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Abstract—In the mobile edge computing (MEC) environment,
edge servers with storage and computing resources are deployed
at base stations within users’ geographic proximity to extend the
capabilities of cloud computing to the network edge. Edge storage
system (ESS), is comprised by connected edge servers in a specific
area, which ensures low-latency services for users. However, high
data storage overheads incurred by edge servers’ limited stor-
age capacities is a key challenge in ensuring the performance of
applications deployed on an ESS. Data deduplication, as a clas-
sic data reduction technology, has been widely applied in cloud
storage systems. It also offers a promising solution to reducing
data redundancy in ESSs. However, the unique characteristics of
MEC, such as edge servers’ geographic distribution and coverage,
render cloud data deduplication mechanisms obsolete. In addition,
data distribution must be balanced over edge storage systems to
accommodate future data demands, which cannot be undermined
by data deduplication. Thus, balanced edge data deduplication
(BEDD) must consider deduplication ratio, data storage benefits,
and resource balance systematically under the latency constraint.
In this article, we model the novel BEDD problem formally and
prove its NP-hardness. Then, we propose an optimal approach
for solving the BEDD problem exactly in small-scale scenarios and
a sub-optimal approach to solve large-scale BEDD problems with a
theoretical performance guarantee. Extensive and comprehensive
experiments conducted on a real-world dataset demonstrate the
significant performance improvements of our approaches against
four representative approaches.

Index Terms—Data deduplication, edge storage system, mobile
edge computing, optimization problem, storage resource balance.
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I. INTRODUCTION

THE data produced by mobile and smart devices have grown
exponentially in the last decade. Transmitting this huge

amount of data to the cloud for processing consumes excessive
network resources and incurs heavy network traffic. Meanwhile,
the traditional centralized cloud computing architecture is failing
to fulfill users’ increasing low latency requirements, especially
for latency-sensitive applications such as autonomous driving,
AR, and VR [1], [2]. Mobile edge computing (MEC), as a new
distributed computing paradigm, pushes cloud-like functionali-
ties and resources to the network edge to provide users with low-
latency access to applications and data on edge servers [3], [4].

Edge storage system (ESS), as an infrastructure to support
edge computing-enabled applications, is comprised of con-
nected edge servers deployed in an area [5]. Fig. 1 illustrates
an ESS comprises of four connected edge servers {s1, . . . , s4}
storing data {d1, d2, . . ., d5} to serve the users in the system.
Application vendors can store popular data on edge servers to
reduce the latency in their users’ access to these data and save the
expenses incurred by transmitting large amounts of data from the
cloud to their users [5], [6]. Data produced by latency-sensitive
and energy-limited IoT and mobile devices can also be stored
on an ESS locally for sharing or processing. Unfortunately,
edge servers’ storage resources are significantly limited by their
small physical sizes [1], which is one of their fundamental
differences from cloud servers. This capacity constraint limits
the amount of data that can be stored on an ESS, and conse-
quently impacts the performance of the ESS and the applications
deployed on the ESS. Lots of studies have attempted to mitigate
this constraint by leveraging the collaboration between edge
servers [7], [8].

In the realistic MEC environment, edge servers are geo-
graphically distributed [9]. Accordingly, the data stored on edge
servers, such as traffic data, shopping mall ads, often exhibit and
share the same geographic characteristics. This results in data
redundancy in an ESS [10], [11]. The same files generated by
different users or different updates may be stored on multiple
edge servers in the ESS. For example, in Fig. 1, data d3 is stored
on edge servers s2, s3, and s4. As reported by [10] and [11],
the similarity between users’ demands on IoT and mobile data
can reach up to 70%. Caching such data on edge servers without
deduplication leads to significant data redundancy and storage
wastes across edge servers. Given edge servers’ limited storage
capacities, how to reduce data redundancy is of tremendous
importance in improving storage utilization on edge servers.
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Fig. 1. Example of edge storage system. In this example, we assume that every
user requests all five data. In this way, we keep the number of users minimum
to present a concise and clear scenario.

An edge server can access data from other neighbor edge
servers over the edge server network to serve the users within its
coverage area while not violating the latency constraint [5], [12].
Take Fig. 1 for example and suppose that the latency constraint is
one hop.1 Edge servers s1, s3, and s4 can retrieved1 from s1 or s2
to serve the users within their coverage. Thus, d1 can be removed
from s1 to reduce data redundancy and save on storage resources.
This is the foundation for edge data deduplication (EDD). The
problem of edge data deduplication is crucial and practical
because redundant data need to be removed to release edge
servers’ constrained storage resources. For example, content
providers like YouTube and TikTok can cache videos on edge
servers to fulfill users’ data demands with low data retrieval
latency. Many users share the same demands for popular videos
at the network edge, as described in the literature [13]. Note that
EDD must not violate the latency constraint - the system must
still keep the ability to deliver data to corresponding users within
the latency constraint. Take Fig. 1 for example, supposing that
only one replica of d2 can be retained on s1 in the ESS and all the
other replicas of d2 are removed, under the latency constraint,
mobile users u3 and u4 will not be able to retrieve d2. This EDD
solution is invalid.

Data deduplication has been widely employed to reduce data
redundancy in central cloud storage systems [14]. However,
edge data deduplication is totally different from the cloud data
deduplication (CDD) because of MEC’s unique characteristics.
CDD approaches deduplicate data at the chunk level. The
general idea is to split data into multiple fine-grained data
chunks of fixed or variable size and then remove redundant data
chunks based on chunk fingerprints. When a data request comes,
a metadata server rebuilds the data based on unique chunks
retrieved from different storage nodes [15]. The expensive time
overhead incurred by rebuilding data from data chunks conflicts
with the requirements of low data retrieval latency in the MEC
environment. Therefore, EDD aims to remove duplicate data
at the file level rather than the chunk level. In addition, data
retrieval between edge servers must not violate the latency
constraint - an edge server can only retrieve data from edge
servers within its latency limitation, i.e., their nearby edge
servers in the ESS [1], [16], [17]. Thus, EDD must ensure that

1.Latency constraint can also be specified by milliseconds, e.g., 50 ms. Here,
we use hops for ease of exposition.

after data deduplication, all the users can still retrieve requested
data under the latency constraint.

