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Synthesis of Robotic System Controllers Using
Robotic System Specification Language

Maksym Figat , Member, IEEE, and Cezary Zieliński , Senior Member, IEEE

Abstract—Robotic System Specification Language (RSSL) stems
from the embodied agent approach to robotic system design. It
enables the specification of both the structure and activities of a
multi-robot multi-agent robotic system. RSSL specification can be
verified and automatically transformed by its compiler into a six-
layered Robotic System Hierarchical Petri Net (RSHPN). RSHPN
models the activities and structure of the designed robotic system.
The automatically generated RSHPN is loaded into RSHPN Tool
modeling RSHPNs and automatically generating the controller
code. This approach was validated on several robotic systems. The
use of RSSL and RSHPN facilitates the synthesis of robotic system
controllers.

Index Terms—DSLs, MDE, parametric RSHPN meta-model,
robot model synthesis, Robotic System Specification Language.

I. INTRODUCTION

A S the European SPARC project [1] indicates Model Driven
Engineering (MDE) approach will play an important role

in the design of robotic systems. It provides a toolchain com-
posed of models, transformation mechanisms, and modeling
languages (i.e. General Purpose (GPMLs) and Domain Specific
(DSMLs) Modeling Languages). The MDE approach is ideal
for the whole development process of complex, multi-domain
systems, e.g. robotic systems. Unfortunately, MDE still faces
many challenges [1], [2].

The majority of existing robotics MDE approaches use inter-
nal DSMLs (relying on the syntax and the execution semantics of
their host languages) [2]. Internal DSLs are based on GPMLs,
such as UML [3] (e.g. RobotML [4]), SysML [5], graphical
DSMLs as used by SmartSoft [6]), and most popular in robotics
Ecore (32 MDE approaches out of 63 analysed in [2] have
used DSMLs based on Ecore. Internal DSMLs are bound to the
execution context [7], i.e. translator, of the host language, which
may result in a shift toward a platform-dependent model. In
contrast to internal DSMLs, external DSMLs define their own
syntax and semantics, thus typically rely on a fewer number
of concepts, moreover directly associated with the application
domain, and use simpler notation [8].
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Another problem often encountered in robotic MDE is the
lack of a holistic abstract view of the general robotic system.
Many of the existing model-based approaches focus mainly on
modeling specific subdomains and types of robot tasks [7]. 60%
of MDE approaches out of 63 analysed in [2] focus on terrestrial
robots and robotic arms, neglecting other robots, not to mention
a holistic view of a robot in general. As a result, the designer
has no guidance on how to build the system from components.
But the robot model should represent an integrated system, not
a set of components [9].

DSLs used in robotics focus mainly on the implementation
phase of the design process (93% of the papers surveyed in [7]),
and only to a negligible extent on system specification (only
14 of the papers surveyed in [7]). Those focused on specifying
robotic systems, are limited to only certain parts of the system, as
in the case of [10], where only a set of skills is considered. Out
of 137 articles analysed in [7] only 5 concerned DSLs taking
into account architectural patterns, i.e. the majority of MDE
approaches in robotics: 1) does not clearly guide the developer
in the design of a robotic system, and 2) does not separate
specification from implementation, thus rendering the utilised
architectural pattern obscure, as pointed out by [11]. 54 MDE
approaches out of 63 considered in [2] does not foster decoupling
between the modeling concepts and the implementation technol-
ogy. Moreover, the lack of explicit separation of the specifica-
tion and implementation phases implies: 1) inability to develop
platform independent model of a robotic system; 2) difficult
integration with other languages/tools; 3) reduction of possible
reuse of the developed model. From all this, we conclude that it
is necessary to develop an external DSML language to express
the activity of the whole robotic system. Here we propose a
language, i.e. RSSL, which uses the concepts from the field
of robotics, i.e. the embodied agent approach [12], [13], and
facilitates the determination of parameters necessary to obtain
the holistic model of a robotic system based on parameterised
(RSHPN) [13].

This paper is structured as follows. Section II presents the con-
tribution, Section III introduces the robotic system architectural
pattern and RSHPN meta-model. Section IV presents RSSL,
Section V describes the developed tools, Section VI focuses
on data translation, while Section VII describes the conducted
experiments. Section VIII presents the discussion and Section IX
draws conclusions.

