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Abstract—While low-level auto pilot stacks for aerial vehicles
focus on robust control, sensing, and estimation, the continuous
advancement of higher-level autonomy for aerial vehicles requires
much more complex higher-level flight stacks in order to enable
safe, fully autonomous long-duration missions. Rather than
focusing on the low-level control, high-level flight stacks are
required to monitor the system’s integrity continuously, initiate
contingency plans, execute mission plans and adapt them in
non-nominal situations, allow for proper data logging, and provide
standardized interfaces and integrity verification for external
mission planners and localization modules. To that end, we present
our freely available, high-level flight stack dubbed CNS Flight
Stack that meets the above requirements and at the same time a)
is platform-agnostic through a generalized (embedded) hardware
abstraction layer, b) uses low compute complexity for online
use on embedded hardware, and c) can be extended with other
sensor modalities, integrity checks, and mission modules. These
additional properties make it reproducible on a variety of different
platforms for safe and fully autonomous applications. We tested
the proposed flight stack in over 450 real-world flights and report
the failure modes our framework detected and also mitigated to
avoid crashes of the aerial system.

Index Terms—Software architecture for robotic and automation,
autonomous vehicle navigation, aerial systems: perception and
autonomy.
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I. INTRODUCTION

TODAY, generalized autopilot stacks for low-level control of
Unmanned Aerial Vehicles (UAVs) such as PX4, ArduPi-

lot, or proprietary solutions are widely employed in research
and industry. The integrated controls (from rate, over attitude,
to position), its tuning, and mission design tools have greatly
facilitated and boosted the design and development process of
different UAV platforms across communities and in industry.
With additional low-level pre-flight and in-flight checks (e.g.,
battery level, geo-fencing), rudimentary safety elements have
become commonly available.

Nowadays, the development has moved towards supporting
higher-level autonomy. In order to boost the development of
fully autonomous applications of aerial vehicles in research and
industry, a generalized, high-level flight stack for safe system
management, including health monitoring, issue mitigation,
and mission management, is required. Several flight stacks,
methods, and heuristics (cf. Section II) are being developed
to oversee the health of the autonomous system, to detect
non-nominal conditions, and to initiate contingency plans upon
failure detection. This also includes extensions of existing
low-level autopilot flight stacks to handle these tasks. To our
knowledge though, no flight system currently available provides
a generalized, customizable and reproducible framework for
high-level autonomy control.

With our proposed flight stack, the CNS Flight Stack, we aim
at a generalized support for UAV autonomy development to con-
duct safe long-duration fully autonomous missions minimizing
crashes and damage to systems, persons, and the environment.

II. RELATED WORK AND CONTRIBUTION

The necessity of advanced flight stacks that monitor the
system’s mission and health and provide contingency actions
is known to the research community and to industry. Auto
pilot stacks such as from Ascending Technologies1 and In-
tel provided rudimentary safety elements through redundancy.
A fully open-source autopilot named PX4 [1] was released,
using their previously developed hardware and sensor suite.
QGroundControl2 was added to the stack, including control

1[Online]. Available: http://wiki.ros.org/asctec_mav_framework
2[Online]. Available: qgroundcontrol.com
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Fig. 1. The proposed system’s modules and their interaction. With a single
configuration file and multiple mission sequence files the user interacts through
a visual user interface with the autonomy engine.

tuning, system calibration, mission planning tools, and rudi-
mentary pre-flight and in-flight system checks. ArduPilot3 [2],
[3] provides a similar open-source flight stack with similar
capabilities on system checks. Further, [4] recently tackled a
flight stack design on the guidance, navigation, and control site.
However, this framework lacks a high-level overarching auton-
omy engine performing system health checks during and before
flight.

Other auto pilot stacks like BetaFlight4, CleanFlight5, or
LibrePilot6 all do not provide functionality for autonomous
UAVs but are rather designed for first-person view (FPV) flying.
Industrial systems from, e.g., DJI7 or Auterion8, have become
popular to test control and navigation tasks. Naturally, their focus
lies on industry partners rather than on the research community
that require fast adaptation cycles, scalable interfaces to a va-
riety of different sensors, and different contingency plans per
test-flight.

A. Improvements Beyond the State-of-The-Art

Although historically grown auto pilot stacks are inher-
ently limited in tackling the full system analysis required
for safe aerial missions, they are well-established, tested,
and open-source frameworks for low-level control and pro-
vide a well-documented interface, such as the MAVLink
protocol9 [5], to which our high-level flight stack can connect
to.

