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Neural Joint Space Implicit Signed Distance
Functions for Reactive Robot Manipulator Control

Mikhail Koptev
and Aude Billard

Abstract—In this letter, we present an approach for learning a
neural implicit signed distance function expressed in joint space
coordinates, that efficiently computes distance-to-collisions for ar-
bitrary robotic manipulator configurations. Computing such dis-
tances is a long standing problem in robotics as approximate
representations of the robot and environment geometry can lead
to overly conservative constraints, numerical instabilities and ex-
pensive computations — limiting real-time reactive control and
task success. Leveraging GPU parallelization and the differentiable
nature of the proposed distance function allows for fast calculation
of gradients with respect to the neural network inputs, providing
a continuous repulsive vector field directly in joint space. We show
that the learned high-resolution collision representation can be
used to achieve real-time reactive control by i) formulating it as a
collision-avoidance constraint for a quadratic programming (QP)
inverse kinematics (IK), and ii) introducing it as a collision cost in
a sampling-based joint space model predictive controller (MPC).
For a reaching benchmark task with a 7DoF robot and dynamic
obstacles intentionally obstructing the robot’s path we achieve
average 250 Hz control frequency with QP-IK and 92 Hz with MPC,
showing an accelerated performance of 15% for QP-IK and 40%
for MPC over baseline distance computation techniques.

Index Terms—Collision Avoidance, Reactive and Sensor-Based
Planning, Model Learning for Control.

I. INTRODUCTION

OTION planning is a crucial element of robotic control

and has continuously attracted the interest of researchers
throughout the years. Industrial, retail, and lately, domestic
scenarios require robotic motion to satisfy certain constraints,
such as energy minimization, smooth trajectories, goal-reaching,
and orientation keeping. Yet, the most important constraint
to satisfy in any motion planning task is to avoid collisions
and self-collisions. Standard techniques avoid such collisions
by computing distances between geometric approximations of
the robot’s body segments represented as spheres, ellipsoids,
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swept volumes and even meshes [1]. One can then formulate
constraints or costs for the motion planning algorithm of choice
based on the computed minimum distances [2].

While avoiding self-collisions is important, handling external
collisions, i.e., collisions between the robot and its environment,
is essential for a robot that must operate in constrained and
dynamic environments. These collisions can be categorized into
two types: collisions with static obstacles, such as furniture or
walls, and collisions with moving obstacles, including other
robots or humans. Avoiding moving obstacles is crucial for
consumer technology, where robots should operate in an envi-
ronment shared with humans, which assumes that the robot must
always be prepared to avoid humans in its workspace to prevent
possible injuries. With the advent of compliant collaborative
robots equipped with force/torque sensors and robust vision sys-
tems, a robot can halt its motion when a collision is detected [3].
Yet, advanced collaborative systems are expected to continue
task execution while avoiding any type of obstacles in both a
preemptive and reactive manner. Additionally, certain scenarios
in human-robot interaction require maintaining direct contact
between the robot and humans [4], [5]. Thus, it is essential
to have a notion of a repulsive vector field and corresponding
tangential plane to handle the contact. Having those defined
directly in joint space helps to plan more efficiently.

Previous works [6], [7] demonstrated that self-collisions of a
redundant system could be represented as a static boundary in the
high-dimensional joint space of a robot. When this boundary is
approximated as a continuously differentiable function of class
C!, the gradients with respect to the input robot configuration
essentially represent a repulsive vector field directly in the joint
space of the robot; that repulsion can be used as a constraint in a
control optimization routine. In this letter, this idea is extended
to account for collisions with obstacles in the robot’s workspace.
We note that static self-collision boundaries in joint space can
be interpreted as implicit signed distance-to-collision functions,
if the robot state space is complemented with the Euclidean 3D
space. We present a novel approach for constructing an implicit
distance function for collision evaluation between a robot in
arbitrary configurations and any point in the three-dimensional
workspace of the robot. The learned neural model allows for
efficient and highly-parallelizable batched distance and gradient
queries via GPU.

The problem of collision avoidance is generally treated as
a constraint in a path-planning routine [8]. Optimization and
collision checking computations are unfeasible to perform in
real-time, so optimal trajectories are computed offline before
execution. However, if the obstacles near the robot are mov-
ing unpredictably, the control must be reactive and adjust the
trajectory at execution time.
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In this letter, we assume the obstacles to be dynamic and,
hence, investigate the applicability of the learned distance func-
tion to achieve real-time performance with two state-of-the-art
reactive control methods: i) a collision-aware QP (quadratic
program)-IK (inverse kinematics) solver that optimizes for the
next immediate step and has shown real-time performance for
high-dimensional humanoid robots [6], [9], and ii) a sampling-
based MPC that has a short look-ahead horizon [10], [11]. Both
methods are reported to generate solutions with at least 100 Hz
frequency, which should allow real-time reactive obstacle avoid-
ance.