II. CONTRIBUTION

In our latest works the activity of a whole robotic system
was modeled using RSHPN (Fig. 1). This article is an exten-
sion of work [13], where a parametric RSHPN meta-model
was proposed. Based on RSHPN meta-model and the provided
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Fig. 1. Stages of robotic system software development.

parameters the RSHPN model (modeling the activity of a whole
robotic system) emerges. The main contribution of this paper is
the developed RSSL language and its compiler. RSSL expresses
the parameters for a parametric RSHPN meta-model. Based on
the developed RSSL specification and the RSHPN meta-model,
the RSSL compiler generates the RSHPN model (Fig. 1) out of
which the source code of the robotic system controller is gener-
ated. RSSL is a DSL facilitating the specification of multi-agent
robotic systems RS . It is based on the concepts derived from
robotics, in particular it uses the Embodied Agent Approach
(EAA) [13], [14] (Section III). RSSL enables the specification
of a robotic system in a multi-layered and modular manner. It
first defines the specification of the system structure and then its
activities. RSSL uses a context-free grammar [15]. However, the
language compiler analyses context sensitive dependencies at
the semantic analysis stage. Moreover, RSSL is target language
independent. As the result of indirect translation (Section VI),
the RSSL specification is transformed into: ROS based Python
or C++ code.

III. EMBODIED AGENT APPROACH (EAA)

The methodology of designing multi-agent robotic control
systems [13], [14], [16] uses a general robotic system meta-
model separately describing system structure and activities.

A. Structure

A robotic system is composed of a set of embodied
agents [12], [13], [16] (Fig. 2). An embodied agent aj ∈ â (j –
name of the agent, â – a set of agents) consists of the following
subsystems: control subsystem cj , real receptors Rj,l ∈ R̂j (l –
name of a real receptor), real effectors Ej,h ∈ Êj (h – name of
real effector), virtual effectors ej,n ∈ êj (n – name of virtual
effector) and virtual receptors rj,k ∈ r̂j (k – name of virtual
receptor). Receptors Rj,l gather data from the environment and
deliver it, in the form aggregated by rj,k, to cj . Based on the
received data and the task cT j,c that is to be executed, cj
sends control commands, which are transformed by ej,n, into
a form accepted by Ej,h, in order to affect the environment.
Each subsystem sj,v contains: internal memory ssj,v , set of
input buffers xŝj,v and set of output buffers y ŝj,v . Input and
output buffers are used to communicate between subsystems
through communication channels, i.e. ssj,(v,h) ∈ ŝsj (channel
between sj,v and sj′,h). Virtual subsystems communicate only
with their associated real subsystems and the control subsys-
tem. Communication between agents occurs only between their
control subsystems. Internal memory and buffers are labeled

Fig. 2. General embodied agent structure.

systematically in [13]. The symbol consists of a center letter
indicating the type of the subsystem s, where s ∈ {c, e, r, E,R};
the left subscript denotes the buffer type: 1) x – input, 2) y –
output and 3) no subscript – memory; left superscript defines the
type of subsystem with which the buffer communicates; right
superscript denotes the discrete time stamp i; right subscripts
determine the names of: agent and subsystem.

B. Activity

The activity of a robotic system depends on the activities of its
agents, while the activities of agents results from the activities
of their subsystems. Each subsystem sj,v performs a task sTj,v
which involves selecting one of the behaviours sBj,v,ω to be
executed, where ω is behaviour designator. The behaviour is
selected based on the satisfied initial condition sfσj,v,α ∈ sf̂σj,v
(α – predicate designator) [14]. Each behaviour iteratively:
1) calculates the transition function sfσj,v,ω ∈ sf̂j,v (Eq. (1)),
takes as arguments the current data from the input buffers
xs
i
j,v ∈ s

xŝj,v and internal memory ssij,v , calculates the new
values and inserts them into the output buffers ys

i+1
j,v ∈ s

y ŝj,v
and the internal memory ssij,v:

(
ssi+1
j,v , ys

i+1
j,v

)
:= s,s′fj,v,ω)

(
ssij,v, xs

i
j,v

)
(1)

2) transmits ys
i+1
j,v to associated subsystems, 3) increments dis-

crete time counter i, 4) receives data from the associated subsys-
tems into xsij,v , 5) checks terminal condition sfτj,v,ξ ∈ sf̂τj,v and

error condition sf εj,v,β ∈ sf̂ εj,v , where ξ and β are designators
of those predicates. Behaviour iteration terminates when one
of those conditions is fulfilled. In such a case the subsystem
sj,v selects the next behaviour based on sTj,v . Each sfj,v,ω
can be canonically decomposed into partial functions, and each
partial function can be decomposed based on data availability
into overloaded functions.