All the above existing works do not provide an overarching
high-level system integrity verification, issue detection and mit-
igation pipeline, and adaptive mission scheduler to ensure fully
safe and long-duration autonomy. Our flight stack provides these
capabilities and, in addition, the following benefits:
� Due to its modularity, different autonomy sub-modules (cf.

Fig. 1) can be run on different processing boards.
� The cross-compiled system can run on any Linux-

compatible processor with reproducible behavior. Quality-
of-service (QoS) features in Linux are leveraged to guar-
antee adequate compute time for mission-critical compo-
nents.

3[Online]. Available: ardupilot.org
4[Online]. Available: betaflight.com
5[Online]. Available: cleanflight.com
6[Online]. Available: librepilot.org
7[Online]. Available: dji.com
8[Online]. Available: auterion.com
9[Online]. Available: mavlink.io

� A minimal in-RAM ephemeral host operating system (OS)
managing containerized environments attached to persis-
tent storage [6] masks the platform specifics and allows for
cross-platform reproducible autonomy container-images.

� The same in-RAM ephemeral host OS guarantees system
(re-)boot into a defined and fixed initial state from where
the flight stack can start, with the ability to upgrade/roll-
back the host and container system remotely.

The above benefits and contributions are at system/software
level and are built upon existing theory, processes, and models.
That being said, our proposed flight stack can drastically speed-
up development cycles, reduce maintenance time and human-
triggered failures, and prevent damage to the UAV, persons, and
the environment.

III. FLIGHT STACK DESCRIPTION

Introducing full autonomy to UAVs requires several com-
ponents to replace human-decision making and monitoring in-
flight. A fully autonomous flight stack requires modules for

1) state estimation, mission navigation, and vehicle control,
2) monitoring the health of the system,
3) detecting deviation from nominal conditions,
4) initiating safety mechanisms in case of failures, and
5) communicating the UAV’s flight state to the (potentially

remote) user.
The CNS Flight Stack handles these tasks in different indi-

vidual modules under the management of the autonomy engine
displayed in Fig. 1 and described in the subsections below.

A. Hardware Abstracted Operating System (SkiffOS)

A core strength of the CNS Flight Stack is its minimal in-RAM
ephemeral host OS – SkiffOS [6] – that masks the underlying
compute platform specifics and therefore builds a unified base
for our flight stack software. This allows for cross-platform
reproducible container-images of our flight stack, guarantees
identical boot sequences independent of the preceding shut-
down reasons, and simplified over-the-air software management.

In the state-of-the-art workflow, manufacturers of singleboard
computers (SBCs) typically provide a reference system as a full-
disk snapshot. Developers copy and manually adjust the OS
for their purposes. Package managers (e.g., apt) upgrade the
system state over time with a rolling release model. Full-disk
images lack reproducible behavior [7], cannot be replicated from
declarative configuration, and have no simple remote upgrade
mechanism.

SkiffOS [6] uses the Buildroot [8] OS cross-compiler to
re-target the flight stack to any Linux-compatible compute plat-
form with reproducible results. The immutable ”host“ system
is booted as an in-RAM OS, ensuring networking and stable
SSH access for remote debugging with automatic repair of any
persistent storage filesystem errors. The flight stack is then
managed as a set of Docker containers attached to persistent
storage. The host system can be upgraded independently from
the containerized workloads.

The combination of an immutable in-RAM host OS with
containerized workloads results in strongly reproducible system
behavior, even in the face of common interruptions such as
power brown-outs and flash storage failure. Container images
are portable across machines with the same CPU architec-
ture, and do not need platform-specific drivers or firmware.

ardupilot.org
betaflight.com
cleanflight.com
librepilot.org
dji.com
auterion.com
mavlink.io
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Quality-of-service (QoS) controls are used to allocate resources
appropriately to critical flight components.

Developers expect a mutable system with a traditional pack-
age manager based workflow for development and system man-
agement. SkiffOS replicates this workflow by forwarding in-
coming user sessions (e.g., ssh) to a mutable OS distribution
instance running in a container. The forwarding is invisible to the
user and all tools behave as if the containerized distribution was
booted directly. Init managers (e.g., systemd) work as expected,
and all container isolation features are disabled to prevent any
performance impact [9].