EDD must also balance data storage across edge servers. If
an EDD approach pursues the sole objective of maximizing the
deduplication ratio like CDD approaches [18], [19], it will tend
to keep the data stored on edge servers that can serve the most
users under the latency constraint and remove as many duplicates
as possible from other edge servers. Fig. 2(a) illustrates such an
EDD solution p1 to Fig. 1. We can see that all the data on s2
remain and all the duplicates are removed from s1, s3, and s4.
Such an EDD approach may overwhelm some edge servers, e.g.,
s2 in Fig. 2(a) while others are underutilized over time, e.g., s3
in Fig. 2(a). No more data can be stored on overwhelmed edge
servers to accommodate future data demands. For example, in
Fig. 2(a), a new data d6 will have to be stored on {s1, s3}
or {s1, s4} to satisfy any user’s data retrieval requests in the
system. Thus, EDD must consider both the data deduplication
ratio and storage space balance across edge servers. Fig. 2(b)
presents a solution p2 that achieves the same deduplication
ratio as p1. It also achieves the same data coverage as p1 - all
the users can still access all the data in the system. Compared
with p1, p2 balances data storage across the four edge servers
so that they have spare storage to accommodate future data
demands.

Some researchers have attempted to balance data storage
across distributed nodes [20], [21]. The key idea is to measure
storage space balance with a fairness index and maximize that
index by evening data storage across the nodes. Unfortunately,
this does not work with EDD without considering data storage
benefits. Data popularity, as a significant metric in the MEC
environment, varies at different locations [22]. Storing data on
edge servers that can serve the most users with low latency will
produce the highest data storage benefit [7]. If we take a look
at Fig. 1, we can see that in many cases, storing data on s2
tends to produce high data storage benefits because it is close
to all other edge servers. Thus, EDD must not simply maximize
a storage fairness index as [20], [21] without considering data
storage benefits.

To summarize, EDD must consider the deduplication ratio,
data storage benefits, and storage space balance jointly, as well
as the latency constraint. This is challenging, and even more so
in realistic EDD scenarios larger and more complex than the one
presented in Fig. 1. In this paper, we study this new balanced
edge data deduplication (BEDD) problem. Our contributions
are summarised as follows:
� We motivate the BEDD problem and point out its

fundamental differences from the CDD problem and the
EDD problem.

� We formulate the BEDD problem comprehensively and
prove its NP-hardness theoretically.

� We design two approaches, one named BEDD-O and
the other named BEDD-A. BEDD-O solves small-scale
BEDD problems optimally based on integer programming.
BEDD-A solves large-scale BEDD problems efficiently
based on Lagrange relaxation and an improved subgradient
method.

� We conduct comprehensive experiments on a wide-used
EUA dataset to test the performance of BEDD-O and
BEDD-A against four representative approaches.
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Fig. 2. Example of EDD and BEDD solutions with the same deduplication ratio of 0.5, and same data coverage as Fig. 1.

TABLE I
SUMMARY OF NOTATIONS

II. PROBLEM AND MODEL FORMULATION

In this section, we first formulate the BEDD problem and
then prove its hardness theoretically. The main notations and
their definitions are summarized in Table I.

A. Edge Data Deduplication Model

We consider an ESS denoted asS = {s1, . . . , sn}, comprised
of n edge servers in a specific geographic area. A set of data,
denoted as D = {d1, . . . , dm}, is stored on these edge servers.
Let a binary variable rij denote the deduplication decision, where

rji = 1 means that di is removed from sj . Let h denote the la-
tency constraint. In real-world MEC scenarios, the transmission
latency between edge servers could be different. To generalize
the models and approaches presented in this paper, we measure
the transmission constraint by the number of hops over the edge
server network, which can also be easily measured by specific
milliseconds. Let Sdi

represent the set of edge servers that
store data di, Ŝdi

(Sdi
⊆ Ŝdi

⊆ S) denote the data coverage
of di:

Ŝdi
= {sk|hk,j ≤ h, sk ∈ S, sj ∈ Sdi

} (1)

where hk,j is the minimum latency between sj and sk.
Let us employ S+

di
and S−di

⊆ Sdi
(S+

di
∪ S−di

= Sdi
) to

represent the set of edge servers that still have di and
those whose di are removed from Sdi

after deduplication,
respectively:

S+
di

= {sj | rji = 0, sj ∈ Sdi
}

S−di
= {sj | rji = 1, sj ∈ Sdi

} (2)

As discussed in Section I, an EDD solution must retain the
same data coverage area, i.e., users covered by Sdi

before
deduplication can still retrieve data di after deduplication within
the data retrieval latency limitation. This is named coverage
constraint :

Ŝdi
= Ŝ+

di
(3)

The deduplication ratio is the ratio of the number of edge
servers whose di are removed to the number of edge servers
that store di before deduplication. Thus, for each data di, the
deduplication ratio produced by a BEDD strategy p, can be
defined asRi:

Ri =

∑
sj∈S rji

|Sdi
| (4)

The overall deduplication ratio achieved by the BEDD strat-
egy p is calculated as follow:

Rp =
∑

di∈D
Ri =

∑

di∈D

∑
sj∈S rji

|Sdi
| (5)
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B. Data Storage Benefit Model

By storing data di, an edge server sj produces data storage
benefit by serving di to the users within h. When it is removed
from sj by a BEDD strategy p, some users may have to retrieve
di from other edge servers with higher latency. For example, if
d2 is removed from s1 and s3 in Fig. 1, user u1 has to retrieve
d2 from s4 via two hops. This reduces the overall data storage
benefit produced by the system. Let Bu,di

denote the storage
benefit produced by serving user u with di. It can be defined as
follow:

Bu,di
= max{(h− hj,k) · cov(sj), 0} (6)

where cov(sj) denotes the number of users covered by sj , sj
is the edge server that covers u, and sk is the edge server that
stores di.

