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Smooth Model Predictive Path Integral Control
Without Smoothing

Taekyung Kim

Abstract—We present a sampling-based control approach that
can generate smooth actions for general nonlinear systems without
external smoothing algorithms. Model Predictive Path Integral
(MPPI) control has been utilized in numerous robotic applications
due to its appealing characteristics to solve non-convex optimiza-
tion problems. However, the stochastic nature of sampling-based
methods can cause significant chattering in the resulting com-
mands. Chattering becomes more prominent in cases where the
environment changes rapidly, possibly even causing the MPPI to
diverge. To address this issue, we propose a method that seamlessly
combines MPPI with an input-lifting strategy. In addition, we
introduce a new action cost to smooth control sequence during
trajectory rollouts while preserving the information theoretic inter-
pretation of MPPI, which was derived from non-affine dynamics.
We validate our method in two nonlinear control tasks with neural
network dynamics: a pendulum swing-up task and a challenging
autonomous driving task. The experimental results demonstrate
that our method outperforms the MPPI baselines with additionally
applied smoothing algorithms.

Index Terms—Optimization and optimal control, planning
under uncertainty, model learning for control, autonomous vehicle
navigation, field robots.

I. INTRODUCTION

ONTROLLING an autonomous vehicle in complex en-
C vironments is a challenging problem. When the vehicle
drives on a structured road, it can be modeled as a linear or a
kinematic system that is easy to solve. However, the nature of
the real world dictates non-linearity and this characteristic is
highlighted more at high vehicle speeds and low road surface
friction levels. The majority of autonomous driving research
has been focused on normal driving conditions, while areas of
aggressive maneuvering in highly nonlinear environments have
not been fully addressed by prior work.
Gradient-based Model Predictive Control (MPC) methods
have been introduced as powerful solutions for solving the
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Fig. 1. A simplified representation of the MPPI algorithm during each op-
timization iteration. For clarity, we only visualize one sampled trajectory (in
green). (a) Amount of changes between previously computed control sequence
and the next control sequence (along the “i-axis”). (b) Amount of changes in
control values during MPPI rollouts (along the “t-axis”), which are hard to be
minimized by the MPPI baseline.

problems of nonlinear control systems [1], [2]. Despite the
fact that there have been successful real-world applications with
these methods [3], [4], they still possess the limitation that the
cost function has to be differentiable. Sampling-based Model
Predictive Path Integral (MPPI) control has been proposed to
optimize both convex and non-convex objectives [5] and has
benefitted greatly from recent advances in Graphics Processing
Units (GPUs), as a large number of samples can be computed in
parallel to achieve better real-time performance.

While MPPI presents general performances in various situ-
ations, it may encounter chattering when implemented on an
actual platform, which is a common characteristic of sampling-
based methods [6]. Rapid changes in action commands are
widely known to burden the actuators and cause the system
to become unstable. Meanwhile, the key property of MPPI for
achieving high-level control performance is to draw samples
upon the previously optimized control sequence. However, this
property can instead hinder the entire sequence from converg-
ing quickly to the optimal distribution when the environment
changes too rapidly [7]. Under such circumstances, in particular,
chattering becomes more prominent.

Therefore, a smoothing algorithm is often employed to
smooth the control sequence in practice. However, because the
optimization procedure and this external smoothing mechanism
are completely decoupled, the smoothed sequence may unin-
tentionally lose its optimality. In addition, it may present a
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significant problem if the algorithm behaves incorrectly, even if
it is tuned to perform well in most situations. In the worst case,
the resulting sequence may violate the physical constraints or
diverge.

In this letter, we propose the Smooth Model Predictive Path
Integral (SMPPI) control method that combines MPPI with an
input-lifting strategy to generate smooth actions without any
additional smoothing algorithms. We include derivative actions
as control inputs, in which this technique is commonly used to
smooth jerky commands in control studies [8], [9]. To the best
of our knowledge, we seamlessly apply this idea in the MPPI
framework for the first time while preserving the information
theoretic interpretation of optimal control. Additionally, our
method offers a new smoothing mechanism which is ineligible
in the MPPI baseline. The smoothing effects of our approach are
twofold. First, it smooths the gap between the control sequences
of previous and current iterations. We refer to this as smoothing
along the “i-axis.” Second, it smooths the optimized control
sequence during trajectory rollouts. We refer to this as smoothing
along the “t-axis.” The amount of changes in the control values
of each axis that can be reduced by our method are depicted in
Fig. 1. Unlike MPPI, where efforts to realize smoothing along
both axes would obstruct its ability to adapt to rapidly changing
environments, SMPPI can achieve both smoothness and agility.
We conduct experiments to compare our method with different
smoothing methods in a classical control benchmark. We also
demonstrate our idea in a challenging autonomous driving task.!