B. Hardware and Flight Stack Configuration

Although the flight stack software container for SkiffOS is
easily replicable for multiple UAVs and across platforms, the
user initially needs to define the actual mission(s) and the
behavior the UAVs should have upon specific trigger signals. For
our proposed flight stack, this initial configuration is done in a
simple, single configuration file per mission. The configuration
file requires the following input:

First, the user specifies the sensor setup of the UAVs. This
includes the type of sensors, their calibration (intrinsic and
extrinsic), measurement noise values, measurement-based ini-
tial uncertainties of corresponding estimated system states, and
other localization method-specific settings that can be forwarded
to the chosen algorithms linked to the flight stack (cf. Section III-
G and III-H).

Second, the file contains information on the mission sequence,
including take-off, hover spots, potential interaction spots, and
landing. This sequence is accompanied by mission paths, path
segments and criteria when a waypoint (3D position, orientation,
and an optional holdtime) is reached.

Third, the user includes information for contingency plans.
This includes the safety checks and thresholds, the mitigation
plans and their execution, and the different levels of severeness
connected to failures of specified sensors and signals.

Of course, certain functionalities require a specific sensor
type in order to be properly executed. The landing detection,
for instance, needs a sensor which provides altitude or distance
to ground information. This may be a barometer, Visual Inertial
Odometry (VIO) source, general pose sensor, or a laser-range
finder (LRF), like the one used in our experiments.

To illustrate the components of the flight stack in a less abstract
form and how they might be used on a real system, the platform
shown in Fig. 2 (schematically) and Fig. 3 (real system) is
introduced as an example. In the remainder of the letter, we
will refer to this platform for more tangible explanations.

This platform can operate in two configurations, both with
adequate sensing redundancy, which are demonstrated in the
field-tests in Sections IV and V. The first mode features
a real-time kinematic (RTK) global navigation satellite sys-
tem (GNSS) sensor, a tilted navigation camera, an LRF, and
the full PixHawk4 sensor suite [10] (including an inertial
measurement unit (IMU), a magnetometer, and a barometer).
The platform also features two embedded computation boards
(Odroid XU4) to show the option of splitting the computa-
tional load between multiple entities if needed. The second
configuration excludes GNSS and magnetometer but includes
an ultra-wideband (UWB) module with external anchors. These
anchors are placed in the environment to support vehicle
localization.

Fig. 2. Schematic for possible flight platform setups. It is important to note that
the CNS Flight Stack can operate on single or multi-device computing platforms
and different sensor inputs. Thus, the provided schematic is an example, and
sensor interfaces, as well as software module deployment, can be designed for
the task at hand. However, this schematic is optimized to the tasks performed
in Section IV with aspects to data interface bandwidth and computational load
balancing. The colors represent the setups used for the experiments in this letter
(cf. Section IV red+green, cf. Section V red+yellow), with the full schematic
being the most complex setup used to date.

Fig. 3. The vehicle which is used in the experiment and field tests (Sections IV
and V) and hosts the system outlined by Fig. 1.

Section IV will show scenarios where different system failures
are intentionally introduced and attributed contingency plans in
said configuration file are executed.

C. Autonomy Engine

The autonomy engine is the core component of the CNS
Flight Stack and is responsible for making high-level decisions
to ensure the full functionality of an autonomous system. The
autonomy engine is a fully configurable module (e.g., via the pre-
viously described configuration file). It allows the user to enable
or disable other described modules, especially the watchdog,
data recording, safety checks, or landing detection. Moreover,
it provides a set of parametric background timers to account
for maximum flight time and stalling of processes such as the
watchdog or failure handling scripts. The main functionalities of
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Fig. 4. State diagram of the autonomy engine: Most state changes are triggered
by the system’s status reported to the autonomy engine (e.g., watchdog status
or landing detection) or triggered through timeouts. In each state the autonomy
engine performs a predefined list of tasks, i.e., communicate actions to other
modules. Upon receiving a failure from any other module (mostly from the
watchdog) the autonomy engine also decides the corresponding action to safely
land the vehicle or perform countermeasures.

the autonomy engine are based on the underlying state-machine
shown in Fig. 4.

The autonomy engine’s state-machine always starts at the
state “Uninitialized”. There, it waits for terminal-based user
input to select a mission from the available mission set defined
in the configuration file described above. Once the mission is
selected, the autonomy engine switches to the “Init” state, which
performs an initialization routine to initialize the other modules
(e.g., watchdog). The “Nominal” state is set when the system
is initialized and running but waiting for a signal to start the
mission. The “PreflightOperations” state is the state where all
the pre-flight setup and safety checks are performed. With the
success of the pre-flight operation, a transition to the “StartMis-
sion” state is triggered. Here the autonomy engine interacts with
the mission sequencer, ensuring a correct arming and take-off of
the platform. Once the mission sequencer reported that a correct
take-off is performed, the autonomy engine communicates the
mission’s waypoints to the mission sequencer and switches to
the “Mission” state.

