
IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 4, OCTOBER 2022 8925

Why Did I Fail? A Causal-Based Method to Find
Explanations for Robot Failures

Maximilian Diehl , Graduate Student Member, IEEE, and Karinne Ramirez-Amaro , Member, IEEE

Abstract—Robot failures in human-centered environments are
inevitable. Therefore, the ability of robots to explain such failures
is paramount for interacting with humans to increase trust and
transparency. To achieve this skill, the main challenges addressed in
this letter are I) acquiring enough data to learn a cause-effect model
of the environment and II) generating causal explanations based on
the obtained model. We address I) by learning a causal Bayesian
network from simulation data. Concerning II), we propose a novel
method that enables robots to generate contrastive explanations
upon task failures. The explanation is based on setting the failure
state in contrast with the closest state that would have allowed
for successful execution. This state is found through breadth-first
search and is based on success predictions from the learned causal
model. We assessed our method in two different scenarios I) stack-
ing cubes and II) dropping spheres into a container. The obtained
causal models reach a sim2real accuracy of 70% and 72%, respec-
tively. We finally show that our novel method scales over multiple
tasks and allows real robots to give failure explanations like “the
upper cube was stacked too high and too far to the right of the
lower cube.”

Index Terms—Acceptability and trust, learning from experience,
probabilistic inference.

I. INTRODUCTION

ONE important component in human interactions is the
ability to explain one’s actions, especially when failures

occur [1], [2]. It is argued that robots need this skill if they were to
act in human-centered environments on a daily basis [3]. More-
over, explainability is shown to increase trust and transparency
in robots [1], [2], and the diagnoses capabilities of a robot are
crucial for correcting its behavior [4].

There are different types of failures, e.g., task recognition
errors (an incorrect action is learned) and task execution errors
(the robot drops an object) [5], [6]. In this work, we focus on
explaining execution failures. For example, a robot is asked
to stack two cubes (see Fig. 1). The robot will first pick up a
cube and move its gripper above the goal cube. However, due
to sensor and motor inaccuracies, the robot places its gripper
slightly shifted to the left, which results in an imperfect cube

Manuscript received 24 February 2022; accepted 17 June 2022. Date of
publication 6 July 2022; date of current version 12 July 2022. This letter was
recommended for publication by Associate Editor D. Losey and Editor G.
Venture upon evaluation of the reviewers’ comments. This work was supported
by Chalmers AI Research Centre (CHAIR). (Corresponding author: Maximilian
Diehl.)

The authors are with the Faculty of Electrical Engineering, Chalmers Uni-
versity of Technology, SE-412 96 Gothenburg, Sweden (e-mail: diehlm@
chalmers.se; karinne@chalmers.se).

This letter has supplementary downloadable material available at
https://doi.org/10.1109/LRA.2022.3188889, provided by the authors.

Digital Object Identifier 10.1109/LRA.2022.3188889

Fig. 1. Depicts our method that allows robots to explain their failures. First,
we learn a causal model from simulations (steps 1, 2). A contrastive explanation
is generated upon task failures (steps 3, 4). Finally, the obtained models are
evaluated on two different tasks (cube stacking and sphere dropping) and
transferred to two different robots that provide explanations when they commit
errors.

alignment between the cubes. Therefore, the upper cube lands
on the goal but bounces to the table. In such a situation, we
expect the robot to reason about what went wrong and generate
an explanation based on its previous experience, e.g., “I failed
because the upper cube was dropped too far to the left of the
lower cube.”

Typically, explanations are based on the concept of causal-
ity [7]. Obtaining a causal model of the environment is often ad-
dressed through statistical methods that learn a mapping between
possible causes (preconditions) and the action-outcome [4], [8].
However, such statistical models alone are not explanations in
itself [1] and require another layer that interprets these models
to produce explanations. Another problem is that a considerable
amount of data is needed to learn cause-effect relationships. In
this case, training such models using a simulated environment
will allow a faster and more extensive experience acquisition [4].