For a pair of communicating subsystems, the communica-
tion mode must be indicated. There are nine communication
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Fig. 3. RSHPN expressing robot system activity.

modes, three each for sending and receiving subsystem. These
are: 1) non-blocking, 2) blocking, and 3) blocking mode with
timeout. In non-blocking mode the subsystem does not wait
for the other subsystem, but immediately resumes its activi-
ties, while in blocking mode it waits. A single parameterised
Petri net structure covering all three communication modes is
defined [13]. They are distinguished by the timeout parameter
(i.e. 0 – non-blocking; ∞ – blocking; value > 0 – blocking with
timeout).

C. RSHPN Meta-Model

The interaction of agents, subsystem tasks, behaviours, tran-
sition functions and communication modes is described by a
single RSHPN H in Fig. 3. Such a net is a bipartite graph, in
which nodes, i.e. places p (graphically represented by single
circles) and pages P (double circles), alternate with transitions
t (rectangles), all connected by directed arcs (arrows). The
pages represent lower level HPNs (drawn as panels connected
to their corresponding pages by dashed arrows). Each such
network has one input place pin and one output place pout.
Logical conditions C are associated with transitions, while op-
erations O label places. A correctly constructed H network is
safe, and therefore no more than one token (represented by
a black circle) can exist at any of its places. The H network
consists of the following layers (precise description is available
in [13], [14]):

1) Multi-Agent Robotic System Layer: Defines a single netH
representing the activities of each agent aj defined by individual
pages Pj (a page is a lower order Petri Net).

2) Agent Layer: Defines nets Hj represented by pages Pj .
Each net describes the activities of an agent aj , which consists
of several subsystems. The activities of each subsystem sj,v are
represented by an individual page sPj,v .

TABLE I
RSHPN META-MODEL PARAMETERS [13]

3) Subsystem Layer: Defines nets sHj,v represented by
sPj,v,. Each net describes the activity of sj,v switching between
behaviours sBj,v,ω represented by sPB

j,v,ω.
4) Behaviour Layer: Defines nets sHB

j,v,ω represented by
pages sPB

j,v,ω . Each net describes the activities of behaviour
sBj,v,ω executing operation sOB

j,v,ω,1 which calculates the tran-
sition function sfj,v,ω by using (1), page sPBj,v,ω,snd (defining
the communication mode of sfj,v when sending data from ysj,v)
and page sPB

j,v,ω,rcv (defining the communication mode of sj,v
when receiving data into xsj,v),

5) Action Layer: defines 3 Petri nets (further decomposed
into 2 layers [13], [14]): 1) sHB,f

j,v,ω – determining the transition

function sfj,v,ω (1), partial functions sfj,v,γ,ψ ∈ sf̂j,v,γ and
overloaded functions (from set sf̂j,v,γ,ψ), 2) sHB,snd

j,v,ω and 3)
sHB,rcv

j,v,ω – determining communication mode used by the sender
and receiver, respectively.

The meta-model H thus defined can be transformed into a
model of any robotic system (after specifying Petri nets with
variable structures and defining parameters from Table I).

IV. ROBOTIC SYSTEM SPECIFICATION LANGUAGE (RSSL)

A. Meta-Language

The RSSL grammar is expressed using EBNF. The RSSL
symbols are consistent with the meta-language: 1) 〈X〉 – non-
terminal symbol X , 2) X – terminal symbol X , 3) [ ]∗ – mul-
tiplicity from zero to infinity, 4) [ ]+ – multiplicity from one
to infinity, 5) [ ]? – either zero or one time, 6) | – alternative.
RSSL keywords and parameters are terminal symbols. They
are differentiated by using capital letters to express keywords
and lowercase letters to write parameters. Non-terminal symbols
use capital letters too, however they are enclosed within angle
brackets. RSSL blocks are preceded by a keyword and followed
by the same keyword prefixed by END_ (e.g. 〈X〉 defines a RSSL
block starting with the terminal symbol X and finishing with
END_X).