Multiple state transitions are possible from the “Mission”
state. Whenever the watchdog module reports a failure, the au-
tonomy engine performs a state transition based on the reported
severity of the failure (cf. Section III-E2 for more details on
failure detection). “Hold” is the state triggered upon a non-severe
failure that does not affect the ability to fly. In such a case, the au-
tonomy engine first interacts with the mission sequencer module
requiring the platform to hold in-place. Further, the autonomy
engine delegates a pre-defined action to the watchdog to try and
resolve the occurred failure. If the failure is resolved within a
given maximum duration, the autonomy engine switches back
to the “Mission” state and instructs the mission sequencer to
resume the mission. If the failure could not be resolved in
time or if the severity of the failure does not allow to keep the
UAV airborne, the autonomy engine transitions to the “Land”
state.

Reaching the last waypoint of the mission, reaching the max-
imum flight time, or failing to receive the watchdog’s heartbeat
message can also trigger a transition to the “Land” state. In this
state, the autonomy engine tries to properly land the platform by

Fig. 5. State diagram of the mission sequencer. Green arrows indicate a regular
request from the autonomy engine. Arrows in blue indicate automatic state
transitions that depend on reaching the waypoint position. Arrows in red indicate
error requests from the autonomy engine to resolve high-level errors. Red-dashed
arrows are “Hold” requests from the autonomy engine. These can theoretically
be issued in any flight state, and the mission sequencer continues afterward with
the previous state upon a resume request.

communicating a land request to the mission sequencer. Upon
receiving a confirmation of a successful landing from the landing
detection module, the autonomy engine switches to the “End-
Mission” state, instructing the mission sequencer to disarm the
vehicle. Depending on the configuration, the autonomy engine
then either ends the mission (“Termination” state) or continues
with the next trajectory in the list (transition and continue with
“PreflightOperations”).

In case of an unrecoverable failure (e.g., initialization failure,
safety-checks failure, autopilot failure, or estimation error), a
state transition to the “Failure” state is triggered. If the UAV
is in-flight a message is displayed to signal the safety pilot to
take manual control (in most cases before it would be humanly
possible to detect the fault). If the vehicle is on the ground, it
is disarmed, and the autonomy engine stops all modules of the
flight stack.

The autonomy engine is mission-independent and fully cus-
tomizable. All of the aforementioned states inherit from an
abstract state interface, allowing the ability to easily add de-
sired functionalities and individual custom states for a specific
platform or mission.

D. Mission Sequencer

The mission sequencer is a complementary module of the
autonomy engine and is responsible, once requested by the
autonomy engine, for performing the mission in the form of a
sequence of actions (e.g., takeoff, land, hold, etc., cf. Fig. 5). That
is, the mission sequencer receives flight state requests from the
autonomy engine. It then executes user pre-defined actions and
communicates them to the autopilot via MAVLink9 (specifically
using MAVROS, a MAVLink extendable communication node
for the robot operating system (ROS)). Therefore, this module
is usable with any autopilot allowing MAVLink-based commu-
nication.

Further, to ensure safe operations of the UAV during a mission,
the mission sequencer employs a state-machine adhering to the
autonomy engine’s request and current pose information of the
UAV provided by the navigation state estimator. Fig. 5 depicts
the different state-machine states and possible transitions of the
mission sequencer. Upon receiving a state transition request,
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the mission sequencer performs an internal check to ensure the
feasibility of the requested transition. It performs the associated
actions and communicates the completion to the autonomy
engine if feasible.

Before taking off (i.e., in the “Idle” state), the mission se-
quencer can “Arm” the UAV, which refers to starting the mo-
tors and spinning them at idle speed. Then, in the “Takeoff”
state, a vertical takeoff to a parametric height is performed.
After that, the mission sequencer automatically transits into the
“Hover” state, awaiting navigation waypoints from any module
(by default, the autonomy engine’s waypoint list). Once any
are received, transitioning to the “Mission” state, the mission
sequencer communicates each waypoint to the autopilot.