Paper organization: In Section II we summarize related works
for collision distance computation and describe their usage and
applicability to reactive motion planning approaches. Section III
presents the mathematical problem formulation, including as-
sumptions, definitions and goals of this letter. In Section IV we
present our proposed approach for learning a neural joint space
implicit signed distance function (Neural-JSDF) for a given
robot. Subsequently, Section V covers the application of the
proposed Neural-JSDF to a QP-IK solver and sampling-based
MPC approach for reactive control. Finally, we evaluate the per-
formance of these two reactive control techniques in simulation
and with real robotic experiments in Section VI.

II. RELATED WORKS

Collision avoidance between the robot and arbitrary objects in
its workspace, including links of the same robot, requires having
the notion of distance between the robot body and the obstacles.
For situations when a robot operates in a static environment, it
is possible to pre-compute the Euclidean Distance Transform
(EDT) and acquire the corresponding collision map. However,
to account for moving obstacles, EDT must be adjusted on
every change of obstacle position, which is unfeasible from
a computational perspective [8]. Another approach to handle
collisions is via proprioceptive sensors, which could include
monitoring electrical current in robot’s drives or comparing mea-
sured torques with the control law [3]. Such methods help detect
contact reliably but can not be used in path-planning or reactive
control scheme when we seek to preemptively avoid collisions.
State-of-the-art distance computation approaches seek to find a
trade-off between accuracy and computation efficiency in order
to be used for fast real-time queries.

The most straightforward way to calculate the distance be-
tween the robot’s body and an obstacle would be to calculate the
minimal Euclidean distance between meshes of the robot and
the object in question. However, from a computational perspec-
tive, direct collision queries comparing the distance between
each pair of robot-obstacle points are not feasible, as precise
meshes of robot and environment objects may contain hundreds
of thousands of vertices. Typically the geometric representa-
tion of colliding bodies is simplified with bounded volumes,
convex hulls, or even simple spherical capsules, allowing for
a trade-off between exact representation and collision query
speed [12], [13]. Further, a vector connecting the closest points
can be treated as a repulsion in task space and translated to the
joint space using Jacobian transpose projection or formulating
the task-space repulsion as a cost in optimization-based con-
trol schemes [14], [15]. Nevertheless, it has been shown that
such geometric primitive approximations may lead to overly-
conservative constraints that can interfere with the task or lead
the robot to a collision, numerical instabilities and an increase in
computational complexity as the number of obstacles increases;

limiting their use for real-time reactive control [16], [17], [18].
To alleviate some of these issues, there has been a recent spike
in works to account for collisions directly in the joint space
of a robot [19], [20], [21]. This addresses some issues with
kinematic-based collision detection, such as IK-caused singu-
larities and local minima. Additionally, having the distance
expressed in joint space presents an alternative to task-space
approximation with geometric primitives, as it becomes possible
to compute repulsion directions directly in the joint space of the
robot, which allows to use the tangent plane in joint space.

With the advent of parallelization for ML techniques, several
approaches have been proposed to learn those distance functions
in hopes to achieve and boost real-time performance. For static
scenarios or self-collisions, there are works to represent the
collision boundary as a Support Vector Machine (SVM), or
Neural Network (NN) [6], [7], [22] learned by sampling the
joint space of the robot. Notably, several works rely on active
learning and online sampling to adjust the model learned for a
static environment to a dynamic one [19]. Itis further extended to
use the gradients of the learned model in various path-planning
pipelines [20]. However, even for a low-DoF manipulator, the
reported update step (0.27 seconds) is too large to be used in
real-time. A NN provides seamless batching and parallelization
that significantly speeds up collision detection. In [23], authors
present a trained model that can predict the occupancy grid
using scene point-cloud and joint configuration of a robot as
inputs. The learned model provides high collision detection rate
and good performance in case of batched queries. However, the
model is reported to be unsuitable for real-time control due to
slow point-cloud processing. The authors of [21] learn collisions
as a function of the combined robot state and parametrized
environment state. They further show its application in paral-
lelized rapidly-exploring random tree planner (RRT), proving
that such a method can be more effective than traditional col-
lision checking for batched queries. Additionally, the authors
leverage the differentiability of the model to adjust the path
planning. Our work can be seen as a further abstraction of this
method for arbitrary obstacles in an unstructured environment,
with application to real-time control algorithms.

III. PROBLEM FORMULATION

We consider a robotic manipulator with m degrees of free-
dom and K links, whose state is described by joint angles
q=1Iq%,...,q™] € C. All joints of the robot are revolute type
and bounded by joint-limits ¢ € [¢min, ¢max) thusqg € C C R™.

In this work, we seek to control a robotic manipulator in joint
space to reach a task-space goal 2* € SE(3) for its end-effector
that could be pre-defined or generated by a task-space control
law, all the while handling collisions between the robot’s body
and static and dynamic objects in real-time; i.e., with a desired
control loop frequency of >100 Hz.

