute nodes
on Betzy, respectively.

From Fig. 8 we can observe that the communication patterns
attained by partitioning the large mesh result in a majority of on-
socket communication. However, we also notice that there is a
significant amount of off-socket and inter-node communication.
The model prediction accuracy for our large-scale Epyc Rome
experiments is presented in Table IV. In this table, we include
results attained on 4 to 64 nodes. In the scenario of 64 nodes, the
MPI processes are distributed (unevenly) across two Dragonfly+
groups in order to enforce non-uniform network connectivity
and test performance accuracy when both inter- and intra-group
communications are present. The total relative prediction error
displayed in Table IV ranges from 12.2% to 20.9%, with the
error being 16.2% for 8192 processes on 64 nodes.

V. RELATED WORK

For a long time, the de facto standard for analyzing the
communication performance of parallel systems was the postal
model [1], [2]. This two-parameter model has the benefit of being
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Fig. 8. Per-node communication volumes when partitioning a realistic reservoir mesh into 1024 and 8192 subdomains on 8 and 64 AMD Epyc Rome nodes.

TABLE IV
STUDY OF PER-PROCESS MPI OVERHEAD WITH REALISTIC COMMUNICATION PATTERNS ON A CLUSTER OF AMD EPYC ROME NODES. THE ROWS SHOW,

RESPECTIVELY, THE NUMBER OF MPI PROCESSES (NODES), TOTAL NUMBER OF MESSAGES, MAXIMUM PER-PROCESS NUMBER OF MESSAGES, TOTAL

COMMUNICATION VOLUME, MAXIMUM PER-PROCESS COMMUNICATION VOLUME, MINIMUM PER-PROCESS VOLUME, OVERALL INTRA-SOCKET COMMUNICATION

VOLUME PERCENTAGE, INTER-SOCKET VOLUME PERCENTAGE, INTER-NODE VOLUME PERCENTAGE, AND THE TOTAL RELATIVE PREDICTION ERROR FOR THE

STAIRCASE ESTIMATE

very simple, but its performance estimates are only accurate
for fix sized, single messages on massively parallel processing
(MPP) systems. These traditional MPP systems were homoge-
neous and there was only inter-node communication (i.e., no
intra-node communication). The limitation of single messages
was addressed in the more recent max-rate model [3], which
extends the postal model to supportN concurrent messages from
N send-receive process pairs. Improvements of the max-rate
model were introduced in [16] to clearly distinguish between
inter-node, intra-node and intra-socket messages and to estimate
network contention. Nevertheless, the max-rate model and its
successor still lack the support for variable sized messages,
plus the weakness of adopting an over-simplified “roofline”
model for quantifying the aggregate bandwidth that is available
to multiple sender-receiver pairs. In comparison, our work in
the present paper adopts accurate aggregate bandwidth val-
ues that are measured by a simple bi-directional, multi-pair
micro-benchmark, which was extended from the osu_bibw
benchmark of MVAPICH [4]. The main difference between
our work and the max-rate models [3], [16] is the adoption of
a staircase modeling to quantify the per-process cost for the
general cases where different MPI processes can have different
numbers of neighbors and the messages are of different sizes.

Apart from modeling point-to-point communications on a sin-
gle interconnection level, our models can specifically handle
the dynamic competition between concurrent intra-socket and
inter-socket messages.

Apart from the postal model and the max-rate models, another
body of work on communication modeling contains the LogP
family of models. This originated in the LogP model which
was first proposed by Culler et al. in [2]. The LogP model adds
communication overhead as an additional parameter to better
estimemate the cost of sending and receiving messages, but is
still constrained to fix sized, single messages and limited in
accuracy for long messages. The latter was improved in the
LogGP model [17] which extends the LogP model with support
for linear modeling of long messages. Several other refinements
also exist, including LogGPC [18] which adds parameters for
network contention, LogGPS [19] which estimates synchroni-
sation costs in the communications library, and LogGPO [20]
which characterizes the overlap between communication and
computation. A comprehensive survey of the different mod-
els was provided in [21]. The main drawback of the LogP-
family models is the adoption of hard-to-estimate parameters,
such as network contention and synchronisation costs, in ad-
dition to the lack of support for variable sized messages and
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heterogeneous levels of latency and bandwidth. In comparison,
instead of detailing the different contributing terms to the overall
latency/overhead, which is the main modeling principle adopted
by the LogP family, we let a micro-benchmark quantify the over-
all latency/overhead and focus instead on modeling the dynamic
competition between variable sized, concurrent messages.