Any module can communicate a list of waypoints to the
mission sequencer at any time and replace, insert, or append the
existing buffer. Further, the mission sequencer exposes a getter
service such that any other module, e.g., obstacle detection and
replanning modules, can acquire the current list of waypoints
for possible modification.

Waypoints are interpreted with respect to either a global ref-
erence or the starting pose of the UAV. They also can be limited
to a predefined bounding box (geofence) for safety reasons in
limited environments, e.g., indoors. Any waypoint exceeding
the bounding box will be skipped and not communicated to
the autopilot. Once the last waypoint of the buffered list is
reached, the mission sequencer switches to the “Hover” state.
It communicates this transition to the autonomy engine, which
decides the following action (either to land or hover).

The mission sequencer has a particular state called “Hold”.
As previously mentioned, the autonomy engine might issue a
transition to the “Hold” state of the mission sequencer upon
a minor sensor failure. The action and behavior of the “Hold”
state look the same as the “Hover” state to the user. However,
the mission sequencer requires a request to either resume its
previous state or land when holding. By default, the latter will
be issued if the failure could not be resolved in time.

Finally, in the “Land” state, the mission sequencer descends
the UAV until it is on the ground. If pose estimates are available,
they are used to navigate to the desired landing position by
lowering the desired height. Otherwise, the mission sequencer
gradually reduces the vehicle’s thrust. Note that this selection
and safety procedure, similar to the transition to the “Hold” state,
happens without user input and inherently chooses the safest
flight mode to prevent crashes and damage. In any case, once
the landing detector confirms a landing, the autonomy engine
might request a transition to the “Disarm” state, which then
turns off the UAV’s motors.

E. Safety Checks

The CNS Flight Stack provides multi-stage safety features.
Different pre-flight checks, a fault detection system (watchdog)
monitoring the system’s status during the operational phase, and
a landing detection module.

1) Pre-Flight Checks: The first of the pre-flight checks is
to check if the platform is level before arming: let I ā be the
average measured acceleration from the Inertial Measurement
Unit (IMU) over a predefined, configurable window of time, and
e1 = [1, 0, 0]� be a reference vector, then we compute the axes
x̂, ŷ, ẑ of the IMU frame expressed in the world frame as follows

ẑ =
I ā

‖I ā‖ , x̂ =
e1 − ẑẑ�e1

‖e1 − ẑẑ�e1‖ , ŷ = �ẑ�xx̂.

The pitch θ and the roll φ of the platform are extracted from
the rotation matrix RWI = [x̂, ŷ, ẑ] and then compared with a
predefined threshold to ensure flatness. Please note that this
threshold is set in the aforementioned configuration files and
should include bias-induced inclination within the check period.
Furthermore, when a sensor providing height information is
present, averaged height measurements are compared with a
configurable height threshold to ensure the platform is on the
ground.

The second pre-flight check is to ensure that the external
pose estimator is converged. This check compares the norm
of the difference between the position estimate with respect
to the world frame W rWI at time t and at time t+Δt given
a predefined difference threshold. If both checks succeed, the
autonomy engine instructs the UAV to be armed.

2) Watchdog: The watchdog’s responsibilities are twofold.
First, to observe and detect faulty entities (such as sensors,
battery, or ROS nodes/topics) by checking if a predefined be-
havior is violated. Second, to perform a sequence of corrective
actions to re-establish a nominal condition. Such actions are
defined in the aforementioned human-readable configuration
files. Each entity is given an action set, expected restore du-
ration, and a unique ID that is known to the autonomy en-
gine and is used to communicate its status across the flight
stack.

For the sensors, often separate (sometimes proprietary) driver
code is executed. Thus, the watchdog monitors their system pro-
cesses according to the user-defined configuration file entries.
The entries can even include script calls allowing monitoring
and acting on system components even outside the ROS uni-
verse. A user-specified maximum number of automated correc-
tion trials is used to elevate the severity of the failure under
consideration.

For ROS-related entities, the configuration file allows defining
sections with a unique ROS node name and the number of restart
attempts. If, after restarting the node, the restore duration is
exceeded, an elevated node failure is triggered. Similarly, the
configuration for ROS topics allows the definition of a section
per (unique) ROS topic name, the expected message rate with
a certain tolerance, and a restore duration for the observation in
case the corresponding ROS node (or driver) was restarted. The
watchdog can also observe sensor measurements (e.g., battery
voltage level) and report a failure to the autonomy engine if a
pre-defined range is exceeded.