B. RSSL syntax

The simplified grammar of RSSL is presented in Fig. 4–
7. The non-terminal symbols of the grammar represent
the domain concepts which are expressed in the form of
language blocks, e.g.: 〈ROBOTIC_SYSTEM〉; 〈AGENT〉;
〈CS〉, 〈VE〉 and 〈VR〉 using 〈SUBSYSTEM〉 pattern;



FIGAT AND ZIELIŃSKI: SYNTHESIS OF ROBOTIC SYSTEM CONTROLLERS USING ROBOTIC SYSTEM SPECIFICATION LANGUAGE 691

Fig. 4. RSSL syntax of: (left) 〈ROBOTIC_SYSTEM〉 composed of agents
and inter-agent channels, (right) 〈AGENT〉 defining inner structure of an agent
aj , where j ≡ agent_id.

Fig. 5. RSSL syntax of: (left) 〈SUBSYSTEM〉 defining elements necessary
to specify sj,v activities, where v ≡ s_id, (right) 〈SUBSYSTEM_TASK〉
defining sTj,v in the form of a graph specifying the order of execution of sj,v
behaviours.

Fig. 6. RSSL syntax of: (left) 〈BEHAVIOUR〉block for sBj,v,ω , whereω ≡
beh_id, γ ≡ tran_fun_id, ξ ≡ term_cond_id and β ≡ error_cond_id,
(right-top) 〈CONDITION〉 a pattern used for defining conditions: (a) sfσj,v,α
– initial condition (α ≡ cond_id), (b) sfτj,v,ξ – terminal condition (ξ ≡
cond_id), (c) sfεj,v,β – error condition (β ≡ cond_id), and (right-bottom)
〈BUFFER〉 which is a pattern utilised for defining buffers: xsj,v , ysj,v and
ssj,v .

Fig. 7. RSSL syntax of: (left) 〈TRANSITION_FUNCTION〉 block
for sfj,v,γ , where γ ≡ tran_fun_id, (right) 〈PARTIAL_FUNCTION〉
block for its partial function sfj,v,γ,ψ , where ψ ≡ part_fun_id, and (bot-
tom) 〈INTER_AGENT_CHANNEL〉 block for aaj,j′ ∈ âa, where j ≡
snd_agent_id, j′ ≡ rcv_agent_id, T

y cj,j′ ≡ snd_buf_id, and T
x cj′,j ≡

rcv_buf_id.

〈SUBSYSTEM_TASK〉; 〈BEHAVIOUR〉; 〈CONDITION〉
and 〈TRANSITION_FUNCTION〉. Those blocks, presented
in the form of syntax diagrams, define the RSSL language. Order
of declaring the blocks associated with those non-terminal sym-
bols is not enforced by RSSL. Non-terminal symbols defining
partial functions and conditions contain code blocks 〈CODE〉
with code directly written in the target language (C++ or
Python).

RSSL blocks:

Fig. 8. Two-phase transformation of RSSL specification into target code based
on [13], [14].

1) 〈ROBOTIC_SYSTEM〉: (Left side of Fig. 4) – defines
a robotic system RS with a non-empty set of agents (i.e. â) and
a set of inter-agent channels (i.e. âa).

2) 〈AGENT〉: (Right hand side of Fig. 4) – defines agent
aj where j ≡ agent_id. It specifies the agent’s name j, a single
control subsystem (cj), a set of virtual effectors (i.e. êj), a set
of virtual receptors (i.e. r̂j), a set of intra-agent communication
channels âaj , i.e. channels utilised for communication between
subsystems of aj , and if necessary the auxiliary files and data
types.

3) 〈CS〉, 〈VE〉, 〈VR〉: Use the same 〈SUBSYSTEM〉 pat-
tern (left side of Fig. 5) to model the subsystem activity and
structure. It specifies: 1) v – the subsystem name, 2) frequency at
which behaviours of the subsystem iterate, 3) sTj,v – subsystem
task (where j indicates the agent name), 4) sB̂j,v – a non-empty
set of behaviours, 5) sf̂σj,v – a set of initial conditions, 6) sf̂τj,v –

a non-empty set of terminal conditions, 7) sf̂ εj,v – a non-empty

set of error conditions, 8) sf̂j,v – a non-empty set of transition
functions, 9) ssj,v – an internal memory buffer, 10) xŝj,v , y ŝj,v
– sets of input and output buffers. All condition types are defined
using 〈CONDITION〉 pattern (right-top of Fig. 6), while buffer
types using 〈BUFFER〉 pattern (right-bottom of Fig. 6).