II. BACKGROUND

This section provides a brief overview of the MPPI algo-
rithm. The benefit of the sampling-based method is that it does
not require a gradient of the objective function and the cost
function [10]. Recent works including MPPI have integrated
a sampling-based approach with MPC formulations to solve
non-convex optimization problems [5], [6]. They combine in-
formation theoretic control and stochastic optimal control using
free energy and the KL divergence to derive an optimal control
distribution with importance sampling [11].

Consider a discrete time dynamic system with a state x, € R"™
and a control input v; € R™. We applied the general noise
assumption that holds that we could not directly control the
system over v, but could over the mean u; of the density
function of noise €;:

V¢ NN(ut, 2)

Noise is simply defined as v; = u; + €;. Given a sequence of
inputs V' = {vg, vy,...vy_1} and mean input variables U =
{up, uy,...ur_1}alongafinite timehorizont € {0,1,...7 —
1}, we can define the probability density function ¢(V) as:

T-1

q(V) = H Z lexp (—;(vt — ut)TX]*l(vt — ut)> , (D

t=0

'Our video can be found at: https://youtu.be/fyngK8PCoyM
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where Z = ((27)™||)2. Similarly, we can also define the
uncontrolled density function p(V') where U is usually 0:

T-1
1
-1 L Tyt
p(V) = tl_lo 7" exp ( 5 Vi 3 vt) . 2)

These two density functions correspond to the distributions of Q
and P, respectively. Here, we define an optimal density function
using the free energy of the system [11], which corresponds to
the optimal distribution Q*:

1 1
¢ (V) = exp (~350) v, ®

where 7) denotes the normalizing constant and S(V') denotes
the state-dependent cost. The input sequence in state cost is
iteratively transformed into state values x through the non-affine
system dynamics F [6]:

Dﬂ
L

S(ViF) = ¢(xr) +

t
Xt+1 = F(Xt,Vt). (4)

As proposed in [6], we can now derive the optimal control input
by minimizing the KL divergence between Q and Q*:

c(xy),

Il
o

Eq-[vi] = / ¢ (V)vedV. )

Here, the best solution of (5) is to draw samples directly over
Q~, but this is not possible. Importance sampling is therefore
employed to compute the integral over the known distribution

Q:
Bovil = [ w(V)a(V)vidv
= ]EQU,): [w(V)Vt]’ (6)
where the importance weighting term is:
- (599) ()
0= (%) (6w
—lex 1 S(V)—f—})»Tz:iluTE’l(u + 2¢;)
a n P A 2 Pt t ¢ i '
(N

Let £ be anoise sequence {€g, €1, ... €r_1 } and K be the num-
ber of trajectory samples. Finally, we have the iterative optimal
control update law to compute the weights when the sampled
trajectory cost {C(V?),C(V1Y),...C(VE-1)} is given:

K-1
uitt = ul + w(EX)er (8)
k=0
ey _ L L k
w(€") = —exp (== (C(V*) = 8) ), ©)

where we subtract the minimum state cost 3 to ensure that at least
one sample has a numerically non-zero importance sampling
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weight. The trajectory cost in (9) is then simplified as follows:

T-1
C(VF) =S(VF) +1) ufs e

t=0

(10)

III. SMOOTH MODEL PREDICTIVE PATH INTEGRAL CONTROL
A. Limitations of External Smoothing Algorithms

The sampling-based approach of the MPPI algorithm makes
possible the consideration of involving non-convex objectives
in optimization problems. However, the stochastic nature of
this method can cause significant chattering in the resulting
commands. Due to the unique property by which perturbed
trajectories are sampled around the previously optimized mean
control sequence U, MPPI cannot respond effectively when the
optimal control distribution greatly deviates from the previous
iteration. Undesirable chattering effects stand out more in the
scenarios mentioned above.

A common approach to mitigate such a problem is to smooth
the resulting control sequence using, for instance, sliding win-
dow smoothing methods or filtering based methods [12], [13].
It was suggested that a Savitzky-Golay filter (SGF) [14] would
be an effective solution for this control method [6]. It smooths
the subsets of adjacent data by fitting the local polynomial
approximations in a convolutional manner.

However, this type of approach can have negative effects,
as external manipulations of control values are not considered
in the optimization process. Consider a general state-action
system dynamics with clamping function g, for handling control
constraints:

an

Because the perturbed control v; is bounded by the physical
limits of the actuators, the sampled noise should be bounded as
follows:

Xiy1 =F (Xtagu(vt)) .