The watchdog parses its configuration file containing all the
above-mentioned information upon obtaining a start request by
the autonomy engine. Then, a so-called Observer for each entity
is created. Every Observer follows a state-machine that is polled
periodically at a predefined rate by the watchdog to track the
status of each individual entity. At every poll, faulty entities are
reported to the autonomy engine, which makes a decision based
on the current system status. In case of failures, it authorizes
the watchdog to perform the pre-defined action for a recovery
attempt (e.g., restart a sensor’s driver or ROS node). In addition,
the watchdog communicates its own heartbeat at a predefined
rate to the autonomy engine to allow the detection of a stalled
process.

3) Landing Detection: The landing detection is an extra
safety module that can be used whenever a sensor providing
altitude above ground level (AGL) information is present, such
as LRF. The landing detection is only active during flight to
either detect a landing while in the autonomy engine’s “Land-
ing” state and therefore disarm the UAV, or to recognize an
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unexpected touchdown. The latter case assumes a detection due
to unforeseen structure. Thus to avoid a crash, the autonomy
engine instructs the mission sequencer to properly land and then
disarm the UAV.

F. Data Recording and Log Analysis

In order to perform post-analysis of the flight and autonomous
decisions made, it is necessary to record all data and com-
munication. All our developed components provide their com-
munication and decision-making redundantly via log files and
ROS messages. Hence, one can recreate each flight and inspect
each module’s decision offline. Depending on the underlying
hardware, storing the measurements on different media devices
or communicating them through a network connection may be
required. Our system already provides the tools to perform either
option and allows each sensor measurement to be stored accord-
ingly, extending available tools for the flight stack’s needs [6],
[11]. Hence, one can easily adjust the data recording and storing
for their needs.

G. ROS-PX4 Bridge

Our UAV platform used in this work features a PixHawk 4 em-
bedded autopilot [10] with PX4 flight software [1]. This autopi-
lot includes its own state estimation modules, which are tightly
interwoven into the PX4 software. This makes it difficult to
connect safety-observers and -actions and include custom-made
probabilistic state estimators. For R&D in academia and indus-
try, safe testing of novel state estimators, trajectory generators,
and mission planners is, however, of high importance. Rather
than daisy-chain novel algorithms with the gray-box heuristics
of PX4, we propose to bypass these heuristics altogether with
our ROS-PX4 bridge.

For this, the CNS Flight Stack provides an additional module
to the PX4 firmware which bypasses said heuristics (e.g., such
as the PX4 internal Extended Kalman filter (EKF)) and pro-
vides an external state estimation directly to the PX4 controller.
Besides removing the effect of introducing inconsistencies by
daisy-chaining probabilistic estimators, our bridge module en-
ables a well-defined, reproducible interaction with the PX4
autopilot.

The bridge module includes two components, our new
MAVLink/MAVROS plugin for communication between an
external state estimator and the PX4 firmware and our new
PX4 firmware module that receives this information and passes
the estimate directly to the internal controller. Our internal
PX4 module also communicates status flags related to the
state estimator to the commander for pre-flight checks in or-
der to maintain the communication requirements on the PX4
side.

H. Pose & Velocity Estimation

Although the CNS Flight Stack would allow the inclusion
of any external localization module, for demonstration pur-
poses, we include a specific probabilistic navigation-state esti-
mator described in the following. We include the MaRS frame-
work [12], a state-of-the-art modular EKF-based multi-sensor
fusion framework developed in-house, and OpenVINS [13] as an
open-source state-of-the-art VIO framework which was further
developed for its application in the CNS Flight Stack. The output
is fed directly to the onboard PX4 controller using our ROS-PX4

bridge described above. We choose MaRS due to its modularity
and simplicity to add and remove common UAV sensors.

In our setup of MaRS, we use the IMU for propagation,
and the core states are: Position expressed in the world frame
W rWI , velocity w.r.t. the world frame WvWI , orientation of
the robot w.r.t. the world frame WqI as well as IMU biases for
the gyroscope Ibw and accelerometer Iba. The core state is
described as follows and corresponding dynamics can be found
in previous work [12]:

xcore =
[
W r�WI , Wv�

WI , Wq�
I , Ib

�
a , Ib

�
w

] �

Compared to other EKFs, MaRS does not only provide
modularity and on-demand system retrofitting with different
sensors, but it also minimizes the mathematical operations to a
bare minimum for online, onboard operation. Thus, the system
is more computationally efficient even if the sensor suite is
not synchronized and supports asynchronous update requests.
Real-world examples of included sensor modules, e.g., GNSS,
UWB, barometer, and VIO (used as a pose sensor), are provided
in Section V. The modularity of MaRS is a handy feature
in combination with our proposed CNS Flight Stack and its
safety processes since sensors can dynamically be removed and
added to the estimation process according to the requests of the
autonomy engine (via watchdog triggers).