4) 〈SUBSYSTEM_TASK〉: (Right hand side of Fig. 5)
– defines the task sTj,v executed by a subsystem sj,v . The
〈SUBSYSTEM_TASK〉 block defines three different sets: 1)
a set of nodes defined within 〈NODES〉 block, 2) a set of edges
defined within 〈EDGES〉 block, and 3) a set of connections
defined within 〈CONNECTIONS〉 block. The sTj,v in RSSL
is a graph (with specified initial node) connecting alternately
elements from the first two sets, i.e.: set of nodes defined in
〈NODES〉 block and a set of edges defined in 〈EDGES〉 block.
The elements from different sets are connected with each other
by a connection defined in the 〈CONNECTION〉 block (as
presented in exemplary listing on right hand side of Fig. 9). Each
node is associated with a single behaviour, while each edge with
a single initial condition. A connection defines a switch between
two behaviours when the condition associated with the edge is
satisfied. As a result, sTj,v defines the subsystem sj,v activities
by specifying how it switches between behaviours on the basis
of initial conditions.

5) 〈BEHAVIOUR〉: (Left side of Fig. 6) – defines a single
sBj,v,ω or a set of behaviours sB̂j,v,ω (separated by semi-
colons) for sj,v . For each behaviour it specifies its name ω and
three components defined within sj,v , i.e. 1) transition function
sfj,v,γ ∈ sf̂j,v , 2) terminal condition sfτj,v,ξ ∈ sf̂τj,v and 3) error

condition sf εj,v,β ∈ sf̂ εj,v,β .
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Fig. 9. RSSL specifications: (top left) robotic system RS defin-
ing a set of agents, i.e. â = {aj1, aj2, aj3}; (bottom left) agent
aj3 composed of subsystems ŝj3 = {cj3, ej3,ve1, ej3,ve2, ej3,vr1};
(right) task cTj3,cs consisting of three triples: cTj3,cs =
{(cBj3,cs,behaviourId1,

cfσj3,cs,init_condition1,
sBj3,cs,behaviourId2),

(cBj3,cs,behaviourId2,
cfσj3,cs,init_condition2,

cBj3,cs,behaviourId3),

(cBj3,cs,behaviourId3,
cfσj3,cs,TRUEc,

cBj3,cs,behaviourId1c)}.

6) 〈TRANSITION_FUNCTION〉: (Left of Fig. 7) –
defines a transition function sfj,v,γ , represented by (1),
specified for sj,v , which is utilised as a parameter de-
scribing a behaviour sBj,v,ω ∈ sB̂j,v,ω . The transition
function sfj,v,γ is composed of a set of partial func-
tions (defined within 〈PARTIAL_FUNCTION〉). While
〈PARTIAL_FUNCTION〉 (right of Fig. 7) – defines a partial
function s,s′fj,v,γ,ψ , i.e. specifies: 1) the output buffer (based
on which the canonical decomposition of transition function is
done) to which the calculated data is inserted, 2) the partial
function name, and 3) a sequence of input buffers (separated
by a comma) being the arguments of the partial function. De-
composition of the partial function into overloaded functions
is done by determining multiple 〈PARTIAL_FUNCTION〉
blocks defining overloaded functions with the same name, but
with a different set of input buffers and different implementa-
tions. An overloaded function is needed to compute a new value
for the output buffers based on the currently available data from
a subset of the input buffers. Each partial function by default
has access to the internal memory buffer ssj,v , thus it is not
necessary to specify it within the function definition.

7) 〈INTER_AGENT_CHANNEL〉 Block: (Bottom of
Fig. 7) – defines an inter-agent communication channel
aa(j,j′) ∈ âa specifying communication between two agents,
e.g. aj and aj′ . For each agent a transmission buffer and
a communication mode is specified. Currently in RSSL three
possible communication modes are distinguished: MODE ∈
{BLOCK,NON_BLOCK,BLOCK_TIMEOUT}. While
block 〈INTRA_AGENT_CHANNEL〉 defines communicat-
ing channel ssj,(v,h) ∈ ŝsj between two subsystems, e.g. sj,v
and sj,h, residing in the same agent aj .