A. Assumptions & Definitions

Let us assume B C R? to be the set of points that geomet-
rically describe the physical body of the robot. The points of
the k-th link of the robot create subsets B, C B, k=1,..., K.
The robot’s kinematics is known, with forward kinematics (FK)
denoted by f:C x B — R?, mapping a robot configuration
g € C and arbitrary robot body point x € B3 to a workspace point
f(q,x) € R3. We can define minimal distances between the k-th
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link of the robot and arbitrary point ¥ € R? in the workspace:
di(g,y) = min [[f(g, z) —y]|. (1
By

The workspace of the robot contains static and dynamic obsta-
cles described by the sets of points @° C R? and O¢ C R?,
respectively. Dynamic obstacles can be generalized and include
static, such that @° C O%, hence we will herein refer to the
obstacle setas © C R3 regardless of obstacles being static or dy-
namic. This definition allows us to write down minimal distances
between the robot in configuration ¢ and the environment as:

dmin (Q) = I}CHJI dk? (Qa y)> (2)

where y € O are points belonging to obstacles in the workspace.
Naturally, if we seek to avoid collisions between the robot and
the environment with a given margin /, any command position
¢ must satisfy the condition dyyin(q) > 1.

B. Goals

Two main goals are defined to achieve our objective:

® The first goal of this letter is to learn a regression function
I'(¢, y) to approximate a K -dimensional minimal distance
vector d(q,y) = [d1(q,y), - .., dk(q,y)] with each entry
representing the minimal distance between the k-th link
and and arbitrary 3D point. Function I'(q, y) represents
a distance field in the robot’s workspace depending on

the joint configuration of the robot. Additionally, %‘gy)

is a vector field defined in the joint space of the robot,
providing information on the direction to (and away from)
potential collisions. We provide the theoretical derivation
and properties of the proposed distance field I'(¢, y) as well
as the learning architecture and evaluation in Section IV.

e The second goal is to apply the learned function I'(q, y)
and its gradient to enhance reactive control methods, by
i) formulating a collision-avoidance constraint in a QP-
based IK controller [6], and ii) formulating a collision-
avoidance cost to leverage the parallelization properties
in a sampling-based MPC approach [11]. Corresponding
method formulations are described in Section V. Real-time
experiments reported in Section VL.

IV. LEARNING THE NEURAL JOINT SPACE IMPLICIT SIGNED
DISTANCE FUNCTION

This section expands ideas from our previous work [6] and [7]
to allow for distance evaluation between the robot and an arbi-
trary point in the robot’s three-dimensional workspace, along
with demonstrating how to construct the corresponding implicit
signed distance field.

A. Implicit Signed Distance Field

Let us consider the expanded state-space R™ x R?, consist-
ing of the robot state ¢ € R™ and a Euclidean pointy € R in the
robot’s workspace. For each expanded state, a unique minimal
distance exists between the robot in configuration ¢ and the 3D
point at position y. Hence, a static implicit distance field function
exists in this space.

We propose to build a neural representation I'(g, y) : R™ X
R? — RX, by learning the minimal distances between the
robot’s links and arbitrary points in the workspace. For typi-
cal redundant robotic manipulators m < K. For example, the
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Fig. 1.  Illustration of the learned implicit distance isosurfaces I'(¢, y) = 0 cm
(solid) and I'(q,y) = 10 cm (transparent) for various configurations of the 7
DoF (Degrees-of-Freedom) Franka Emika Panda robot.

L
RelUconcat
e
@ =) 5
@in ) o
> 0 "
i) as, ou

Fig. 2. (left) Mesh representation of the Franka Emika, coloured segments
represent the K = 9 links, and (center) sphere approximation (with S = 55) of
the robot geometry, (right) NN Architecture for the I'(q, y) function, featuring
positional encoding and skip-connection option.

7 DoF Franka Emika Panda robotic manipulator can be de-
fined with m =7 and K =9 (excluding the gripper fingers
from the model), see Fig. 2. The resulting function I'(¢q,y) =
[['q,...,T'k] should represent minimal distances d(q,y) =
[d1(q,y),--.,dk(q,y)] between the point and each robot link.
The partial derivative of the vector-valued distance field I'(q, y)
with respect to ¢ results in the following Jacobian matrix,
Jac,(I'(q,y)) € R™*E,

(g, y - "
sacy (Mg = 28— | ,
0qm T 0qm

3)

where each k-th column vector of Jac,(I'(¢,y)) cor-
responds to the gradient of each k-th scalar distance
function I'y(g,y) with respect to ¢; ie., Jacy(I'(q,y)) =
Voli(q,y),...,ViTk(q,v)] and VT (q,y) € R™ as,

OT4g. Ori(g.y) .
Vilk(g,y) = ’“8(3 Doy el @

i=1

with ¢; as the unit vector indicating the i-th dimension. Such
gradient functions help explain how each joint influences the
distance-to-collision of obstacle y with the k-th link. Each k-th
distance function, I'y(g,y), can be considered an admissible
potential field for obstacle avoidance [24], [25] in joint space.
Consequently, V' (¢, y) becomes a repulsive joint space vec-
tor field, which is helpful for control [26].