The particular modeling challenges due to the wide use of
shared-memory nodes in modern compute clusters, together
with the resulting concurrent messages, were investigated in the
τ -Lop model [22] and its extension [23]. Our work follows the
same notion of concurrent transfers from [22] and the reasoning
about the resulting contention among multiple MPI processes for
the same bandwidth. However, our “staircase” modeling strategy
for bandwidth contention is completely different that used in
[22].

VI. CONCLUSION

The basic assumption for the work presented in the current
paper is that concurrent MPI messages that are transmitted over
the same connection of a communication network should fairly
share the aggregate bandwidth available. Moreover, when the
messages are of different sizes, the principle of fairness will lead
to that the shortest message should complete first, followed by
the second shortest one, and so on. Such a dynamically changing
situation of competition will, at the same time, lead to a dynamic
change of the available bandwidth, which may not follow a
simple profile (3) as suggested by the max-rate model. This has
inspired the “staircase” modeling strategy that is heavily used
in our new performance models.

In reality, the actual completion sequence of the different
messages may indeed not follow the fairness principle. Various
stochastic features will lead to different sequences even when
an MPI program is repeated several times on the same parallel
system while using the same configuration. We consider it
impractical to properly model such stochasticity. Instead, we
adopt an “idealized” expectation based on fairness. Despite this
simplification, numerical experiments reported in Sections III
and IV have shown a consistently good agreement between
the model predictions and the actual time measurements. In
particular, a realistic case that involves 8192 MPI processes and
2.7 million concurrent messages (see Table IV) has achieved an
average overall accuracy of 83.8%.

Overall, our “staircase” modeling strategy is manageably sim-
ple. The models from Sections III-D and III-E can be efficiently
implemented such as shown in the appendix, available in the
online supplemental material. As preparation work before using
our new models, the bi-directional, multi-pair micro-benchmark
(Algorithm 1) needs to be executed for different MPI process
counts and for three situations: within a CPU socket, between a
pair of CPU sockets (with shared memory), and between a pair
of nodes in a cluster. The measured values of τ and BWMP can
be tabulated once and for all. To save the preparation work, the
τ and BWMP values for the short and eager protocols can be
skipped, if the message sizes of interest are known to lie in the
rendezvous regime.

In this paper, the possible costs that are associated with
packing and unpacking MPI messages are not included. Such
extra costs are necessary if the outgoing messages are composed
of data values that lie non-contiguously in the sender’s memory,
or the values of the incoming messages need to be placed in
designated, non-contiguous locations in the receiver’s memory.
There exist models, such as lognP or log3P [24], that include
regularly strided memory accesses, which are the simplest oper-
ations for packing and unpacking messages. As future work, we
will extend our models to cover the packing and unpacking costs,
and we will address these from the angle of memory bandwidth
contention. Specifically, we will consider the situation where
a preceding computation produces the values before they are
collected from irregularly non-contiguous memory locations
and packed as outgoing messages. Moreover, the different MPI
processes on a same node may carry out the “packing step” at
different paces (e.g., some processes have less data to pack and
can thus initiate the MPI commands earlier), such that the mes-
sage transfer and message packing by different MPI processes
may compete for the same memory bandwidth. As another topic
of future work, we will consider modeling overlaps between
computation (including message packing and unpacking) and
point-to-point MPI communication. Contention for the same
memory bandwidth, see e.g. [25], [26], will also be central in
this regard.

One of the main benefits of using our “staircase” modeling
approach is the capability of pinpointing per-process time usage,
thanks to an elaborate modeling of the bandwidth contention
between messages of various sizes. Realistic experiments have
seen actual time usages greatly varying from process to process,
thus the fastest finishing MPI processes may have considerable
idle time. We plan to incorporate such modeling into future
mesh partitioning strategies, with the goal of producing better
partitioning results where the fastest finishing processes do not
have to wait long for the slowest processes to complete.
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