The data storage benefits produced by a data deduplication
strategy p is calculated as follow:

Bp =
∑

sj∈S

∑

di∈D
Bu,di

(7)

It can be normalized as follow:

Bp =
Bp

h · |U | · |D| (8)

whereh · |U | · |D| is the storage benefit in the theoretically worst
case where all the users retrieve data via h hops.

C. Storage Space Balance Model

As discussed in Section I, EDD must balance data storage
across to allow spaces on individual edge servers for accommo-
dating future data demands. Let msj denote the total storage
spaces on sj . Considering the heterogeneity in edge servers’
storage spaces, we measure the storage occupancy rate of an
edge server sj as follow:

Oj =

∑
di∈D(1− rji )

msj
(9)

To evaluate the storage space balance across S produced by p,
we calculate the Jain’s fairness index [23] based on edge servers’
storage occupancy rates after p is implemented:

Lp =
|∑sj∈S Oj |2
|S|∑sj∈S Oj

2 (10)

where Lp ∈ [1/|S|, 1] and Lp = 1 indicates that data storage
is fully balanced, i.e., all edge servers share the same storage
occupancy rates.

D. Balanced Edge Data Deduplication

A BEDD strategy is evaluated based on its ability to dedupli-
cate data, retain data storage benefits, and balance data storage.
Accordingly, the optimization objective of the BEDD problem
can be expressed as follow:

BEDD : max : αRp + βBp + γLp

s.t. (3), (6) (11)

where α, β, and γ are the adjustable weights of the three terms
(α+ β + γ = 1). They indicate the preferences for data dedu-
plication ratio, data storage benefits, and storage space balance.
For example, when the edge data size is small in general, such as
text data, the benefit of a high resource balance index is usually
lower than that of a high data deduplication ratio. In such cases,
α > β is suggested. When duplicate data is large in general, e.g.,
images and videos, balancing data storage is more important than
the deduplication ratio because the storage resource imbalance is
more likely to occur. In such cases, a highβ is recommended. For
latency-sensitive applications like VR/AR, data storage benefits
are more significant than the other two objectives, and a large γ
is preferable.

E. Problem Hardness Proof

By reducing the BEDD problem from the classic NP-hard
bin packing (BP) problem [24], theNP-hardness of the BEDD
problem can be proved in this section.

Given a set of bins, E = {e1, . . . , ex}, where each bin ej has
a limited capacity size(ej). Given a set of items to be packed
into these x bins, F = {f1, f2, . . ., fy}, where each item fi has
a size size(fi), the goal of the BP problem is to pack all y items
into a minimum number of bins. It can be formulated as follows:

min

x∑

j=1

ηj (12)

s.t.

y∑

i=1

τ ji size(fi) ≤ ηmsize(ej) (13)

size(fi) ≤ size(ej) (14)

x∑

j=1

τ ji = 1 (15)

ηj , τ
j
i ∈ {0, 1} (16)

where binary variable ηj denotes whether bin ej is used, binary
variable τ ji denotes whether item fi is packed into bin ej .

Now we make the following reductions of the BEDD problem
from the BP problem: 1) relax the latency constraint to the
maximum latency between any two edge servers in the ESS;
2) allow only one replica of each data di ∈ D to be stored in the
ESS. Since the edge servers from which a data di can be removed
are fixed, i.e., the edge servers from di within latency constraint,
we can convert the objective of the relaxed BEDD problem to
the objective that minimizes the number of edge servers that
store data di after deduplication. Through the reduction, only
one replica of each data di ∈ D can be stored in the ESS. The
optimization objective of the BEDD problem is the same as
Objective (12) in the BP problem. Constraints (13) and (14) in
the BP problem ensure that the items packed in each bin do
not exceed their maximum size and the maximum size of each
item does not exceed the size of the corresponding bin. This is
equivalent to the range of rji . Constraint (15) in the BP problem
ensures that each item must be packed. This is equivalent to
Constraint (3), i.e., all the edge servers covered by data di should



1424 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 5, MAY 2023

still be covered after deduplication. Constraint (16) specifies the
domains of ηj and τ ji . It is the same as the constraint for binary
variable rji .

In conclusion, any solution satisfying theNP-hard BP prob-
lem can be reduced to the BEDD problem in polynomial time.
The BEDD problem is thus NP-hard.

III. APPROACH DESIGN

We present BEDD-O and BEDD-A for finding optimal and
sub-optimal BEDD solutions in this section.

A. Optimal Approach

The optimal solution to solve the BEDD problem aims to
jointly maximize the data deduplication ratio, data storage ben-
efits, and storage space balance while ensuring all constraints.
Let binary variable rji = 1 denote that data di is removed from
edge server sj , and 0 otherwise. The BEDD problem can be
formulated as follows:

max α
∑

di∈D

∑

sj∈S
R(rji ) + β

∑

u∈U

∑

di∈D

∑

sj∈S
B(rji , xj

u)

+ γ
∑

di∈D

∑

sj∈S
L(rji ) (17)

s.t.
∑

di∈D
rji ≤ msj (18)

∪{rji=0} N(sj) = N(Sdi
) (19)

where N(sj) denotes the nearby edge servers of sj , i.e., the
edge servers that can communicate with sj within h. Objective
(17) maximizes the produced deduplication ratio, data storage
benefits, and storage space balance combined. Constraint (18)
enforces the edge servers’ capacity constraint. Constraint (19)
ensures equal data coverage before and after deduplication.

BEDD-O can solve this integer linear programming (ILP)
problem exactly by integer programming solvers, such as
Gurobi.2 The solution is an assignment of 0 or 1 to each rji ,
where di ∈ D, sj ∈ S, that maximizes the optimization objec-
tive (17) while fulfilling the capacity constraint (18), the data
coverage constraint (19), and the data retrieval latency constraint
(enforced by N(sj)). According to the solution, the replica of
di can be removed from edge server sj if rji is 1.