Therefore, learning I'(¢g,y) will enable the evaluation of
distances between the robot and points on the obstacles and
using V,I'(g, y) to represent the repulsive vector field. Ideally,
I(q,y) = [di(q,y), .. .,dx(q,y)] for any combination of state
q within joint-limits and point ¥ in the robot’s workspace. A
Multi-Layer Perceptron (MLP) is used to learn I'(¢, y). The data
collection procedure and network architecture are discussed in
the following subsections.
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B. Dataset Generation

Given the exact geometry of the robot’s body (for example
with 3D CAD models or URDFs) allows for the collection of a
synthetic dataset of exact distance values dj (g, y), as in (1), for
various ¢ and y at training time. Each sample contains the robot
state g, workspace point y, and target vector d = [dy, . . ., dk]|
consisting of minimal distances between links of the robot and
point y. Similar to [6], we perform a uniform random sampling
within the joint limits of the robot to generate the training dataset.
The joint limits for training data are expanded by 5% in both
directions to aid generalization for predictions close to joint
limits. For each sampled robot configuration ¢, 1000 various
workspace points y are collected. The final dataset contains
five million entries, where 50% of configurations are collided
or close to collision, meaning that 3k : di(g,y) < 1 cm, and
50% are configurations with a minimal distance exceeding 1 cm,
such thatVk, di(q,y) > 1 cm. Suchbalancing allows for a better
approximation of the null iso-surface, which represents the exact
geometry and surface of the robot’s body. The collided half of
the dataset is balanced to include collisions for links in equal
proportions. Non-colliding data points are distributed uniformly
between 1 cm and 100 cm from collision. Another set of one
million data points with non-modified joint limits are collected
for testing.

Implementation: We compute distances between points and
triangulated surfaces with code by [27] in combination with
the fast collision checking library (FCL) [28] to calculate the
signed distance between the mesh of the robot and the point in
the workspace. The data collection procedure takes 90 minutes
on a 12-core 3.7 GHz CPU.

C. Network Architecture

Various network architecture choices were investigated to
achieve the optimal performance. A simple fully-connected
MLP was used as the baseline. The rectified linear activation
function (ReLU) is used to provide faster forward and backward
passes, and the root mean square error (RMSE) is used as the
loss function.

The function I'(q,y) implicitly learns the robot’s forward
kinematics; thus, it might be helpful to build a feature vector
as a concatenation of joint angles and their corresponding sine
and cosine values: ¢;, = [q, cos(q), sin(q)]. Similar positional
encoding (p.e.) is discussed in [29], and the authors conclude
that it helps with learning of high-frequency functions. Another
perspective on the positional encoding is that it introduces non-
linear features frequently appearing in analytic FK equations,
simplifying the regression task for NNs. To choose the optimal
network parameters (number of layers and their size) for the
MLP with positional encoding feature vector we performed a
grid-search training with different depths, D, and layer sizes,
N. For each pair of N and D, the network was trained on 2 M
training data points with different initial weights five times. The
resulting average RMSE and its standard deviation are reported
for 200 k testing data points in Table I. As can be seen, increasing
the value of N improves the regression accuracy; however,
as the network size is proportional to O(N2D) complexity,
the smaller value N = 256 is chosen. For larger values of D,
within the same amount of epochs, MLP fails to improve upon
shallower networks (for N > 128). The chosen architecture
used had D = 5 and NV = 256. The behavior of the RSME as
we increase the depth of the networks in Table I suggests that

TABLE I
A COMPARISON OF VARIOUS LAYER S1ZES N AND HIDDEN LAYERS
AMOUNT D

N/D 3 5 7 9

64 488 (3.61) | 3.63 (2.67) | 3.50 (2.48) | 3.23 (2.22)
128 | 3.43 (2.33) | 238 (1.75) | 233 (1.62) | 2.47 (1.67)
256 2.74 (2.09) 1.89 (1.38) 2.07 (1.50) 2.07 (1.40)
512 2.71 (2.06) 1.71 (1.23) 1.77 (1.27) 1.96 (1.34)

Each architecture is trained on the same data for 10,000 epochs. The
RMSE and standard deviation averaged between all links (and across
five training instances) are provided for the 200 k testing dataset.