In this letter, we propose a method for generating causal
explanations of failures based on a causal model that provides
robots with a partial understanding of their environment (see
Fig. 1). First, we learn a causal Bayesian network from simulated
task executions, tackling the problem of knowledge acquisition.
We also show that the obtained model can transfer the acquired
knowledge (experience) from simulation to reality and is agnos-
tic to several real robots with different embodiments. Second,
we propose a new method to generate explanations of execution
failures based on the learned causal knowledge. Our method
is based on a contrastive explanation comparing the variable

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-9323-8293
https://orcid.org/0000-0003-4600-1722
mailto:diehlm@chalmers.se
mailto:diehlm@chalmers.se
mailto:karinne@chalmers.se
https://doi.org/10.1109/LRA.2022.3188889

8926 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 4, OCTOBER 2022

parametrization associated with the failed action with its closest
parametrization that would have led to a successful execution,
which is found through breadth-first search (BFS). Finally, we
analyze the benefits of this method in two different scenarios: I)
stacking cubes and II) dropping spheres into a container.

To summarize, our contributions are as follows:
1) We present a novel method to generate contrastive causal

explanations of action failures based on causal Bayesian
networks.

2) We demonstrate how causal Bayesian networks can be
learned from simulations, exemplified in a cube stack-
ing and sphere dropping scenario and provide extensive
real-world experiments that show that the obtained causal
models are transferable from simulation to reality without
any retraining. Our method is agnostic to various robot
platforms with different embodiments and scales over
multiple tasks and scenarios. We, thus, show that the
simulation-based model serves as an excellent prior expe-
rience for the explanations, making them more generally
applicable.

II. RELATED WORK

A. Causality in Robotics

Despite being acknowledged as an important concept, causal-
ity is relatively underexplored in the robotics domain [2], [9].
Some works explore causality to distinguish between task-
relevant and -irrelevant variables [10]. For example, CREST [11]
uses causal interventions on environment variables to discover
which of the variables affect an RL policy. They find that ex-
cluding irrelevant variables positively impacts generalizability
and sim-to-real transfer. In [12] a set of causal rules is defined
to learn to distinguish between unimportant features in physical
relations and object affordances. Brawer et al. present a causal
approach to tool affordance learning [9]. Some works explore
Bayesian networks to learn statistical dependencies between
object attributes, grasp actions, and a set of task constraints from
simulated data [13]. While the main objective is to use graphical
models to generalize task executions, these works don’t look
into the question of how these models can be utilized for failure
explanations. A different letter [14] investigates the problem of
learning causal relations between actions in household-related
tasks. They discover, for example, that there is a causal connec-
tion between opening a drawer and retrieving plates from human
demonstrations. They only retrieve causal links between actions,
while we focus on causal relations between different environ-
ment variables, like object features and the action outcome.

B. Learning Explainable Models of Cause-Effect Relations

In the planning domain, cause-effect relationships are repre-
sented through (probabilistic) planning operators [15]. Mitrevksi
et al. [4] propose the concept of learning task execution models,
which consists of learning symbolic preconditions of a task
and a function approximation for the success model, based on
Gaussian Process models. They noted that a simulated envi-
ronment could be incorporated for a faster and more extensive
experience acquisition, as proposed in [13]. Human virtual
demonstrations have been used to construct planning operators
to learn cause-effect relationships between actions and observed
state-variable changes [15]. However, even though symbolic
planning operators are considered human-understandable, they

are not explanations in themselves, thus requiring an additional
layer to interpret the models and generate failure explanations.

Some other works also aim to learn probabilistic action rep-
resentations experience to generalize the acquired knowledge.
For example, learning probabilistic action effects of dropping
objects into different containers [8]. Again, the main objective
is to find an intelligent way of generalizing the probability
predictions for a variety of objects, e.g., bowl vs. bread box, but
their method does not include any understanding of why there is
a difference in the dropping success probabilities between these
different objects.