We extended the original OpenVINS implementation with an
advanced initialization routine that uses available sensors (e.g.,
GNSS, magnetometer, barometer, etc.) to initialize the VIO part
in a common world reference frame together with MaRS. In
addition, we introduced a tightly-coupled magnetometer and
UWB update routine, making the core navigation state fully
observable and aligned with MaRS.

IV. EXPERIMENTS

To test the proposed flight stack, we performed various exper-
iments in which we purposefully failed different sensors and let
the flight stack recover or safely land. The following tests were
performed using the hardware previously described as mode
2 (cf. Fig. 2: red-green setup including UWB, LRF, and VIO
navigation camera).

1) Nominal Flight: We first show the proposed flight stack’s
communication and state changes in a nominal autonomous
flight. As shown in Fig. 6, the first item to start is the watchdog to
monitor and check the system in the background. To circumvent
any sensor startup delays, it then observes the system for a given
time of 10s (blue). Once the system is reported to be nominal,
the data recording is started and the autonomy engine switches
to the “PreflightOperations” state (orange). Upon confirmation
by the user (red line), the pose estimation is observed for a given
time (10s), and the takeoff condition is checked. If successful,
the vehicle is armed (green), and the takeoff is performed (yel-
low). Upon reaching the predefined takeoff height, the mission
is performed using the predefined flight path (white). Finally,
upon reaching the last waypoint, the UAV autonomously lands
(purple). Then, signaled by the landing detection, the vehicle is
disarmed (olive green) and, the user can select a new mission.

2) Failure Handling: Next, we perform a visual-inertial-
based flight and trigger several failures with increasing severity
one after another. As outlined in Section III-B, the user chooses
each sensor failure’s severity, which should reflect the mission’s
goal. For this test, we chose to fail i) the UWB module –
irrelevant for the pose estimation and thus flight continues –
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Fig. 6. In a nominal flight the CNS Flight Stack autonomously starts its
background monitoring (blue), performs pre-flight checks (orange), arms and
spins the motors (green), performs takeoff (yellow), performs a pre-defined
waypoint mission (white), lands (purple), and stops/disarms the rotors (olive
green). The blue line is the estimated position by MaRS and the red vertical
lines the user input to start the autonomy engine and flight, respectively.

Fig. 7. In this vision-based navigation experiment we manually triggered
sensor failures to test the autonomous system recovery and failure modes. First
we triggered a non-relevant sensor failure (at second 5) which had no influence
on the navigation performance and thus flight continued. Then we failed a minor
mission-relevant sensor, such as the LRF, twice (at seconds 10 and 15) which
triggered a “Hold” by the autonomy engine (red). Meanwhile, the watchdog
was trying to perform a sensor fix and upon each successful recovery, the flight
was continued. Finally, we triggered a major navigation sensor failure, i.e., the
camera, which requires immediate landing for vision-based state estimation (at
second 22). This was also detected in time and the vehicle safely landed using
limited estimation capabilities (purple).

ii) the LRF – required only for takeoff and landing detection,
triggering a “Hold” and action to fix it in-flight – and iii) the
navigation camera – forces our state-estimation to fail and thus
requires immediate landing.

As presented in Fig. 7, the UWB failure is triggered after
5s. Since it is irrelevant for pose estimation, the flight continues.
Then the LRF is failed twice at seconds 10 and 15. Immediately a
“Hold” is issued and a sensor recovery attempt is communicated.
Here, the fix was to restart the LRF’s driver, which successfully
worked in both cases, and thus the flight continued. Finally, the
camera is deactivated at second 21, which causes the vision-
based pose estimation to fail. We are able to detect this failure

Fig. 8. Aligned comparison of 15 Hz-VIO fused with 1 Hz-GNSS pose estima-
tion and closed-loop navigation in two scenarios: holding (blue) or continuing
(red) the flight plan when the camera fails. In both cases the failure duration
is bridged in MaRS by fusing the low-rate GNSS measurement with the IMU
measurements. The respective ground-truth from a higher rated RTK GNSS
sensor is shown in green. Comparing the two resulting closed-loop trajectories,
it is clearly visible, that holding the UAV in-place while recovering the visual
sensor is preferable compared to continuing with the other sensors. Thus the
CNS Flight Stack provides a high-level systematic approach on handling sensor
failures and the resulting estimation dropouts.

almost immediately and land the vehicle in a safe manner using
MaRS’ IMU propagation.