V. DEVELOPED TOOLS

Two different tools to support the design of robotic systems
were developed: 1) the RSSL compiler – verifies the correctness
of the provided specification and transforms the RSSL specifi-
cation into RSHPN specification, and 2) RSHPN Tool – used

to load the RSHPN specification, extend it, and to generate
controller code (both in C++ and Python). As the RSHPN Tool
has already been presented in detail in [13], [14] and in the
video [17], only the RSSL compiler is discussed below. The
task of the RSSL compiler can be divided into two stages: 1)
analysis of the supplied specification, and 2) generation of the
RSHPN specification.

A. Analysis of the Specification

The aim of the first stage is to detect errors by performing:
lexical, syntactic and semantic analysis. Since the context-free
grammar of RSSL provides freedom to the designer to define
blocks in a fairly arbitrary configuration, there is a need to equip
the RSSL compiler with contextual correctness analysis assuring
that: 1) there are no name collisions, 2) the referred concepts
are already specified, 3) communication channels are correctly
specified, 4) the multiplicity of the concepts used is correct etc.

B. RSHPN Generation

In the second stage the RSSL compiler transforms the RSSL
specification into the RSHPN specification. Thus the parameters
specified in Table I are retrieved from the RSSL specification and
then two sets of XML files are generate, based on them and the
RSHPN meta-model. One type of file expresses the structure of
the Petri net, i.e. appropriately parameterised places, transitions,
and edges (indicating the activity of the robotic system), and the
other specifies the structure of the designed robotic system.

VI. DATA PROCESSING – TRANSLATION

The general scheme of generation of a RSHPN model and
the translation of the model into target code is shown in
Fig. 8. The data processing pipeline consists of two-phases: 1)
RSHPN model generation based on a set of parameters provided
by the RSSL specification and based on a general RSHPN
meta-model, and 2) model-to-code transformation executed by
RSHPN Tool [13]. Together they produce the target code, i.e.: 1)
C++ ROS code [14], or 2) Python ROS code [13] – of a robotic
system controller. The idea of extraction of parameters from the
RSSL specification follows directly from Section IV-A. Fig. 9
illustrates how the parameters are extracted from the RSSL spec-
ification, while Fig. 10 shows how the corresponding RSHPN
layers are generated from them. The detailed transformation be-
tween RSHPN model and controller code was presented in [13],
[14].

VII. EXPERIMENTS

In order to verify the suitability of RSSL for the specification
of robotic systems, several systems of different complexity
were created, viz. 1) a real table-tennis-ball collecting robot
with a variable controller structure [13] (Fig. 11(a), 2) simu-
lation of a LWR4+ manipulator tracing circles [14] (Fig. 11(b),
[17]), 3) simulation of the Velma robot transferring balls [13]
(Fig. 11(c) and video1), and 4) a simulated and real Velma robot
visually tracking an object (Fig. 11(d) and video: simulated2 and
real3). The two first systems were created from scratch, while for

1Ball transfer: www.youtube.com/watch?v=p5yqGTdLRzo
2Simulated visual tracking: www.youtube.com/watch?v=vL6b6UMRb3E
3Real visual tracking: www.youtube.com/watch?v=S4-Rr27fZzQ

www.youtube.com/watch{?}v$=$p5yqGTdLRzo
www.youtube.com/watch{?}v$=$vL6b6UMRb3E
www.youtube.com/watch{?}v$=$S4-Rr27fZzQ
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Fig. 10. Automatically generated RSHPN: (left) H based on specification
(top-left Fig. 9), (right) cHj3,cs (as cPj3,cs from Hj3) based on specification
(right Fig. 9).

Fig. 11. (a) Ball collector, (b) LWR4+ manipulator, (c) Velma robot transfer-
ring ball, (d) visual object tracking.

two others a higher control layer was specified to control already
existing Velma robot controller [18], both real and simulated.

The controller for each of the above experiments was ex-
pressed as an RSSL specification and then converted into the
RSHPN model. Then, using the RSHPN Tool (as shown in
video [17] or in [13], [14]), the resulting RSHPN model was
automatically transformed into the controller source code (either
Python or C++). The number of parameters that need to be
specified in order for the meta-model to be transformed into
a model, and space limitation, do not allow these specifications
to be presented here. Nevertheless, Fig. 12 shows an excerpt
from the RSSL specification defining the structure (Fig. 13)
of the table-tennis-ball collecting robotic system. The platform
was equipped with omnidirectional wheels, electric motors,
two cameras, four sonars, a microphone and a controlled ball-
sucking device. The robot performed the task autonomously or
teleoperated (using voice commands). The result was a system
consisting of six agents (a detailed description of the system
activities is presented in [13]).