C. Contrastive Explanations

Contrastive explanations are deeply rooted in the human way
of generating explanations [1]. This also had a significant impact
on explanation generation in other fields like Explainable AI
Planning (XAIP) [16]. In XAIP, typical questions that a machine
should answer are why a certain plan was generated vs. another
one? or why the plan contains a particular action a1 and not
action a2? [16], [17]. We, however, are mostly interested in
explaining why specific actions failed based on environment
variables like object features. A method for explaining syn-
thesis failures of high-level robot task specifications (encoded
through Linear temporal logic formulae) is presented in [18].
However, the causes need to be explicitly modeled (violations
of specification constraints), while, in our approach, the causes
are automatically detected during the BN learning process. Das
et al. generate verbal failure explanations [19], by learning an
encoder-decoder network that maps current information about
the robot and environment state into a vector of words. However,
the method does not scale well since it requires data with
annotations about each failure cause. Our approach only requires
annotations regarding the action success, which can be binary
and are generally easier obtainable. Additionally, we encode the
explanations directly in the causal structure of the different state
variables instead of learning a black-box model. In a follow-up
study [20], the authors use MOTIFNET [21] to autonomously
detect spatial relationships and object attributes in a given scene.
Then, pairwise ranking is used to filter out the subset of relevant
relations for a particular explanation. Annotations for pairwise
preferences of one relation over another need to be provided for
training an SVM, which cannot be easily automated since they
require human input. Due to the close relation to our approach,
we discuss these works [19], [20] in more detail in Section V-D.

III. OUR APPROACH TO EXPLAINING FAILURES

Our proposed approach consists of three main steps: A) Iden-
tification of the variables used in the analyzed task; B) Learning
a Bayesian network which requires to 1) Learn a graphical rep-
resentation of the variable relations (structure learning) and 2) to
learn conditional probability distributions (parameter learning);
and C) Our proposed method to explain failures, based on the
previously obtained model.

A. Variable Definitions and Assumptions

Explaining failures, requires to learn the connections between
possible causes and effects of an action. We describe an action
via a set of random variables X = {X1, X2, . . ., Xn}, which
need to be defined by the experiment designer during the ex-
periment setup. We require X to contain a set of treatment

DIEHL AND RAMIREZ-AMARO: WHY DID I FAIL? A CAUSAL-BASED METHOD TO FIND EXPLANATIONS FOR ROBOT FAILURES 8927

variables C ⊂ X, which describe potential causes, and outcome
(effect) variables E ⊂ X. Then, the goal of causal inference is
to estimate the effect of C on E [22].

Data samples for learning the causal model can, in principle,
be collected in simulation or the real world. A data sample d
consists of a particular parametrization of X, which we define
as d = {X1 = x1, X2 = x2, . . ., Xn = xn}, where n denotes
the number of variables. It is important to sample values for
possible causes C randomly. Randomized controlled trials are
referred to as the gold standard for causal inference [3] and
allow us to rule out the possibility of unmeasured confounders.
Consequently, all detected relations between the variables X are
indeed causal and not merely correlations. Besides the apparent
advantage of generating truly causal explanations and avoiding
the danger of possible confounders, causal models can also
answer interventional questions. In contrast, non-causal models
can only answer observational queries. The experiment must
satisfy the sampled variable values before executing the action
for data collection. E is measured at the end of the experiment.

We define another set Xgoal = { dgoal1 , dgoal2 , . . ., dgoalh} that
contains all possible variable parametrizations that denote a
successful action execution. Then, an action is successful iff
its parametrization d ∈ Xgoal. Note, that it is out of scope of
this letter, to discuss methods that learn Xgoal, but rather assume
Xgoal to be provided a priori. In other words, we assume that
the robot knows how an unsuccessful task execution is defined
in terms of its outcome variables E and is thus able to detect
it by comparing the action execution outcome with Xgoal. Note,
however, that the robot has no a-priori knowledge about which
variables inX = X1, X2, . . ., Xn are inC orE, nor how they are
related. This knowledge is generated by learning the Bayesian
network.