€ = gu(vi) —uy. (12)

Two possible ways exist to apply the SGF in the control se-
quence.

1) Smoothing Weighted Noise Sequence: First, we can apply
smoothing to the weighted noise sequence:

K-1
u,™' = u! + SGF (Z w(é'k)ef> .

k=0

13)

This makes data points smoother while compensating for the
noise, which changes considerably along the time horizon. Dur-
ing this procedure, the control variable u may violate the con-
straint conditions given that the bounded noises are manipulated
by the filter. On the other hand, the nature of this process makes
it vulnerable to phase distortion [15]. In addition to violating the
given constraints, the control sequence will diverge if the noises
are overlapped repeatedly and amplified over time. We describe
this phenomenon further in Section V-D.

2) Smoothing Control Sequence: Second, we can apply the
SGF after the control sequence is updated using the weighted
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noise:

K-1
u/t! = SGF (uj; +) w(sk)e§> : (14)
k=0

Although this method guarantees that the control variables are
meeting the bounded condition, it can cause a delay in the
system response. It is common to provide history values as they
are required in the convolution-based smoothing method. The
early values in the control sequence are then affected by the
history, which means that polynomial approximation hinders
the controlled distribution from rapidly shifting to an optimal
distribution [16]. Note that the first control action is the key
value in the MPC problem.

B. Decoupling Control Space and Action Space

In the original MPPI, the running control cost in (10) only
plays a role in reducing the distance between control values
of the current and previous iterations [17]. Chattering innately
occurs because the control trajectory is sampled randomly, and
the variance along the “t-axis” in the new control trajectory is
not taken into account during optimization. To this end, it is
possible to impose an additional cost in terms of the variation
of the input, i.e., chattering on the “t-axis.” [18] suggested an
additional running cost for variation of the inputs, but it cannot
be applied generally, as it assumes that the dynamics are affine in
control under special conditions. We intend to expand the MPPI
baseline [6], which is likely to be adopted more extensively, but
arbitrary modifications for the additional cost associated with
input sequences violate the theoretical derivation of MPPI as
the control cost is determined inherently through the importance
sampling scheme.

In order to handle such an issue while preserving the MPPI
framework, therefore, we suggest the lifting of the control
variables as derivative actions. This strategy can mitigate the
chattering problem in terms of two points of view.

1) Smoothing Along the “i-Axis”: Henceforth, let us de-
couple the control space and action space by defining action
sequence A = {ag,ay,...ar_1}. Noisy sampling is performed
on a higher order control space U. Then, the resulting control
sequence is integrated to become a smoother action sequence.
The control distribution is hereby distinguished from the MPPI
baseline. The variance of the injected noise is adjusted accord-
ing to the physical limit of the input rate of change. This in
turn reduces the variation along the “i-axis” and consequently
mitigates damage to the actuator.

Note that one can attempt to smooth resulting actions in the
MPPI framework by reducing the variance in the same manner as
described above. In this setting, however, MPPI would be unable
to respond to rapidly changing environments. On the other hand,
increasing the variance to cover a wider action range would
not only be physically implausible but would also eventually
result in chattering. The method proposed here is free from this
trade-off, as its new search space U can be handled adaptively
depending on the environment.

2) Smoothing Along the “t-Axis”: In contrast to MPPI, our
control distribution corresponds to derivative action, allowing
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Algorithm 1: SMPPL

Given: F: Dynamics model;
K, T: Number of samples, timesteps;
(up,uy, ... ur_1): Initial control sequence;
(ag,ay,...ar_1): Initial action sequence;
3, )\, ¢, ¢, 2 Control parameters and cost functions;
for i <+ 0 to maximum iterations do
X < SubscribeState();
for k< 0to K — 1 do
X X0
Sample £F = (6’5 . 5}%—1) , €8 e N(0,3);
fort<0to1 —1do
vf =u + ef;
al = a; +vFAL
x + F(x, af);
Ck +=c(x) + )\u?E_lef;
B Ck += o(x) + Q(a(’j,a]f, . a’%_l);
wy, < ComputeWeights(Co, C1,...Ck_1);
fort< 0to1 —1do
Ut e Ut (205 wf )
B Al AT L U AL
SendToController(ay);

fort < 1toT —1do
L Up—1, Ap—1 < Uy, A¢;

ur_1, ar—_1 < Initialize(uT,l,aT,l);

action variables to be treated as augmented state elements and
hence making them independent of the control cost. Variation
of action can now be easily included in the state cost such that
chattering with regard to the “t-axis” can be minimized. Here, we
introduce an extra action cost €2 to smooth the action sequence
along the “t-axis” by minimizing the variance of A without
violating the information theoretic interpretation of MPPI:

T-1
Q(A) = (a; — a, 1) w (a; —as 1),
1

(15)

~
Il

where w is the weighting parameter in the form of a diagonal
matrix.
Finally, we obtain the following action sequence update law:

K-1
ui 't =ul + Z w(EF)er, (16)
k=0
a/™' =al +ujt'At, (17)
and the trajectory cost (10) now takes the form:
T-1
C(VF,A) = S(VF) + QA+ VFAL) + 2 uf S e}
t=0
(18)

Afterwards, we apply clamping function g, to the action com-
mands to impose box constraints on the vehicle’s physical limits.
The overall algorithm of SMPPI is shown in Alg. 1.
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Fig. 2. Average state costs during optimization procedures with different

control methods. Each iteration consists of 20 time steps. Note that we apply
logarithmic scaling to the y-axis and that the costs are clamped to a minimum
of 0.01.

IV. EXPERIMENTS ON AN INVERTED PENDULUM

We tested MPPI and SMPPI in a simulated inverted pendulum
swing-up task. One of the important characteristics of the pen-
dulum swing-up task is that the available torque is insufficient
to push the pendulum to reach an upright position in a single
rotation. The controller should swing the pendulum multiple
times to gather energy, and during this process, the optimal
control sequence changes rapidly. Consequently, it is a simple
yet effective benchmark for evaluating our method. To exploit
the fact that ouridea is generalized to allow non-affine dynamics,
we used a neural network to learn the dynamics model in this
experiment.

We designed the dynamics model with two fully-connected
hidden layers, each with 32 neurons. The state-action dataset
was repeatedly collected during the control procedure and the
model was trained with the dataset every 50 time steps. No
bootstrap dataset was used because the dimensionality of the
inverted pendulum system is sufficiently low. The running state
cost function ¢(x) in (4) is formulated as follows:

c(x=[0,6") = 6%+ 0.16%, (19)

We compared five different methods: i) the original MPPI
without smoothing (abbreviated as “MPPI baseline”), ii) ap-
plying an additional action cost for smoothing on MPPI, iii)
applying the SGF on the noise sequence (abbreviated as “MPPI
(SGF(€))”), iv) applying the SGF on the control sequence
(abbreviated as “MPPI (SGF(U))”), and v) SMPPL In this
task, control parameter A was set to 10. For SMPPI, the action
sequence cost parameter w was set to 1. They were tested with
seven different initial angular velocities (6 € {-3,-2,...3})
starting from the initial position vertically downward. We fixed
the random seed for a fair comparison. The state costs (19) during
online optimization are shown in Fig. 2.

The results show that only SMPPI successfully stabilized the
pendulum in the upright position in all cases. As seen in our
video, the other methods showed similar results. They continu-
ally failed to push the pendulum to the upright position because
they did not apply enough torque during the swinging motions.
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g.3.  Trajectory of our proposed method with a reference speed of 60 km/h.

In the case of MPPI baseline i), it was vulnerable to chattering
and could not converge into an optimal control sequence when
the optimal distribution changed rapidly. Imposing an additional
action cost ii), which was employed to alleviate chattering, also
failed because this strategy violates the information theoretic in-
terpretation of MPPI while using non-affine dynamics. Methods
using external smoothing algorithms iii)—iv) failed due to the
negative effects of external smoothing. We discuss these issues
further in Section V-D.

V. EXPERIMENTS ON A VEHICLE SIMULATOR
A. Experimental Setup

Our research goal is to perform high-speed driving suc-
cessfully under challenging conditions, including those with
unknown friction surfaces and sharp corners. The performance
of the model-based control policy is highly dependent on the
accuracy of the model [19], [20]. The vehicle model should be
trained with all possible maneuvers to minimize any model bias.
Because the control sequence update is processed by evaluating
the perturbed control trajectories with sampling, situations in
which control values change significantly over time that make
the vehicle unstable should be included in the training dataset.
Obtaining such data from an actual vehicle would be danger-
ous. Therefore, we used CarMaker to collect driving data and
to evaluate the control performances. This is a widely used,
high-fidelity vehicle simulator that precisely solves nonlinear
dynamics in real time.

We built arace track modeled after an actual kart circuit known
as “KART 2000 in Kirchlengern, Germany (see Fig. 3). The
length of the track was 1016 m and it had two moderate curves
and four sharp curves. Note that when the vehicle reaches the
entry of sharp corners, the controller should reduce the vehicle’s
speed and apply a large steering angle quickly. Otherwise, the
vehicle will understeer and collide with the track boundary.