Fig. 12. Excerpt from the RSSL specification of the ball collector (Fig. 11(a)),
where NB ≡ non-blocking mode, ... indicate further hierarchical definition of
the concept.

Fig. 13. Structure of the ball collecting robotic system generated based on the
RSSL specification from Fig. 12.

VIII. DISCUSSION

A. Complexity Comparison Between RSSL and RSHPN

Two equations were proposed to compare the complexity of
the model expressed using RSHPN (2) to that expressed with
RSSL (3). Omodel is examined by calculating a sum of: 1) all
the necessary elements (places/ pages, transitions, and edges),
and 2) the number of their parameters, needed to define RSHPN
H. Omodel examines the total number of terminal symbols used
to specify the robotic system using RSSL.

Omodel(RSHPN)=
∑
aj∈â

⎡
⎣ ∑
sj,v∈̂sj

[
|sB̂j,v| ·

(
112 · |y ŝj,v

+81 · |xŝj,v|+2|xŝj,v | · (21 · |y ŝj,v|+23) + 148
)
+10 · |sf̂σj,v

]

+35 · |ŝj

⎤
⎦+29 · |â|+14 (2)
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Omodel(RSSL)=
∑
aj∈â

⎡
⎣ ∑
sj,v∈̂sj

[
10 · |sB̂j,v|+13 · |sf̂σj,v|

+|sf̂τj,v| ·
[
(|y ŝj,v|+ 1) ·

(
8 · 2|xŝj,v |+|xŝj,v| · 2|xŝj,v |+1

)]

+6 · (|sf̂τj,v|+|sf̂ εj,v|)+5 · (|xŝj,v|+|y ŝj,v|)+3 · |sf̂j,v|
]

+18 · |ŝj |+18 · |ŝsj |

⎤
⎦+7 · |â|+18 · |âa|+3 (3)

Although in each case different concepts are used the work-
load of specifying them is similar. For a fairly simple system,
consisting of: 5 agents, each having exactly 5 subsystems, each
containing exactly 5 behaviours, 5 input and 5 output buffers,
the resulting RSHPN contains a total of 173409 elements, while
RSSL specification contains 27188 terminal symbols. It is nearly
6 times less compared to the RSHPN size. This result has been
obtained assuming: 1) |sf̂σj,v| = |sBj,v|, and 2) each partial func-
tion is decomposed into two overloaded functions. Nevertheless,
in addition to the symbols necessary to define the above pa-
rameters, the RSSL language syntax includes auxiliary terminal
symbols increasing the readability of the specification, i.e.: com-
mas, parentheses and semicolons. Ultimately, for |xŝj,v ≥ 14
the RSSL becomes more complex than RSHPN representation
of the system. This is due to the proliferating number of auxiliary
symbols 2|xŝj,v | · (|xŝj,v|+ 1) when 2|xŝj,v | combinations of
overloaded functions are considered. It is possible to reduce
the complexity of the RSSL language syntax, e.g. by removing
auxiliary symbols, but at the cost of reduced readability of the
specification.

B. Comparison Between RSSL Specification and
Automatically Generated Controller Code

An RSSL specification consists of intrinsic RSSL code and
code blocks containing Python or C++ code. The latter contain
invocations of library code or legacy software. The capability
of combining the two types of code significantly simplifies the
enhancement of preexisting systems, e.g. Velma. However, even
in the case of designing a system from scratch the definition of
transition functions and the diverse conditions is usually done
using the underlying implementation language or an existing
framework, e.g. ROS. The use of RSSL does not force the
developer to posses excessive ROS or programming skills. The
user-defined code can be just a simple list of consecutively
executed instructions. Due to this, the developer can concentrate
mainly on determining the structure and the activities of the
robotic system, treating the programming aspects as of sec-
ondary importance. Table II shows the significant benefits of
RSSL language. Several conclusions can be drawn from it. The
more complex the structure of the system under development,
the proportionally more controller code is generated (excluding
user-defined code). This is particularly evident in the first (17
times benefit) and last experiment (8.63 times benefit). In the
case of the third experiment for which only a single subsystem
was generated, the benefit is the smallest, i.e. 6.85 times.