To efficiently learn a Bayesian network, some assumptions
are needed to handle continuous data [23], mainly because
many structure learning algorithms do not accept continuous
variables as parents of categorical variables [24]. In our case,
this means that some effect variables from E could not have
continuous parent variables out of C, which would likely result
in an incorrect Bayesian network structure. As a preprocessing
step, we therefore discretize all continuous random variables out
of X into intervals (Xint) with an equal number of samples.

B. Our Proposed Pipeline to Learn the Causal Model

Formally, Bayesian networks are defined via a graphical
structure G = (V, A), which is a directed acyclic graph (DAG),
where V = {X1, X2, . . ., Xn} represents the set of nodes and
A is the set of arcs [24]. Each node Xi ⊆ X represents a
random variable. Based on the dependency structure of the DAG
and the Markov property, the joint probability distribution of a
Bayesian network can be factorized into a set of local probability
distributions, where each random variable Xi only depends on
its direct parents ΠXi

:

P (X1, X2, . . ., Xn) =

n∏

i=1

P (Xi|ΠXi
) (1)

Learning a Bayesian network from data consists of two steps:
1) Structure Learning: The purpose of this step is to learn

the graphical representation of the network G = (V, A) and can
be achieved by a variety of different algorithms. An extensive
survey of potentially equally valid structure learning algorithms,
like [25] is presented in [22]. For the remainder of this letter,

Fig. 2. Exemplifies how contrastive explanations are generated from the BFS
search tree.

we choose the Grow-Shrink [26] algorithm (gs) to learn G. gs
falls into the category of constraint-based-algorithms, which
use statistical tests to learn conditional independence relations
(also called “constraints”) from the data [27]. Note that learning
plausible assumptions about causal relations is one of the biggest
challenges in the whole process of causal inference [28]. For ex-
ample, in some cases, it is challenging to determine the direction
of causal relations purely from the joint distribution of the ob-
servational data without additional interventional experiments,
additional domain knowledge, or certain assumptions about the
data distribution [29]. Structure learning is an active field of
research [28], and we will use the learned structure to generate
causal-based explanations of failures. Therefore, we assume that
the outcome of the structure learning step is indeed correct or
has been manually revised based on domain knowledge.

2) Parameter Learning: The purpose of this step is to fit
functions that reflect the local probability distributions, of the
factorization in formula (1). We utilize the maximum likelihood
estimator (mle) to generate a conditional probability table based
on the previously obtained network structure.

C. Our Proposed Method to Explain Failures

Our proposed method to generate contrastive failure expla-
nations uses the obtained causal Bayesian network to com-
pute success predictions and is summarized in algorithm 1.
In (L-2 Algorithm 1)), a matrix is generated which defines
transitions for every single-variable change for all possible
variable parametrizations. For example, if we had two variables
X1, X2 with two intervals x1, x2 each. Then, the possible valid
transitions fornode = (X1 = x1, X2 = x1)would be child1 =
(X1 = x1, X2 = x2) or child2 = (X1 = x2, X2 = x1). Lines
5-15 (Algorithm 1) describe the adapted BFS procedure, which
searches for the closest variable parametrization that fulfills the
goal criteria of P (d ∈ Xgoal|Πchild) > ε, where ε is the success
threshold, which can be heuristically set. The concept of our
proposed method is to generate contrastive explanations that
compare the current variable parametrization associated with
the execution failure xcurrentint with the closest parametrization
that would have allowed for a succesfull task executionxsolutionint .
Consider Fig. 2 for a visualization of the explanation generation,
exemplified on two variables X and Y , which are both causally
influencing the variable Xout. Furthermore, it is known that
xout = 1 ∈ Xgoal. The resulting explanation would be that the
task failed because X = x1 instead of X = x2 and Y = y4
instead of Y = y3.