B. Sub-Optimal Approach

BEDD-O finds the optimal BEDD solution but is computa-
tionally intractable in large-scale BEDD scenarios, e.g., when
the number of data to be deduplicated is large. To enable high
responsiveness to the dynamic data demands in real-world MEC
scenarios, we need to be able to find BEDD solutions rapidly in
such scenarios. To tackle this challenge, we design an approach
named BEDD-A to find sub-optimal BEDD solutions based on
the Lagrangian relaxation (LR) method.

2.https://www.gurobi.com/products/gurobi-optimizer/

Unfortunately, LR can solve convex optimization problems
only and cannot be directly applied to solve the BEDD problem
in the ILP (integer linear problem) form. Thus, we first relax the
ILP problem into a linear programming (LP) problem. Then, the
BEDD problem can be relaxed and transformed into a Lagrange
dual problem. After solving the Lagrange dual problem with
our specifically-designed subgradient method, BEDD-A can
make data deduplication decisions following a greedy rounding
strategy based on the solved fractional solutions.

First, we relax all the binary variables into a fractional value
from 0 to 1. With the relaxation, we can find that the data
storage benefit Bp cannot be bounded by (6) as the upper bound
approaches 1. Thus, we redefine a binary variable xj

u to indicate
whether user u is covered by edge server sj and substitute
cov(sj) in (6) with

∑
u∈U xj

u. With the above relaxation, Con-
straint (3) can be replaced with xj

uhjk(1− rki ) ≤ h. After that,
the ILP model built in Section III-A can be transformed to the
following forms:

Relaxed BEDD : max : αRp + βBp + γLp (20)

s.t. xj
uhjk(1− rki ) ≤ h (21)

max{(h− hjk) ∗
∑

u∈U
xj
u, 0} ≤ |U | ∗max{|h− hjk|} (22)

0 ≤ rji ≤ 1, ∀di ∈ D, ∀sj ∈ S (23)

0 ≤ xj
u ≤ 1, ∀u ∈ U,∀sj ∈ S (24)

In the relaxed BEDD problem, we can see that (21) couples
binary variables rji and xj

u while other constraints only involve
one variable each. Thus, we introduce a Lagrange multiplier
μ(μ ≥ 0) to (21). Then, the optimization objective of the re-
laxed BEDD problem can be reformulated as the Lagrange dual
function below:

φ(μ) = max αRp + βBp + γLp + μ(h− xj
uhjk(1− rki ))

= max α
∑

di∈D

∑

sj∈S
R(rji ) + β

∑

u∈U

∑

di∈D

∑

sj∈S
B(rji , xj

u)

+γ
∑

di∈D

∑

sj∈S
L(rji )+

∑

di∈D

∑

sj∈S
μ(h− xj

uhjk(1−rki ))

(25)

As a result, the dual problem of (25) is:

min φ(μ) (26)

Now, we can solve (25) by equivalently solving (26). Let us
name it LD(μ). Note that for all the μ values, the solution to
(25) is the lower bound of the relaxed BEDD problem, and the
solution to (26) is the closest to the optimal solution to the primal
problem.

Now we achieve LD(μ) with a subgradient method that
updates the Lagrange multiplier μ by adjusting the step size
iteratively. Algorithm 1 presents the pseudo code of this method.
Let μt denote the Lagrange multiplier in the t-th iteration and
the update process is expressed as follow:

μt+1 = μt + θt(h− Y (1− rt)) (27)

https://www.gurobi.com/products/gurobi-optimizer/
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where rt represents the optimal solution of the φ(μt) problem,
Y � xj

uhjk denotes the other parameters not related to rt, θt is
the updating step size at the t-th iteration. According to [25],
the step size in the subgradient method can converge to 0.
However, the convergence must not be overly fast. Otherwise,
the search for the solution to the relaxed BEDD problem will
easily fall into a local optimum. The convergence must not be
overly slow either. Otherwise, it will take a long time for the
method to converge and incur excessive time overheads. To
strike a trade-off, BEDD-A adjusts the step size according to
the results obtained at each iteration:

θt =
LD(μt)− LD∗

||h− Y (1− rt)||2Δt (28)

where LD∗ is the upper-bound solution of the primal problem
(11) and Δt ∈ (0, 2] is an adjustment factor that controls the
direction of updating Lagrange multiplier and ensures algorithm
converge. If LD(μt) is not updated to a better lower bound of
problem (11), BEDD-A halves Δt to reduce the updating step
size.

The Lagrange relaxation method is often employed to solve
combinatorial optimization problems. With the relaxation, the
problem can be transformed into a less constrained or an uncon-
strained problem. Then, the Lagrange relaxation method can
find a lower-bound solution to the primal problem by updating
the Lagrange multiplier iteratively. Typical applications of the
Lagrange relaxation method need to estimate the value of the
upper-bound solution to the primal problem and use a fixed
adjustment factor of step size to update the Lagrange multiplier.
These often slow down and even undermine algorithm conver-
gence. In the BEDD problem, the upper bound LD∗ cannot be
estimated accurately due to constraints (21) and (22). To tackle
these challenges, Algorithm 1 employs an adaptive updating
mechanism with a variable-length upper bound Zl = Zl/

√
l

instead of a fixed Zl. In this way, the upper-bound solution can
be adjusted in a more fine-grained manner iteratively. In general,
as the number of adjustments increases, the updating step size
will decrease. This adjustment mechanism allows the algorithm
to converge faster than the traditional updating approach using
Polyak-based step size. This will be experimentally evaluated in
Section IV.