TABLE II
A COMPARISON OF NETWORK ARCHITECTURES

Architecture | Mean RMSE, cm | p-value
MLP 2.25 (1.66) 1.0000

MLP (s.c.) 2.28 (1.65) 0.9331

MLP (p.e.) 1.89 (1.38) 0.0002
MLP (s.c + p.e.) 1.93 (1.43) 0.0013

Each trained on the same data for 10,000 epochs. The
network parameters are L = 5 and N = 256. The results
are averaged between ten trainings. P-value indicates
the result of two-sample t-test run against first row of
the table.

we have a degradation problem,; i.e., either we are over-fitting
or we have vanishing and/or exploding gradients. One way to
alleviate this is to introduce skip-connections (s.c.) between
the input features and deeper layers of the network, essentially
convexifying the training loss function. Apart from combating
the vanishing/exploding gradients problem, we hypothesized
that reintroducing the trigonometrical input features to deeper
layers could yield better FK approximation. An example of the
network with skip-connection between input and the fourth layer
is provided in Fig. 2. Hence, we performed a further analysis of
the MLP with and without p.e. and s.c. as shown in Table II. Each
architecture type is trained ten times, and the resulting RMSE
distributions are studied by means of two-sample t-test. Each
distribution is compared with the basic MLP (as in first row of
Table IT), and resulting p-value is reported. The p-value indicates
the likelihood of two distributions to be the same (p = 1) or to be
different from each other (p = 0). For skip-connection p = 0.93,
indicating that this feature is unlikely to improve the learning.
The table shows that positional encoding leads to better distance
approximation, while skip-connection does not bring significant
improvements. Based on these findings, a simple MLP with
D =5 and N = 256 along with a positional encoding for the
regression task is used. This network is similar to Fig. 2 but
without the skip-connection. There, in = 10, with 7 for DoF and
3 for the workspace point position, and out = 9 representing dj,
for k = 1..9 links.

D. Learning Results

After selecting the hyperparameters, the NN was trained for
100,000 epochs, taking approximately 8 h on RTX3090.!

Accuracy: Averaging between all links, I'(g, y) predicts min-
imum distances with an RMSE of 1.05 cm and a standard devia-
tion of 0.81 cm. While the problem is posed as a regression, the
ability of the learned model to distinguish between collided and
free configurations, i.e., accuracy of predicting sign(I'(¢,y)),

'The source code and supplementary video is available at https://
github.com/epfl-lasa/Neural-JSDF
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TABLE III
COMPUTATIONAL PERFORMANCE OF THE LEARNED FUNCTION

CPU GPU
Sample time, s | Batch time, us [ Sample time, ;s
32.141 74.340 74.340
11.600 79.148 7.915
4.267 98.689 0.987
2.342 103.147 0.103
10000 22734501 2.273 281.336 0.028
100000 314058.185 3.141 2467.827 0.025

All results are averaged on 10 k runs with 12-core 3.7 GHZ CPU and
RTX3090 GPU.

Batch size

Batch time, pus
1 32.141
10 115.998
100 426.743
1000 2341.552

TABLE IV
PERFORMANCE OF LEARNED FUNCTION I'(g, ) IN TERMS OF RMSE AND ITS
STANDARD DEVIATION FOR CLOSE QUERY POINTS WITH dj, < 10 CM, AND
FAR ONES WITH dj, > 10 CM, AND IN TERMS OF THE ACCURACY @]} OF
PREDICTING COLLISIONS, REPRESENTED AS SIGN(I'(g, y)) FOR
CONFIGURATIONS WITH dp,in < 3 CM.

Link, £ | acon Close RMSE, cm | Far RMSE, cm
1 0.98 0.37 (0.24) 0.40 (0.27)

2 0.99 0.32 (0.20) 0.43 (0.28)

3 0.98 0.38 (0.24) 0.46 (0.30)

4 0.97 0.56 (0.37) 0.57 (0.39)

5 0.93 0.73 (0.51) 0.68 (0.46)

6 0.88 1.02 (0.69) 1.06 (0.74)

7 0.87 1.29 (0.85) 1.25 (0.86)

8 0.83 1.40 (0.89) 1.46 (1.00)

9 0.76 1.83 (1.17) 2.06 (1.37)
Avg 0.90 1.04 (0.78) 1.06 (0.82)

was also investigated for configurations with d,;,, < 3 cm. For
such points, the classification accuracy of sign(I'(g,y)) is 0.90
when averaged between links. The performance of I'(¢q,y) in
terms of RMSE and its standard deviation for each robot link
is reported in Table IV. Fig. 1 shows iso-surfaces for different
values of the learned I'(q, y).