In some prior research on autonomous driving on race tracks,
electric vehicles without transmissions were used [4], [6], [8].
Unlike these vehicles, the majority of current vehicles use an
automatic transmission to shift gears. The dynamic character-
istics of the vehicle will definitely change as a gear shifts.
Therefore, throttle control is not feasible for use in common
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TABLE I
OVERALL ARCHITECTURE OF THE VEHICLE MODEL
Size Activation
Input (|x| + |a]) x h -
Hidden Layer 1 2xInput Size ReLU
Hidden Layer 2 4 xInput Size ReLU
Hidden Layer 3 6xInput Size ReLU
Hidden Layer 4 2xInput Size Linear
Output |x| -

vehicles. Here, we simply overcome this issue by taking desired
speed (vges) as the feedforward command of MPPI. A low-level
feedback controller then manages the throttle and brake via a
Proportional-Integral (PI) loop. A Volvo XC90 was used as the
control vehicle.

B. Training the Neural Network Vehicle Model

There are two main characteristics that make the vehicle
dynamics challenging to model: First, vehicle motions under
unknown friction are difficult to predict. In particular, the lateral
tire forces will slip into the nonlinear region on low friction
corners [21]. Second, the automatic gear shifting mechanism
is highly complex to model explicitly. We propose to model
such complex and nonlinear dynamics using a neural network
with state-action history, which enables the network to capture
time-varying behavior [22]. The overall structure of our vehicle
model, which is a feedforward fully-connected neural network,
is shown in Table I. The terms |x| and |a| denote correspondingly
the size of the state and the action space, and h represents the
number of state-action pairs in the previous history. A Rectified
Linear Unit (ReLU) is used for the activation of hidden layers.
The Mean Squared Error (MSE) loss was used as the loss
function and the Adam optimization was used for mini-batch
gradient descent.

We collected a human-controlled driving dataset in a manner
similar to that utilized in our prior work on the training of
a dynamics model [23]. The vehicle state is defined as x =
[Vz, vy, 7], where v, and v, are the longitudinal and lateral
velocities, and 7 is the yaw rate. The action command is defined
as a = [0, vges| T, where § is the steering angle command. We
carefully selected three distinct maneuvers:

1) Zig-zag driving at low speeds (20 — 25 km/h) on the race
track.

ii) High-speed driving on the race track while trying to

maintain a speed of 40 km/h as much as possible.

iii) Sliding maneuvers during combinations of acceleration
and deceleration with small, medium, and large steer-
ing angles. Subsequently, we controlled the vehicle with
rapidly changing commands for random movements, rep-
resenting the sampled noisy trajectories of MPPI. These
maneuvers were performed on flat ground in both the left
and right directions.

Each maneuver was done with multiple road friction coeffi-
cients 1 € {0.4,0.5,...1.0}. The maneuvers on the race track
were done in both clockwise and counter-clockwise directions.
Each one was logged for two minutes. We collected a total
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TABLE I
TRAINING RESULTS OF THE NEURAL NETWORK VEHICLE MODEL
vy [m/s] vy [m/s] r [rad/s]
ER]VIS Emax ERZWS Emax ERMS Enmax
Test | 0.0311 0.5530 0.0216  0.4723 0.0175 0.2506
Val. 0.0252  0.3744 0.0136  0.1500 0.0123 0.1400

ground truth: vx [m/s]
== = prediction: vx [m/s]

ground truth: vy [m/s]
== = prediction: vy [m/s]

ground truth: yaw rate [rad/s]
== = prediction: yaw rate [rad/s]
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Fig. 4. Estimation results on the validation dataset.

of 35 maneuvers, which amounted to 70 minutes of driving.
The dataset was split into two portions: 70% for training and
30% for testing. To evaluate the generalization performance of
the trained model, the validation dataset was collected on the
same race track while the friction coefficients were modified.
From Corner #1 to Corner #6 (depicted in Fig. 3), the friction
coefficients were assigned with values that were not included in
the training dataset: [0.95,0.85,0.75,0.65, 0.55, 0.45], respec-
tively. The other regions were assigned values of ;1 = 0.8.

The test and validation errors after training are shown in
Table II. The results show that our trained model can precisely
represent the vehicle system dynamics regardless of the road
friction. The estimation results on the validation data are visual-
ized in Fig. 4. The Root Mean Square Error (RMSE) is denoted
as Eryss and the max error is denoted as E,, ...