Algorithm 1 first initializes the iteration number t, the current
best solutions rtrec, the Lagrange multiplier μ0, step size θt,
subgradient gt, and the number of upper-bound adjustments
l in Line 2. Then, it starts to update the Lagrange multiplier
iteratively to find the final solution. In each iteration, a solution
rt can be calculated first by finding the minimum LD(μt)
and the subgradient gt can be obtained accordingly (Lines
2-3). Then, LD(rt) is compared with the last best value of
function LD(rt−1), i.e., LDrec(r

t−1). If LD(rt) is smaller
than LDrec(r

t−1), LDrec(r
t) is replaced by LD(rt) and rt is

recorded as the current best solution rtrec. Otherwise, the current
values of LDrec(r

t) and rtrec are still the best values (Lines
7-13). Next, the algorithm measures the difference between the
last optimal function value and the current function value, and
updates the upper bound LDlev(r

t) accordingly (Lines 14-20).
Next, it updates the Lagrange multiplier μt and the step size

Algorithm 1: BEDD-A.
1: Initialization:
2: t = 1, rtrec = 0, μ0 = 0, θt = 0, gt = 1, l = 0;
3: End of initialization
4: while μt − μt−1 ≥ δ and gt 
= 0 do
5: rt ← argminLD(μt)
6: calculate the subgradient gt ← h− Y (1− rt)
7: if LD(rt) ≤ LDrec(r

t−1) then
8: LDrec(r

t) = LD(rt)
9: rtrec = rt

10: else
11: LDrec(r

t) = LDrec(r
t−1)

12: rtrec = rt−1rec

13: end if
14: if LD(rt) ≤ LDrec(r

t−1)−Zl/2 then
15: LDlev(r

t) = LDrec(r
t)−Zl

16: else
17: LDlev(r

t) = LDrec(r
t−1)−Zl

18: l = l + 1
19: Zl = Zl/

√
l

20: end if
21: update μt with (27)
22: update θt with (28)
23: t← t+ 1
24: if LD(μt)− LD(μt−1) ≤ threshold then
25: Δt = Δt/2
26: end if
27: end while
28: return rtrec

adjustment factor with (27) and (28), respectively (Lines 21-22).
To ensure algorithm convergence, if the improvement is less
than a given threshold threshold, the algorithm adjusts Δt in
Lines 24-25. The iteration stops when the updated value of the
Lagrange multiplier is less than δ or the subgradient is equal to
0. Finally, in Line 28, the algorithm returns rtrec as the solution
to the relaxed BEDD problem.

After running Algorithm 1, the solution rtrec may involve a set
of fractional values from 0 to 1 due to the relaxation and thus is
not the optimal solution to the BEDD problem. Next, BEDD-A
employs a rounding algorithm for obtaining the optimal solution
to the relaxed BEDD problem (20). It goes through the following
steps: 1) select the rmax ∈ {rtrec} with the highest unfixed
fractional value in Line 2; 2) if rmax satisfies Constraints (3) and
(6), fix its value to 1 and remove rmax from {rtrec}, otherwise 0;
3) fix other rji ∈ {rtrec} to 0 if it does not satisfy Constraints (3)
and (6); 4) iterate steps 1-3 until all the rji ∈ {rtrec} are fixed.

C. Convergence Analysis

Now we analyze the convergence of BEDD-A to show that it
can effectively stop. For ease of exposition, we define rt as the
solution found by Algorithm 1. The following holds:

LD∗ = inf
t∈T

LD(rt) > −∞ (29)
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Algorithm 2: Greedy Rounding.

1: while rtrec 
= ∅ do
2: sort each rji in {rtrec} from high to low and select the

highest one named rmax

3: remove rmax from {rtrec}
4: if rmax satisfies constraints (3) and (6) then
5: fix the value of rmax to 1
6: for each rji ∈ {rtrec} do
7: if rji not satisfies constraints (3) and (6) then
8: fix the value of rji as 0
9: remove rji from {rtrec}
10: end if
11: end for
12: else
13: fix the value of rmax to 0
14: end if
15: end while

Theorem 1: When t→∞, there is limt→∞ LDrec(r
t) =

LD∗ and the number of upper bound adjustments l→∞ and
liml→∞ Zl = 0.

Proof 1: Assuming l ≤ ∞, from Lines 14-20 in Algorithm
1, there exists a T ∈ N ∗ to make the following hold:

LD(rt) ≤ LD(rt−1)− Zl

2
, ∀t ≥ T (30)

Thus, there is

LD(rt) ≤ LD(rT−1)− (t− T )
Zl

2
, ∀t ≥ T (31)

From (31), we can easily infer limt→∞ LD(rt) = −∞, which
contradicts (29). Thus, there is l→∞. Now we employ the con-
tradiction method to prove Theorem 1. From (29), we know that
LDrec(r

t) decreases monotonically when t increases and has
a lower bound. Thus, limt→∞ LDrec(r

t) exists and is unique.
Since the solution to LD(μ) must be convex due to the duality
transform [26], the following holds:

||rt+1 − rt|| ≤ ||μt − rt||, ∀t ∈ N ∗ (32)

When t ≥ T and r̂t ∈ L∗, combining (32) and Lines 21-26 in
Algorithm 1, we have the following:

||rk+1 − r̂t||2 ≤ ||μt − r̂t||2

= ||rt − Δt(LD(rt)− LDrec(r
t))

||gt||2 gt − r̂t||2

= ||rt − r̂t||2 − 2Δt(LD(rt)− LDlev(r
t))

||gt||2 ·

〈rt − r̂t, gt〉+ Δ2
t (LD(rt)− LDt

rec)
2

||gt||2 (33)

Since gt ∈ ∂LD(rt) and LD(r̂t) < LDrec(r
t), we have:

〈r̂t − rt, gt〉 ≤ LD(r̂t)− LD(rt) (34)

Combining (33) and (34), the following holds:

||rt+1 − r̂t||2 ≤ ||rt − r̂t||2 −Δt(2−Δt)·
(LD(rt)− LDrec(r

t))2

||gt||2 (35)

According to Lines 14-20 in Algorithm 1, we have:

(LD(rt)− LDrec(r
t))2 ≥ Z

2
l (l − 3)

4l(l + 1)
≥ Z

2
l (t− 3)

4l(t+ 1)
(36)

Combining (35) and (36), the following holds:

||rt+1 − r̂t||2 ≤ ||rt − r̂t||2 − Δt(2−Δt)Z2
l (t− 3)

4t(t+ 1)
(37)

We can find that (37) holds for any t ≥ T so that∑∞
t=T

t−3
t(t+1) <∞. This is an obvious contradiction. Therefore,

Theorem 1 holds.