IV. EXPERIMENTS

We evaluate our method to find causal explanations of failures
based on two different scenarios. The goal of experiment 1 is to

8928 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 4, OCTOBER 2022

Algorithm 1: Failure Explanation.
Input: failure variable parameterization xfailure, graphical

model G, structural equations P (Xi|ΠXi
), discretization

intervals of all model variables Xint, success threshold ε,
goal parametrizations Xgoal

Output: solution variable parameterization xsolutionint ,
solution success probability prediction psolution
1: xcurrentint ← GETINTERVALFROMVALUES(xfailure, Xint)
2: P ← GENERATETRANSITIONMATRIX(Xint)
3: q ← [xcurrentint]

4: v ← []
5: while q �= ∅ do
6: node← POP(q)
7: v ← APPEND(v, node)
8: for each transition t ∈ P (node) do
9: child← CHILD(P, node)

10: if child �∈ q, v then
11: psolution = P (d ∈ Xgoal|Πchild)
12: if psolution > ε then
13: xsolutionint ← child
14: RETURN(psolution, xsolutionint)
15: q ← APPEND(q, xcurrentint)

Fig. 3. (a) Visualises the used variables X in experiment 1. (b) Describes their
meaning.

stack one cube on top of another. The goal of experiment 2 is to
drop a sphere into different containers.

A. Experiment 1: Stacking Cubes

In the cube stacking scenario, the environment contains
two cubes: CubeUp and CubeDown (see Fig. 3). The
goal of the stacking action is to place CubeUp on top
of CubeDown. We define six variables as follows: X =
{xOff,yOff,dropOff,colorDown,colorUp,onTop}.
Both cubes have an edge length of 5 cm.

1) Cube Stacking Simulation Setup: We run the
simulations in Unity3d, which bases its physics be-
havior on the Nvidia PhysX engine. For training the
Bayesian network, we generate 20,000 samples on 500
parallel table environments (see Fig. 1). We randomly
sample values for xOff, yOff ∼ U[−3,3] (in cm),
dropOff ∼ U[0.4,10] (in cm), colorUp, colorDown =
{Red,Blue,Green,Orange}. onTop = {True,False} is not
sampled but automatically determined after the stacking
process.

2) Cube Stacking Robot Experiments Setup: We run and as-
sess our experiments on two different robotic platforms (Fig. 1):

the TIAGo service robot with one arm and parallel gripper and
the UR3 with a piCOBOT suction gripper. The real cubes are 3D
printed out of PLA (polylactic acid) and weigh around 25 grams
each. For each robot, we run 180 stacking trials. Instead of ran-
domly sampling values for the variables, as we do for training the
causal model, we evaluate the real-world behavior at 36 different
points (all possible combinations ofxOff,yOff = {0, 1, 2} (in
cm) and dropOff = {0.5, 2, 3.5, 5} (in cm)). These 36 points
were empirically chosen because they cover an area where the
ideal conditions of the simulation (e.g., collisions without any ro-
tation due to the gripper motors) could potentially have the most
significant effect on behavior discrepancies. Once the upper cube
is too far outside (> 2.5 cm), it doesn’t play a role how it was
dropped, so we have not included points with larger offsets than
2 cm. For each unique stacking setup instantiation, we conduct
five iterations. After each trial, the cubes are re-adjusted into an
always similar pre-stack position by the operator. The stacking
outcome (onTop value) was also determined by the operator.
Note that the purpose of the robot experiments is not to modify
the causal model that we learned from the simulation but to
evaluate the model transferability to the real environment.

B. Experiment 2: Dropping Spheres Into Containers

In our second experiment, the robot needs to drop spheres into
different containers. The environment contains a Sphere and one
of several possible Containers, which are shaped like a plate,
bowl or glass (see Fig. 4). We define eight variables as follows:
X = {xOff, yOff,inCont, contHeight, contSize,
contType, contCurvature, contColor}. This new list
of variables is required because experiment 2 contains a different
set of objects and new randomization parameters like the size,
which we did not consider in experiment 1. The sphere has a
diameter of 6.6 cm and the size of the containers is randomized.
We chose a constant dropping height of 0.4 m.