V. FIELD TESTS

With the first field test, we show the proposed system han-
dling a camera sensor failure, resulting in a vision-based pose
estimation failure. Since our platform is equipped with other,
low-rate or less accurate sensors (cf. Fig. 2: red-yellow setup
including RTK GNSS and an LRF), this outage can be bridged
using their measurements within MaRS. It is important to note
that even though an real-time kinematic (RTK)-grade GNSS
signal is available, we deliberately use this signal only at 1Hz. At
this frequency, it provides the necessary information to eliminate
long-term visual-inertial drift but is in itself unsuitable for pure
GNSS-inertial-based navigation that goes beyond position-hold.
Thus, whenever the primary navigation information, the camera,
is lost, the best strategy is to hold the position best possible
until the camera is available again. Holding the positing reduces
the accumulated offset, and thus the control jump when the
visual-inertial framework is re-initialized and the mission is
continued.

Fig. 8 displays the resulting position estimate and flight path
when the UAV holds (in blue) or continues (in red) its flight plan
upon having a camera sensor (and thus VIO) failure. It is clearly
visible that (without altering the VIO estimation algorithm)
holding the vehicle in-place results in no visible position jumps
and thus VIO propagation error.

In comparison, if the mission is continued, once the cam-
era is restarted and VIO resumes estimation, the new pose
estimate differs significantly from the previous estimates.
The reason is twofold: First, continuing the flight with the very
low rate GNSS signal fused with IMU results in an imprecise
trajectory tracking with a large error to the nominal position.
Second, the re-initialization of the vision component in a new
scenery generally does not allow to link the currently seen
scene with the last obtained image before the failure. In our
specific test case in Fig. 8, we ensured that OpenVINS was
able to maintain at least a sparse set of persistent features to
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TABLE I
STATISTICS ON RECORDED FLIGHTS USING THE CNS FLIGHT STACK WITHIN

THIS LETTER’S EXPERIMENTS AND OTHER PROJECTS

Fig. 9. Real flight scenario of the CNS Flight Stack detecting a hardware
failure. While performing a pre-defined mission (1), a UWB antenna was phys-
ically dismounted due to vibrations (2), the flight stack trying to fix the failure
while holding (3), and finally landing the platform safely as a hardware failure
cannot be fixed in-flight (4). This flight is performed using visual-inertial-UWB
estimation. The Aruco tags in the background are part of the environment and
not used in this flight.

reduce the position jump upon regaining the camera feed, to
allow MaRS the online re-calibration of the offset between
GNSS and visual reference frame, and for better legibility of the
graph.

Note that this issue could also be tackled using scenario
and senor suite specific estimation, initialization, and sensor
switching routines to bridge the time of visual cue loss. Yet,
to the best of our knowledge, the proposed flight stack is the
first to solve this issue from a flight system point-of-view in a
more abstract and general fashion.

VI. SUMMARY

The CNS Flight Stack was used within several projects10,11,12

and has so far recorded over 450 runs. Of these, approxi-
mately 20% resulted in the flight stack detecting non-nominal
conditions before takeoff and thus preventing in-flight failures
before the flight even started. However, most of them were
user-introduced with the purpose of testing the flight stack and
its pre-flight failure detection.

Testing flight software on real platforms can always yield
unforeseen problems and behavior. Nonetheless, the CNS Flight
Stack has successfully flown, recovered, or safely landed the
UAV in 96.4% of its flights (cf. statistics in Table I). It was
also deemed safe enough for usage in an artistic performance
with robot-human interaction12. Further, an example recovery
scenario after sensor failure with an UWB-vision-based flight
is given in Fig. 9. In a small number of flights, external influ-
ences such as wind condition changes, unforeseen obstacles,
or communication loss, a pilot took over manual control. An
IMU-based landing would then have been triggered in the latter

10[Online]. Available: oewf.org/amadee-20
11[Online]. Available: bugwright2.eu
12Woyzeck Panopticon

case, but the safety pilot took over in those cases since the
mission had a different focus. The advanced monitoring and
fast warning capabilities provided enough time for the pilot to
intervene before any severe damage was caused.
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