C. Cost Function and Other Parameters

Following prior work [6], we designed a state-dependent cost
function ¢(x), which consisted of three components:
¢(x) = ayTrack(x) + asSpeed(x) + a3Slip(x). (20)
The track cost indicates whether the vehicle is inside the track
or outside of the given boundary. The states of the sampled
trajectories are transformed into global positions (p,,p,) and
they lookup the values of a two-dimensional cost map M, which
represents the area of the outer boundary as 1 and the area of the
inner boundary as 0. Our sampling-based controller allows this
impulse-like cost function:

Track(x) = (0.9)" 10000M(p., py)- Q1)
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Fig. 5. Visualization of trajectories of the compared controllers. The friction
coefficient of corner #2 (in gray) is 0.85 and that of corner #3 (in brown) is 0.75.

The speed cost is the quadratic cost to achieve the reference
vehicle speed:

Speed(x) = (vy — vres)?. (22)

The slip cost penalizes the sideslip angle to plan a stable future
trajectory. Additionally, it imposes a hard cost to reject samples
which are estimated to have a larger sideslip angle than 0.2 rad
(approximately 11.46°) in the future:

Slip(x) = % 4 100001 ({|o| > 0.2})

(=)
o = —arctan | —— |,
[zl

where I is an indicator function.

We conducted a grid search for each controller to identify the
best control parameters exhibiting the most successful perfor-
mance. The sampling variance was adjusted to cover most of the
control range of each controller. MPPI used 3 = Diag(4.0, 3.0)
for the action noise and SMPPI used ¥ = Diag(0.7, 0.4) for the
derivative action noise. The feedforward control frequency was
10 Hz and the controllers used a time horizon of 4 s. The control
parameters /{ and A were correspondingly set to 10000 and 15.0
during the experiments. For SMPPL, it used w = Diag(0.8,0.8).

(23)

D. Experimental Results

We conducted an ablation study for our framework. The track
used in these experiments is identical to that used to collect the
validation data. We measured the average lap time taken by the
vehicle to traverse each corner during five laps around the track,
where the reference speed was set to 40 km/h. If the vehicle went
outside a boundary, it was placed at the start point and had to
start a new lap. The same pre-trained vehicle model was used
and there was no extra training during experiments. The results
are shown in Table III.



10412

=== Weighted & » mmm Apply SGF on £ »

5

«

o
™
=) g
s £ g
8 = =
®» 8 8°
= 8 g
o ® ®
& 5 . 5
0 2 4 6 8 Z 0 2
planning horizon (t-axis)
5 5
0
s 3T 3z T
a8 E E g
: NN ———
s ® 3 ®
) 5 5
2 4 6 2 4 6
planning horizon (t-axis) planning horizon (t-axis)
5 B
)
freg = N =
g B g
g & > §°
o 5 =1
s K P AN K
S
- 5 ~ 5
2 4 6 8 o
planning horizon (t-axis)
7 0.4 3 0.4
¢ N7 777 3
= = 02 = 02
zs
&8 o 0
g £
o
o

0 2 4 6 8
planning horizon (t-axis)

Fig. 6.

4

planning horizon (t-axis)

W

plannlng hcrlzon t -axis)

2 4 6
planning horizon (t-axis)

derivative action [l
1)
N
~
IS
o
®

planning horizon (t-axis)

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 4, OCTOBER 2022

' mmm Apply SGFon U
A

mmm Actual Steering Commands
5 v

-5
0

action [rad]
°

6 8 5 10 15 20

timesteps (i-axis)

1MMM

tlmesteps i axls)

action [rad]

action [rad]
=)

action [rad]
o

ol
ow

2 4 6 5 10 15 20
planning horizon (t-axis) timesteps (i-axis)

«
«

/

action [rad]
=3

action [rad]
O(

ot
ob

2 4 6 5 10 15 20
planning horizon (t-axis) timesteps (i-axis)

The first 10 steps of the weighted sum of noise sequences (in green) and action sequences (in red) from different controllers right after entering Corner
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black).

TABLE III
AVERAGE LAP TIMES (IN [S]) ON S1X CORNERS WITH DIFFERENT CONTROL
METHODS. FOR SMPPI WITH €2, THE MINIMUM SPEED (IN [KM/H]) AND THE
MAXIMUM SLIP ANGLE (IN [°]) WHILE PASSING THROUGH EACH CORNER ARE
ALSO ANALYZED BELOW

Lap time [s] #1 #2 #3 #4 #5 #6
Original MPPI 11.08  9.60 N/A N/A N/A N/A
MPPI (SGF (€)) 11.75  9.90 N/A N/A N/A N/A
MPPI (SGF(U)) 7.82 N/A N/A N/A N/A N/A
SMPPI w/o 8.39 7.71 11.64 877 9.86 13.11
SMPPI w/ Q 7.36 7.66 10.83 8.47 9.39 12.86
Min. Speed [km/h] | 2471  20.37 2330 3651 2824 29.77
Max. Slip [°] 5.34 11.09  9.64 291 5.32 4.94