IV. EVALUATION

Extensive and comprehensive experiments are conducted to
evaluate the performance of BEDD-O and BEDD-A in different
BEDD scenarios.

A. Experimental Settings

Dataset: EUA dataset, as a widely used dataset in research on
mobile edge computing [1], [5], [27], contains the geographic
coordinates of real-world users and edge servers in Metropolitan
Melbourne, Australia.

Competing Approaches: In the experiments, BEDD-O and
BEDD-A are compared with four representative approaches:
� Random: This baseline approach deduplicates redundant

data replicas from edge servers randomly, one by one, until
any constraint is violated.

� Greedy: This baseline approach removes redundant data
replicas from the edge server with the maximum storage
occupancy, one by one, until any constraint is violated.

� HotDedup: [11] Implemented based on the k-MST al-
gorithm, this heuristic approach aims to maximize the
deduplication ratio and data service rate based on data
popularity.

� EDDE-A: [28] This state-of-the-art approach employs an
approximation algorithm to remove redundant data, aiming
to maximize storage resource savings.

Parameter Settings: To evaluate the proposed BEDD-O and
BEDD-A comprehensively, three major parameters are taken
into consideration:
� Maximum data redundancy ratio (Θ): This parameter de-

picts the maximum ratio of edge servers that store the
replicas of a data in the system. For example, Θ = 1
denotes that every di ∈ D may be stored on every edge
server. This parameter varies from 0.4 to 0.8 in Set #1.1
and Set #2.1, similar to the settings in [10], [11].

� Number of edge servers (n): This parameter dictates the
scale of a BEDD scenario. It varies from 10 to 30 in Set
#1.2 and 50 to 250 in Set #2.2, respectively.

� Latency constraint (h): The parameter is the basis for the
identification of an edge server sj’s neighbor edge servers
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Fig. 3. Deduplication benefits versus parameters in Set #1. (a) Benefits versus Θ in Set #1.1. (b) Benefits versus n in Set #1.2. (c) Benefits versus h in
Set #1.3.

Fig. 4. Deduplication benefits versus parameters in Set #2.

TABLE II
PARAMETER SETTINGS. COMPARED WITH SET #1, THE SCALE OF SET #2 IS

MUCH LARGER IN TERMS OF n. THIS ALLOWS US TO EVALUATE THE

SCALABILITY OF BEDD-A IN SET #2

N(sj). It can be specified in hops or milliseconds. To
facilitate easy calculation of N(sj), in the experiments,
it is measured by hops and varies from 1 to 5.

The specific parameter settings are summarized in Table II.
To minimize the impacts of extreme cases on the results, e.g.,
those with overly-sparse or overly-dense edge servers, each
experiment is conducted 200 times and the average values are
reported when any of the above three parameters vary. For
BEDD-A, the convergence threshold threshold is set to 0.001.
The weight factors α, β, γ used in (17) are set as 1

3 ,
1
3 ,

1
3 to

balance the importance of the optimization objectives. Con-
sidering that BEDD-O takes excessive time to find a solution
in large-scale BEDD scenarios, BEDD-O is thus not included

in Set #2 so that Set #2 can highlight the performance of
BEDD-A.

Performance Metrics: The performance of BEDD-O and
BEDD-A is evaluated based on two metrics.
� Deduplication Benefits (benefits): This metric is calcu-

lated with (11). It indicates the total benefits produced by
a deduplication strategy.

� Computational overheads (time): This efficiency metric
is measured by the computational time spent by the CPU
to run an approach to find a solution.

B. Effectiveness Evaluation

Figs. 3 and 4 demonstrate the deduplication benefits achieved
by the approaches in Set #1 and Set #2, respectively. In Set #1,
BEDD-O is the winner in all the cases with slight advantages
over BEDD-A. In Set #2, with BEDD-O excluded, BEDD-A
wins the competition with significant advantages, outperforming
HotDedup, EDDE-A, Greedy, and Random by an average of
30.51%, 57.69%, 73.06%, and 137.85%, respectively.

Impact of Data Redundancy Ratio (Θ): Figs. 3(a) and 4(a)
show the impact of the maximum data redundancy ratio (Θ)
on the overall benefits in Set #1 and Set #2, respectively. In
Fig. 3(a), BEDD-O always achieves the highest deduplication
benefits, 5.23%, 38.51%, 64.21%, 87.62%, and 124.37% higher
than BEDD-A, HotDedup, EDDE-A, Greedy, and Random on
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average. BEDD-A seconds to BEDD-O but outperforms HotD-
edup, EDDE-A, Greedy, and Random significantly by 36.02%,
67.84%, 82.75%, and 146.87% on average. When n in the
ESS is fixed, as Θ increases, data redundancy in the system
increases in both settings. Adjacent edge servers are more likely
to have duplicate data replicas. This allows the approaches to
remove more duplicate date replicas without reducing the data
coverage. The data storage benefit may drop but it is not as
significant as the increase in the benefit produced by removing
duplicate data replicas. When Θ increases, the advantages of
our approaches increase. Take Fig. 4 for example. When Θ
increases from 40% to 80%, its average advantage over HotD-
edup, EDDE-A, Greedy, and Random increases from 86.26%
to 104.09% by 20.67%. The results demonstrate the importance
of highly-effective EDD, especially in systems with high data
redundancy.