Computation Time: The computational performance of the
learned function is investigated, and the results are presented
in Table III. It shows that batching improves the per-sample
performance, which is expected with NN. Additionally, it shows
that for a single sample, computations are more efficient on
CPU. For reference, authors of [18] report that one distance
query between two convex hulls takes 0.6 us using standard
Gilbert-Johnson-Keerthi (GJK) algorithm [1]. The learned net-
work calculates distances between K = 9 links and a single
sphere, i.e., equivalent to performing nine such queries. Thus,
if we assume that GJK is not parallelized, we can use 5.4 us
as a baseline for a single robot-obstacle distance evaluation. If
the control algorithm can benefit from batched distance queries
(e.g. it is sampling based, or there are multiple obstacles), the
NN can be up to 1000x faster than the standard GJK algorithm
used to compute distances.

V. REACTIVE CONTROL WITH NEURAL-JSDF

As described previously, the learned function I'(g, y) approx-
imates the distances between the robot’s links in a given joint
configuration, ¢, and Euclidean point, y, in its workspace. To
treat collisions with moving, and possibly deforming obstacles
of non-fixed shape and size we approximate the obstacle shape
with s = 1..5 spheres with centers y, and radii 5. Note, point-
cloud obstacle representations fit naturally in such framework,
with g = 0, Vs.

This section presents two approaches, i) QP-IK and ii)
Sampling-based MPC, leveraging on various properties of the
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learned Neural-JSDF I'(g, ), such as repulsive gradient in joint
space, and efficient batch input processing.

A. Reactive Collision-Avoidance IK

Similar to [6], the learned function I'(g,y) can be used to
formulate a constraint in a QP-IK solver:

min 67 Q8 + AqT RAq
Aq,0

9f(q)
fla) + g Ja=oH
4 <qa+Ag<gqg, i=1l.m

=V li(q,ys)"Ag < In(Ty(q,ys)

S.t.

—rs), Vk,s.
®)
In (5), the goal is to minimize joint displacement Ag with damp-

ing term R, to satisfy the kinematic constraints given by forward

kinematics f(q), Jacobian %(qq) and cartesian task © € SE(3).

These tasks may specify desired positions and orientations for
chosen links, but further we assume they only contain tasks for
the end-effector. Additionally, for situations where the solver
fails to satisfy the reaching constraint, slacks J are introduced
and minimized with corresponding weights (). The second con-
straint accounts for joint-limits, which are defined as ¢; and g;"
for ¢ = 1..m joints.

Finally, the last line in (5) defines the proposed collision
avoidance behaviour with the learned implicit signed distance
function. It represents K x S constraints, one for each pair of
k = 1..K linksand s = 1..S spherical obstacles. I';. (¢, ys ) is the
k-th component of the implicit distance function output vector,
for k = 1..K links. Finally, y, are centers of spherical obstacles
s = 1..5 with radii ;. When the robot is far from collisions and
I'i(q,ys) > 0,VEk, the set of constraints is relaxed. If the k-th
link is close to the s-th obstacle, then In(T'x(g,ys) — 7s) be-
comes negative, and the IK solver is forced to align joint motion
Ag with the corresponding gradient V,I'; (¢, ys ), repelling the
robot away from the collision boundary and satisfying collision
avoidance constraint.

B. Sampling-Based Model Predictive Control

Additionally, we propose to use the learned Neural-JSDF in
a more complex algorithm with a look-ahead horizon to address
the local nature of the QP controller described in the previous
section. Recent work [11] demonstrates sampling-based MPC
for robotic manipulators leveraging on massive parallelization
via a GPU to speed up FK and cost function computations.
The learned function I'(q,y) fits naturally in such framework
allowing for efficient batched collision checking. Below, the
basics of Model Predictive Path Integral (MPPI) control are
introduced. For a discrete-time system at time ¢, the robot
is controlled by a joint space acceleration command w;. This
command is sampled from a policy m; = IIfL_, 7, 5, where H
is a look-ahead horizon, and policies 7 j, are simple Gaussians
defined by means fi; 1, . . ., ftz, r and covariances 3y 1, . . ., X¢ .
Atevery iteration the sampling-based MPC algorithm, proposed
in [11], samples a batch {u; , }2=L# of N control sequences
of length H from current distribution 7. After that, the roll-out

states {x; 5} are computed using an approximate dynam-

ics function. The corresponding costs, {c; 5, }=!#, are calcu-

lated as a weighted sum of goal-reaching, joint-limit avoidance,
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Fig.3. Benchmark scenarios for the reaching task. Goal is depicted as a green
sphere, obstacles are represented with red spheres. (left) Scenario A, where
spheres placement is different across the experiments, (right) Scenario B, human
shape approximated with 30 spheres, with variable arm placement.

contingency stopping, and self- and environmental-collision
avoidance costs.