While all methods showed promising results on straight roads
and on Corner #1, MPPI with different control update laws (8),
(13), (14) failed to complete Corner #2 and Corner #3, which are
the sharpest corners of the track. The vehicles collided with the
boundary or lost control after entering these turns. In contrast,
both of the proposed methods successfully controlled the vehicle
to traverse all of the laps at high speeds. One notable finding is
that SMPPI with the additional action cost 2 showed faster lap
times in all corners than SMPPI without an action cost. This
suggests that reducing chattering along the “t-axis” can improve
the control performance on the MPPI structure. Clearly, reducing
the unnecessary noise in the steering and throttle commands
is strongly related to increasing the speed of the vehicle. The
trajectories taken by the three controllers are shown in Fig. 5.

Finally, we examined in more detail the actual optimization
procedure of each method to verify our idea. The sequences
computed by the four controllers right after taking Corner
#2 are visualized in Fig. 6. While passing through this sharp
corner, the neural network was able to estimate that the vehicle
would slide off the track if it did not slow down due to the
friction limits. Therefore, the controller was required to apply the
brakes and a large positive steering angle to make an appropriate
right turn. During this procedure, the gap between the optimal
and the current control sequence increased in an instant. The
control sequence in the MPPI baseline attempted to respond to
the rapidly changing optimal distribution. However, chattering
occurred (see Fig. 6(a)) and caused the vehicle to lose its stability
(see Fig. 5). This is because perturbed samples incorporating
high-frequency noise survived after importance sampling, to
minimize the impulse-like state cost despite the chattering. In
the case of “MPPI (SGF (¢€)),” the external smoothing filter dis-
torted the phase of the weighted noise. The noise sequence then
escalated the chattering into the control sequence and finally led
to divergence (see Fig. 6(b)). On the other hand, smoothing was
suitably applied in “MPPI (SGF(U)),” but this rather hindered
the controller from quickly generating the correct command
(see Fig. 6(c)). This behavior is also well illustrated in Fig. 5.
In contrast, SMPPI successfully responded to the environment
and generated a smooth action sequence without the need for
an additional smoothing filter. The derivative action sequence
still possessed inevitable chattering, but it was integrated to
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become a smoother action sequence. The actual commands
applied to the vehicle were also shown to be stable (along the
“i-axis”), an achievement realized due to the strong benefits of
SMPPI.

VI. CONCLUSION

We presented the Smooth Model Predictive Path Integral algo-
rithm, which is designed to generate smooth control commands
within the MPPI algorithm. Our method can attenuate chattering,
which is a natural problem of sampling-based algorithms, with-
out the need to design external smoothing filters. In particular,
our method outperforms the MPPI baseline in cases in which the
environment changes rapidly. In addition, our proposed method
is not confined to employing action smoothing cost, as the
control domain is shifted to the derivative action distribution.
We showed that SMPPI can improve the general performance
when it is applied to autonomous driving tasks. SMPPI was
demonstrated to be capable of controlling an autonomous vehi-
cle with agility on sharp and slippery corners. Furthermore, this
chattering-free controller is also beneficial in reducing damage
to the actuators.

APPENDIX

We also demonstrated our method on a more aggressive driv-
ing task. The reference speed was set to 60 km/h. We collected
an extra training dataset of high-speed maneuvers on the race
track, following the strategy described in Section V. Then, we
trained the vehicle model with the augmented dataset. Finally,
the SMPPI controller was deployed on the validation race track.
From Corner #1 to Corner #6 (depicted in Fig. 3), the friction
coefficients were assigned the following corresponding values:
[1.0,0.95,0.9,0.85,0.8,0.75]. The other regions were set such
that . = 0.9. All five laps were completed at high speeds on
challenging roads with varying amounts of friction. The trajec-
tory taken by the vehicle is visualized in Fig. 3. We were able to
observe the controller taking “out-in-out” trajectories on sharp
corners because this is the best way to preserve high speeds
and prevent large slip angles according to the predictions of
the neural network model. We encourage readers to watch our
supplementary video, where all of our experiments are shown
in detail.

REFERENCES

[1] W.Liand E. Todorov, “Iterative linear quadratic regulator design for non-
linear biological movement systems,” in Proc. Int. Conf. Inform. Control,
Automat. Robot., 2004, pp. 222-229.

[2] Y. Tassa, N. Mansard, and E. Todorov, “Control-limited differential dy-
namic programming,” in Proc. IEEE Int. Conf. Robot. Automat., 2014,
pp. 1168-1175.