Impact of Number of Edge Servers (n): Figs. 3(b) and 4(b)
demonstrate the significant importance of n on deduplication
benefits. BEDD-O again achieves the highest benefits with an
average advantage of 6.42%, 34.25%, 41.51%, 48.17%, and
89.77% over BEDD-A, HotDedup, EDDE-A, Greedy, and Ran-
dom in Set #1. BEDD-A is the clear winner in Set #2, with
a 28.44% advantage over HotDedup, 53.29% over EDDE-A,
89.13% over Greedy, and 169.71% over Random. When n
increases, its advantage increases, as shown in Fig. 3(b). With
a fixed data redundancy ratio Θ, the increase in n further
spreads duplicate data replicas across edge servers. It is less
likely for adjacent edge servers to have duplicate data replicas.
This reduces the room for EDD and decreases the deduplication
benefits. In the meantime, it becomes more difficult to balance
the storage resources across edge servers. This also reduces the
deduplication benefits. Thus, as n increases, the deduplication
benefits obtained by all approaches decrease.

Impact of Latency Constraint (h): Figs. 3(c) and 4(c) illus-
trate the results of Set #1.3 and Set #2.3, respectively. Again,
BEDD-O outperforms all other approaches, by 5.76% against
BEDD-A, 27.34% against HotDedup, 40.51% against EDDE-A,
63.91% against Greedy, and 105.03% against Random. BEDD-
A achieves the second-highest deduplication benefits, 19.39%
higher than HotDedup, 29.64% higher than EDDE-A, 51.80%
higher than Greedy, 93.55% higher than Random in Set #1.3. In
Set #2.3, BEDD-A’s performance advantages are more signifi-
cant than in Set #1.3. When the latency constrainth is relaxed, al-
lowing each cached data replica to cover more users and produce
high storage benefits. It also reduces the number of data replicas
after EDD to keep the data coverage and makes it easier to
balance storage resources across edge servers. Take d3 in Fig. 1
as an example. When h = 0, d3 must be retained on s2, s3, and
s4. However, if the latency constraint is relaxed to 1 hop, some
replicas of d3 can be removed to produce deduplication benefits.
Thus, when h increases, the deduplication benefit increases for
all the approaches in both Set #1.3 and Set #2.3.

Performance Over Time: The discussion above has focused
on the deduplication ratio (Rp) and data storage benefit (Bp), but
not the storage space balance (Bp), i.e., the third term in the op-
timization objective (11) of EDD. As discussed in Section II-C,
we balance storage spaces across edge servers so that they can

accommodate future data demands flexibly. To demonstrate the
importance of considering storage space balance in EDD, we run
BEDD-A in Set #2 with θ = 0.6, n = 150, h = 2 over 100 time
slots and compare it with a variant of BEDD-A named EDD-A
that does not consider storage space balance. The parameters of
(11) are set to α = 1

2 , β = 1
2 , γ = 0 for EDD-A. In each time

slot, 100 users are randomly selected from the EUA dataset, each
requesting one of the 8 data randomly. The state-of-the-art edge
data caching (EDC) approach introduced in [7] is employed
to formulate a data caching strategy for caching data replicas,
aiming to maximize data storage benefit based on data popularity
and storage spaces on edge servers. After that, we run BEDD-A
to formulate an EDD solution and remove duplicate data replicas
accordingly.

Fig. 7 shows the experimental results. BEDD-A clearly out-
performs EDD-A in maximizing deduplication benefits across
all the 100 time slots. On average, its deduplication benefit is
31.07% higher than EDD-A’s. In addition, by balancing storage
spaces across edge servers, BEDD-A manages to stabilize the
deduplication benefits over time, achieving a standard deviation
of 0.011 across 100 time slots, 71.27% lower than EDD-A’s
0.037. As discussed in Section I, we deduplicate edge data to
free up the storage resources for data caching. To demonstrate
how BEDD-A achieves this objective, Fig. 7 also presents the
caching benefits achieved by the EDC approach over time with
the support of BEDD-A and EDD-A, respectively. We can see
that with BEDD-A in place instead of EDD-A, EDC achieves
much higher caching benefits, with a 48.46% advantage on
average across 100 time slots. The results indicate that it is
important to balance storage spaces across edge servers while
performing EDD.

C. Efficiency Evaluation

Computation Time: Figs. 5 and 6 show the computation over-
heads taken by different approaches to find an BEDD solution in
small-scale BEDD scenarios and large-scale BEDD scenarios,
respectively. Unsurprisingly, time taken by BEDD-O to find a
solution is maximum as BEDD-O pursues to find the optimal
solution to theNP-hard BEDD problem. When Θ increases in
Set #1.1, the data redundancy in the system increases, making
it harder for BEDD-O to find the optimal solution. When n
increases in Set #1.3, BEDD-O’s computation time increases
rapidly. This confirms the problem hardness of the BEDD
problem is NP-hard as proved in Section II-E. An interesting
phenomenon can be presented in Fig. 5(c). When h increases
from 1 to 3, the computation time taken by BEDD-O increases
because it needs to explore more potential solutions to find the
optimal one. As h continues to increase from 3, each data needs
to be stored on only a few edge servers to cover all users in
the edge storage system. Thus, the further increase in h makes
BEDD-O easier to find these edge servers.

Fig. 6 demonstrates the results in Set #2, where we can observe
the computation times of BEDD-A, HotDedup, Greedy, EDDE-
A, and Random clearly. Among the five approaches, BEDD-A’s
computation time is maximum while Random takes the least
computation time. BEDD-A’s computation time increases only
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Fig. 5. Computation time versus parameters in Set #1.

Fig. 6. Computation time versus parameters in Set #2.

Fig. 7. Performance over time in Set #2.1 (Θ = 0.6).

mildly when Θ or h increases, as shown in Fig. 6(a) and (c),
but significantly in Fig. 6(b). This again tells us n is the main
influence in the hardness of the EDD problem. Even so, BEDD-
A is highly efficient, taking only an average of 1.55 seconds
to find a solution in the largest-scale experiment with 250 edge
servers, as demonstrated in Fig. 6(b). Considering the significant
performance improvements produced by BEDD-A, BEDD-A is
the best option in large-scale BEDD scenarios.