The means and covariances of the Gaussian policies, 7 , =
N (e p|poe,ny Xt p), are then updated using a sample-based gra-
dient of a risk-seeking objective function. The update rule for
e, h 18-

_ SOy witli
pen = (1 — ap)pe—1,n + o =2 (6)

where «, is a filtering coefficient, and

H-1
1 R
w; = exp 5 E Yre(mspwin) + v (i, wim)
h=1

(7
is a cost-based weighting coefficient for sampled trajectories. In
(7), c(x,u) is a task-specific cost, é¢(x, u) is the terminal cost,
and v € [0, 1] is a discount factor to balance between immediate
rewards and final goal. We refer the reader to [10], [11] for
a detailed derivation of the MPPI algorithm. The distinctive
property of MPPI is that it can handle a wide range of cost
formulations, as follows [11]:

C(SL’, u) = QpCpose + Q5 Cstop + Q5 Cjoint
~+ Qpn Cmanip + ac(ccoll + Cself—coll)a 3

where goal-reaching, contingency stopping, joint limit avoid-
ance, manipulability and collision costs are combined with
respective weights. In (8), the collision cost, c.q, is discrete,
yielding c.o = 1iftherobotisin collision with the environment,
and o = 0 otherwise. We use sign(I'(q, y)) to efficiently per-
form batched collision queries for computing the cost function.

VI. EVALUATION IN SIMULATION AND ON REAL ROBOT

A. Evaluation Scenarios and Metrics

We evaluate the performance of the reactive control methods
introduced in the previous section (QP-IK and MPPI) using the
learned Neural-JSDF for collision avoidance in two scenarios of
different complexity. In both cases, the robot’s goal is to perform
a reaching motion from initial configuration, to the goal defined
in the task space.

Scenarios: Scenario (A) includes two disjoint spherical obsta-
cles in front of the robot. Scenario (B) imitates human presence
in the robot’s workspace (refer to Fig. 3). Human body is
approximated with 30 spheres of varying radii, fitting the torso,
head, and right arm. Both control methods are expected to work
with at least 50 Hz frequency, providing reactive behavior for
avoiding moving obstacles. However, as dynamic information

TABLE V
PERFORMANCE COMPARISON FOR SCENARIO A (TWO DISJOINT SPHERES)

QP(Sph) | QP(NN) | MPC(Sph) | MPC(NN)
Success rate, % 1.00 1.00 1.00 1.00
Reaching time, s | 4.53 3.24 4.17 2.53
Clearance, cm 1.32 1.14 0.97 0.84
Frequency, Hz 217 249 66 92
TABLE VI

PERFORMANCE COMPARISON FOR SCENARIO B (HUMAN-SHAPED OBSTACLE
APPROXIMATED WITH 30 SPHERES)

QP(Sph) | QP(NN) | MPC(Sph) | MPC(NN)
Success rate, % 0.91 0.92 1.00 1.00
Reaching time, s | 5.76 4.09 4.30 3.17
Clearance, cm 1.24 1.21 0.86 0.82
Frequency, Hz 204 220 49 68

(such as obstacles velocity) is not directly incorporated into
avoidance constraints, these methods are tested in a quasi-static
environment. Additionally, that helps to achieve reproducible
results. The benchmark consists of 100 experiments for ran-
domized positions of collision obstacles. For scenario A the
vertical placement of the obstacles differs between the exper-
iments, while scenario B simulates the human with different
arm positions, obstructing the robot’s workspace. The robot’s
initial configuration and goal position are constant across the
experiments.

Metrics: The results are provided in Tables V and VI. There,
success rate indicates a number of experiments with successful
goal reaching (i.e. no collisions and free from local minima),
and clearance stands for average minimal distance-to-collision
across successful trajectories. Both methods were tuned to be-
have conservatively and not allow for any collisions. Overall,
QP is more reactive than MPC, but due to QP’s local nature and
lack of optimization horizon, it has a lower success rate in a
more complex scenario.

B. Implementation Details and Discussion

1) Baseline Approach (Spheres Approximation): Links of
the robot are approximated with 55 spheres of various radii
as shown in Fig. 2. This number of spheres and their radii
were chosen to best represent the actual geometry of the robot
without being overly conservative. For simplicity, p and 7y
are used to denote a sphere belonging to the & — th link of the
robot. For each obstacle sphere with a center ys, and a radius
rs, the closest sphere, (pg, ), belonging to the robot can be
found. The distance between the robot and the obstacle is then
di,s = ||lys — pl|| — rs — Tk, and vy 5 is a vector connecting
two spheres, that acts as a repulsion in task space. For the QP-IK,
collision avoidance constraints in (5) are then replaced with the
following:

(P (@) Aq) vy < In(dy o), )

where .J;7(q) is a Jacobian for the corresponding point on
the robot body, and v, 7 is scaled to match the magnitude of
Agq. These constraints cover all pairs of links and obstacles,
forcing the solver to generate motion in a tangential plane to the
obstacles, when the distance to collision d, 4 is small.