[3]

[4]
[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

10413

U. Rosolia and F. Borrelli, “Learning how to autonomously race a car: A
predictive control approach,” IEEE Trans. Control Syst. Technol., vol. 28,
no. 6, pp. 2713-2719, Nov. 2020.

J. Kabzan et al., “AMZ driverless: The full autonomous racing system,” J.
Field Robot., vol. 37, no. 7, pp. 1267-1294, 2020.

G. Williams et al., “Information theoretic MPC for model-based rein-
forcement learning,” in Proc. IEEE Int. Conf. Robot. Automat., 2017,
pp. 1714-1721.

G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou,
“Information-theoretic model predictive control: Theory and applications
to autonomous driving,” IEEE Trans. Robot., vol. 34, no. 6, pp. 1603-1622,
Dec. 2018.

J. Yin, Z. Zhang, E. Theodorou, and P. Tsiotras, “Trajectory distribution
control for model predictive path integral control using covariance steer-
ing,” in Proc. IEEE Int. Conf. Robot. Automat., 2022, pp. 1478-1484.

J. L. Véazquez, M. Briihlmeier, A. Liniger, A. Rupenyan, and J.
Lygeros, “Optimization-based hierarchical motion planning for au-
tonomous racing,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2020,
pp. 2397-2403.

E. Chisari, A. Liniger, A. Rupenyan, L. Van Gool, and J. Lygeros, “Learn-
ing from simulation, racing in reality,” in Proc. IEEE Int. Conf. Robot.
Automat., 2021, pp. 8046-8052.

M. Kobilarov, “Cross-entropy motion planning,” Int. J. Robot. Res., vol. 31,
no. 7, pp. 855-871, 2012.

E. A. Theodorou and E. Todorov, “Relative entropy and free energy
dualities: Connections to path integral and KL control,” in Proc. [EEE
51st Conf. Decis. Control, 2012, pp. 1466-1473.

S. Sérkkd, “Unscented rauch-tung-striebel smoother,” I[EEE Trans. Autom.
Control, vol. 53, no. 3, pp. 845-849, Apr. 2008.

H.-C. Ruiz and H. J. Kappen, “Particle smoothing for hidden diffusion
processes: Adaptive path integral smoother,” IEEE Trans. Signal Process.,
vol. 65, no. 12, pp. 3191-3203, Jun. 2017.

A. Savitzky and M. J. Golay, “Smoothing and differentiation of data
by simplified least squares procedures,” Anal. Chem., vol. 36, no. 8,
pp. 1627-1639, 1964.

K. Adhikari, S. Tatinati, K. C. Veluvolu, and J. A. Chambers, “Phys-
iological tremor filtering without phase distortion for robotic micro-
surgery,” IEEE Trans. Automat. Sci. Eng., vol. 19, no. 1, pp. 497-509, Jan.
2022.

J. Wang, Y. Ye, X. Pan, X. Gao, and C. Zhuang, “Fractional zero-phase
filtering based on the Riemann-Liouville integral,” Signal Process., vol. 98,
pp. 150-157,2014.

S. Nakatani and H. Date, “Swing up control of inverted pendulum on a
cart with collision by Monte Carlo model predictive control,” in Proc.
IEEE 58th Annu. Conf. Soc. Instrum. Control Engineers Jpn., 2019,
pp- 1050-1055.

G. Williams, A. Aldrich, and E. A. Theodorou, “Model predictive path
integral control: From theory to parallel computation,” J. Guid., Control,
Dyn., vol. 40, no. 2, pp. 344-357, 2017.

A. Nagabandi, G. Kahn, R. S. Fearing, and S. Levine, “Neural net-
work dynamics for model-based deep reinforcement learning with model-
free fine-tuning,” in Proc. IEEE Int. Conf. Robot. Automat., 2018,
pp. 7559-7566.

R. Sekar, O. Rybkin, K. Daniilidis, P. Abbeel, D. Hafner, and D. Pathak,
“Planning to explore via self-supervised world models,” in Proc. Int. Conf.
Mach. Learn.. PMLR, 2020, pp. 8583-8592.

N. A. Spielberg, M. Brown, N. R. Kapania, J. C. Kegelman, and J. C.
Gerdes, “Neural network vehicle models for high-performance automated
driving,” Sci. Robot., vol. 4, no. 28, 2019, Art. no. eaaw1975.

A. Punjani and P. Abbeel, “Deep learning helicopter dynamics models,”
in Proc. IEEE Int. Conf. Robot. Automat., 2015, pp. 3223-3230.

J.Bae, T. Kim, W. Lee, and I. Shim, “Curriculum learning for vehicle lateral
stability estimations,” IEEE Access, vol. 9, pp. 89249-89262, 2021.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