Algorithm Convergence: As introduced in Section III-B,
BEDD-A iterates to find the final solution. The number of itera-
tions taken to find a solution as its convergence time to measure
the efficiency of the approach. Fig. 8 illustrates the convergence
of BEDD-A in Set #1.1 and Set #2.1, with a comparison with
the classical Polyak step size based subgradient algorithm [29],
a standard benchmark approach for LR-based approaches [30].
The results clearly show that BEDD-A converges much earlier
than its competitors in both Set #1.1 and Set #2.2, taking 52.31%

Fig. 8. Convergence of BEDD-A in Set #1.1 (Θ = 0.6, n = 20, h = 1) and
Set #2.2 (Θ = 0.6, n = 150, h = 2).

and 23.32% fewer iterations. This validates the usefulness of the
variable-length upper-bound updating mechanism specifically
designed for BEDD-A in Section III-B in accelerating the con-
vergence of BEDD-A. The high efficiency of BEDD-A allows
more frequent EDD to free up storage spaces on edge servers
rapidly. This is particularly important in the MEC environment
where data demands often vary quickly [22].

V. RELATED WORK

As the number of smart and mobile devices has grown ex-
ponentially at an increasing pace, storing data in edge stor-
age systems (ESSs) constituted by connected edge servers can
provide users with low-latency data access [5]. Unfortunately,
edge server’s storage resources are significantly limited by their
small physical size [31], [32], [33]. This sets a boundary on an
ESS’s storage capacity and the performance of the applications
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deployed on the ESS [7], [8]. To utilize ESSs cost-effectively,
data deduplication offers a promising solution and may save up
to 70% of an ESS’s storage resources [10], [11].

Cloud Data Deduplication (CDD), as a classic data reduction
technology, has been studied extensively [18], [19], [34]. The
main challenge in CDD is to maximize deduplication ratio. To
maximize deduplication ratio, CDD is performed at the chunk
level. Specifically, data stored at different cloud nodes are parti-
tioned into chunks so that duplicate chunks can be identified and
removed across these cloud nodes. To name a few representative
CDD approaches, Ni et al. [19] propose a content-defined chunk-
ing algorithm to accelerate data deduplication based on rolling
hash and content locality. Fu et al. [18] propose AppDedup,
an application-aware distributed deduplication framework that
strikes a trade-off between scalable deduplication throughput
and deduplication ratio by exploiting data similarity and data
locality. What’s more, few of researchers start to address the
imbalance problem raised by data deduplication. Xu et al. [34]
consider the read imbalance problem in cloud storage systems
caused by data deduplication. They propose a heuristic algorithm
to place data evenly across all the nodes with the aim to maximize
read balance. They assume that any two storage nodes are
reachable, which is unrealistic in the MEC environment.

Edge data deduplication (EDD) is a new problem fundamen-
tally different from the CDD problem because of the unique
constraints in the MEC environment, such as the capacity con-
straint, coverage constraint, latency constraint. These constraints
have raised many new challenges that have attracted researchers’
attention. Very recently, there is a tendency for researchers to
start focusing on the problem of edge data redundancy. Li et al.
[11] propose an approach named HotDedup that goes through
two phases to reduce edge data redundancy. First, it employs a
k-Minimum-Spanning-Tree algorithm to partition the target set
of files into two subsets, one to be stored on edge nodes and
the other in the cloud. Then, it identifies and removes duplicate
chunks across edge nodes based on a distributed hash-chunk
table. It considers the capacity constraint, but makes the same
assumption as existing CDD approaches - one can retrieve any
chunks from any edge nodes. In addition, it rebuilds data from
chunks retrieved from edge nodes, ignoring the critical latency
constraint in the MEC environment completely. A variant of
HotDedup is implemented as one of the competing approaches
in our experiments. The results presented and discussed in
Section IV demonstrate that its performance is fairly poor in
the MEC environment. Edge storage has widely acknowledged
as a promising solution for ensuring low data retrieval latency
and reducing backhaul network traffic.

Compared with cloud data redundancy, edge data redun-
dancy is even a more critical problem because of edge servers’
constrained storage resources. Unfortunately, it has yet to be
properly solved. In this paper, we attempt to tackle this new
balanced edge data deduplication (BEDD) problem, consider-
ing the unique constraints in the MEC environment plus the
need to balance storage spaces across edge servers. Cheng et
al. [9] propose a file storage strategy named Lofs, which employs
a three-layer hash mapping scheme to detect data similarity,
aiming to facilitate efficient data deduplication. However, this

strategy does not consider data popularity, i.e, data storage bene-
fits, which is a key characteristic in the MEC environment [11].
Thus, Lofs is not capable of balancing data retrieval latency
and data deduplication ratio. To fully accommodate the unique
characteristics of MEC, Luo et al. [28] propose a heuristic
EDD approach to maximize data deduplication ratio. However,
their approach does not consider data storage benefits and load
balancing. Most of the data will be placed on edge servers with
the most neighbor edge servers. This may serve all the users but
does not ensure minimum data retrieval latency for them. As
demonstrated in Section IV, the other critical limitation is that
it will be very difficult for these edge servers to accommodate
future data demands.

VI. CONCLUSION AND FUTURE WORK

In this paper, we introduce, motivate, formulate, and solve
the balanced edge data deduplication (BEDD) problem, taking
into account the data deduplication ratio, data storage benefit,
and storage space balance while fulfilling the unique constraints
in the MEC environment. We proved its NP-hardness and
designed two approaches to solve small-scale and large-scale
BEDD problems, respectively. Experimental results conducted
on a widely used EUA dataset demonstrated the significant
performance improvements of our approaches. In the future,
we will study the BEDD problem further by taking the network
robustness and data reliability into consideration.
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