2) QP-IK: CVXGEN [30] is used to solve the described
QP problem. The values of I' and V,I' are evaluated on the
12-core 3.7 Ghz CPU and passed to the solver. We evaluate



486

Fig. 4.

the performance of the proposed collision avoidance IK solver
using the learned Neural-JSDF I'(¢, y) compared to formulating
the collision avoidance constraint with the traditional method to
detect collisions. Our method efficiently combines the learned
function I'(q, y) and its gradient to create the repulsive force
around obstacles, showing a 15% increase of computation speed
for the IK solver over using the baseline technique for collision
detection. However, this approach is prone to local minima,
especially in case of non-convex obstacles, demonstrating worse
success rate in Scenario B. It could be useful as a collision-aware
IK solver but it requires additional high-level planning for more
complex scenarios, as demonstrated in the multimedia attach-
ment.

3) MPPI: While the authors of [11] claim that the operating
frequency of their MPPI implementation exceeds 100 Hz, they
clarify that this is the case only for a static environment. As-
suming that obstacles are not fixed, and since it is impossible
to pre-compute and store the scene distances, then the distance
evaluations must be repeated at each iteration. Since the sam-
pling and rollouts are performed in joint space, the use of our
learned function is justified. At each iteration, it is required to
calculate distances between the environment and N - H robot
configurations. The input for the learned function I'(g,y) is
repeated S times, once for each spherical obstacle position;
thus, a fall in performance is expected with the increase in the
number of spherical obstacles. As a baseline to compare with,
we again choose to approximate the robot body with spheres and
evaluate collisions by calculating task-space distances between
these spheres and spherical obstacles in the robot’s workspace.
Such baseline would seem computationally cheaper than NN
evaluation; however, a highly parallelized forward pass of the
neural network turns out to be faster. Tables V and VI show the
comparison between the naive distance computation between
obstacle spheres and robot geometry approximated with spheres.
All experiments were conducted on a 12-core 3.7 GHz CPU and
RTX3090 GPU. For the case when there are S = 2 obstacles in
the workspace, our approach shows significantly faster iterations
at 92 Hz versus 66 Hz. On average, distance computation using
the learned function I'(q,y) is 40% faster than the baseline.
Additionally, Fig. 5 demonstrates how this controller frequency
scales with the value S. This is showcased in the multimedia
attachment where we present multiple simulations of both sce-
narios with increasing obstacle speeds and adversarial behaviors.

4) Comparison: As shown in the evaluations reported in
Tables V and VI and Fig. 5, both reactive control approaches
perform well in terms of avoiding collisions using the learned
Neural- JSDF. While QP-IK is faster and exhibits more reactive
behavior, it may get stuck in local minima in the optimization,
or fail to recover from an odd joint configuration caused by
the instantaneous reactivity as shown for both scenarios in the
multimedia attachment. On the other hand, while the MPC is
slower than QP-IK, it manages to avoid the problematic re-
gions where obstacles are moving very fast, escaping oscillatory
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Snapshots of a reaching task with the human upper body as an obstacle approximated with a collection of 30 spheres. See multimedia attachment.
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Fig. 5. The MPPI frequency (Hz) and variance as a function of number of
spherical obstacles, S, in the workspace of the robot. The blue line is for collision
checking via learned function and the red is for the baseline with spherical
approximation of the robot. Values averaged on 10 runs.

reactive behaviors exhibited by the QP-IK and ultimately reach-
ing the target.

5) Real Robot Experiment: We further validated the ap-
proach on a real Franka Emika Panda being controlled at 1 kHz
by a custom low-level torque controller, similar to [11]. Ob-
stacles and the goal are tracked with OptiTrack at a 120 Hz
rate. We replicate scenarios A and B and stress test the system
with adversarial obstacle motions as shown in the multimedia
attachment. Fig. 4 demonstrates a successful reaching task while
avoiding colliding with the human.

VII. CONCLUSION AND FUTURE WORK

We have presented our method for learning the minimal
distances between the robot and its environment as a neural
joint space implicit distance function. This distance is a function
of the robot joint state and the coordinates of a point in its
workspace. We can efficiently compute distances between the
robot in arbitrary configuration and obstacles represented as a set
of spheres of various radii. The gradient of the learned function
with respect to inputs can be treated as the repulsive vector in
the joint space of the robot, allowing for collision avoidance
constraint formulation in the QP Inverse Kinematics solver.
While the learned network contains many parameters, due to
high parallelization, it still outperforms the naive baseline in
terms of controller frequency. This property allows efficient use
of the learned function as a collision-checker in sampling-based
MPC control.

While we have investigated scenarios where obstacles in the
robot’s workspace are approximated with spheres, this method
can also be used with obstacles represented as point clouds. We
leave corresponding implementations for future work. Another
interesting direction would be to expand the use of repulsion
gradients and apply them as a heuristic to guide the sampling to
further improve the performance of the MPPI approach, similar
to [21]. The distance-to-collision and cosine similarity between
the sampled acceleration and repulsion direction could be used
to introduce re-projected samples that navigate the robot around
the obstacle.
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