The more complex the robotic system, the more code needs
to be defined within the code blocks in RSSL specification. In
the first and third experiment the relation between user-defined
code (Python/C++) and intrinsic RSSL code is 9.86 and 4.98

TABLE II
COMPARISON OF GENERATED CONTROLLERS: (NO 1) BALL COLLECTOR, (NO

2) LWR4+ MANIPULATOR, (NO 3) VELMA TRANSFERRING A BALL, (NO 4)
VELMA VISUALLY TRACKING AN OBJECT

respectively. This is because both experiments used additional
external systems, tools and libraries. Therefore, it was necessary
to define additional code in INCLUDE blocks. Furthermore, for
both experiments it was necessary to define many overloaded
functions which significantly increased size of the user-defined
code in RSSL specification.

Furthermore, as can be seen from the second experiment, it is
possible to develop a library of overloaded functions. As a result,
the designer’s task would come down only to selecting the
appropriate transition function from the library, and as a result,
the code necessary to define an overloaded function would be
reduced to a single function call. The advantage of this approach
would be the reusability of existing code, while minimising the
work done by designer.

C. Applicability of RSSL to Complex Robotic Systems

RSSL is a tool resulting from a long evolution of robotic
system design methods elaborated at our laboratory [16]. This
evolution not only improved and extended the concepts under-
lying RSSL but tested their utility on fairly complex systems,
e.g.: a controller of an industrial robot having a serial-parallel
manipulator structure [19], a two-manipulator robotic system
solving the Rubic’s cube puzzle [20], robots utilising position-
force control [21], visual servoing [22], [23], stigmergic com-
munication of independently acting robots [24], multi-robot
system acting as a fixture in aircraft part machining [25] and
robot companion having variable controller structure [26]. The
concepts underlying RSSL, which were tested on those sys-
tems, are fairly independent of each other, thus they support
decomposition facilitating robot system design. RSSL by using
those concepts provides the metamodel being the scaffolding for
any robotic system. Metamodel parameters, when appropriately
defined, transform this metamodel into a model of a particular
system. Definition of each of those parameters is independent
of the definitions of others. Thus an increase of complexity of
the designed system neither introduces extra complexity into the
design process nor increases the complexity of the task. It simply
enlarges the number of the parameters that have to be defined.
Hence, RSSL scales well for large systems.

IX. CONCLUSION

RSSL facilitates the specification and implementation of
robotic systems at different levels of abstraction, starting at the
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robotic system level and ending with the inter subsystem com-
munication modes. The RSSL specification of a robotic system
is decomposed naturally into structure and activities of each of
its subsystems. The thus produced specification is subsequently
translated into the code of a robotic system controller ready to
be compiled by a general purpose language compiler. The RSSL
specification defines all parameters necessary to obtain RSHPN
model from parameterised RSHPN meta-model. It can be seen
from the experiments that the introduction of the parameterised
RSHPN meta-model has made the process of creating robotic
system controllers easier and more efficient. The designer’s task
is only to define the relevant parameters defining the structure
and activity of the system using only concepts from the domain.
Obviously this still requires some effort from the designer, but
as it was shown, a significant benefit of the proposed approach
is apparent. Other elements of the system, e.g. those related to
the RSHPN-based approach, are automatically generated so that
the designer does not have to focus on them at all.

Using our design methodology, it is possible to develop
a robotic system controller, either as a whole or limited to just
a fragment of the controller communicating with an already
existing fragment of the system. There is no need to design
an entire robotic system from scratch each time – it suffices to
extend the existing controller with higher layers, so it requires the
development of a separate controller that adequately interfaces
with the existing controller. Given the multitude of existing
ROS-based robotic systems, the proposed approach based on
RSSL is an attractive option when designing robotic systems
based on ROS.
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[14] M. Figat and C. Zieliński, “Robotic system specification methodology
based on hierarchical petri nets,” IEEE Access, vol. 8, pp. 71617–71627,
2020.

[15] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: Princi-
ples, Techniques, and Tools, 2nd ed. Boston, MA, USA: Addison-Wesley
Longman Publishing, 2006.
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