1) Sphere Dropping Simulation Setup: For training the
Bayesian network, we generate 800,000 samples, on 400 par-
allel table environments [see Fig. 4(a)], in Unity3d. We ran-
domly sample values for xOff, yOff ∼ U[−6,6] (in cm),
contColor = {Red, Blue, Green, Orange}, contType =
{Glass, Plate, Bowl}. We do not directly set contHeight
and contSize, but manipulate these variables via a
scalingFactor ∼ U[0.4,1]. In Unity3d, the scaling factor
can be utilized to manipulate the size of objects. We use the
same scaling factor in all three dimensions, thus the height
(contHeight) to diameter (contSize) ratio was constant
for each object type respectively. inCont = {True,False} is
not sampled but automatically determined after the stacking
process.

2) Sphere Dropping Robot Experiment Setup: We run and
assess the sphere dropping experiment on the TIAGo service
robot (as introduced in Section IV-A2). As a sphere, we use a
regular tennis ball, which weighs around 58 g and has a diameter
of around 6.6 cm. We chose three containers which each possess
a height and size parametrization that was captured in the model
[see Fig. 4(c)]. We evaluate each container at nine different
points (all possible combinations of xOff,yOff = {0, 3, 6}
(in cm)). For each unique sphere dropping setup instantiation,
we conduct five iterations. Similar to the prior experiment, the
containers are re-adjusted by a human operator, who is also
determining the dropping outcome.

DIEHL AND RAMIREZ-AMARO: WHY DID I FAIL? A CAUSAL-BASED METHOD TO FIND EXPLANATIONS FOR ROBOT FAILURES 8929

Fig. 4. (a) Visualises some of the variables X from experiment 2 and the simulation setup. (b) Describes the variable meanings. (c) The containers that were
used for the real-world experiment.

Fig. 5. Obtained BN for (a) the cube stacking and (b) the sphere dropping ex-
periment. The blue edges have been detected by the structure learning algorithm
but had to be directed manually.

V. RESULTS AND DISCUSSION

A. Analysis of the Obtained Causal Models

We first present and discuss the learned causal model of
the cube stacking scenario. 10-fold cross-validation reports an
average loss of 0.10269 and a standard deviation of 0.00031,
and Fig. 5(a) displays the resulting DAG. The graph indicates,
that there are causal relations from xOff, yOff and dropOff
to onTop, while the two color variables colorDown and
colorUp are independent. In other words, it makes a difference
from which position the cube is dropped, but the cube color has
no impact on the stacking success. We obtained the following
dropOff (z) intervals (in cm):

z1 : [0.4, 1.8], z2 : (1.8, 3.2], z3 : (3.2, 4.5], z4 : (4.5, 5.9],

z5 : (5.9, 7.3], z6 : (7.3, 8.6], z7 : (8.6, 9.9]

and the following xOff/yOff intervals (in cm):

x/y1 : [−3,−1.8], x/y2 : (−1.8,−0.6], x/y3 : (−.6, .6],
x/y4 : (.6, 1.8], x/y5 : (1.8, 3]

The conditional probabilities P (onTop = 1|ΠonTop) are vi-
sualized in Fig. 6. These plots allow us to conclude that
stacking success decreases the greater the drop-offset and the
more offset in both x- and y-direction. In particular, there is a
diminishing chance of stacking success for the values |xOff| >
1.8 or |yOff| > 1.8, no matter the dropOff height.

The obtained DAG for the sphere dropping experiment is visu-
alized in Fig. 5(b). The algorithm detected causal links between
contHeight contSize, contType, contCurvature
(marked in blue), but, initially, was not able to direct these
four edges (which is a common problem in structure learning
as discussed in Section III-B1). Since it is not possible to fit a

Fig. 6. Visualisation of the conditional probability table for P (onTop =
1|ΠonTop). xOff, yOff are discretized into 5 intervals and dropOff into
7. Values are in cm. The black rectangles denote the xOff and yOff value
range evaluated in the real-world experiments.

conditional probability table based on an undirected graph, we
directed these edges manually based on our domain knowl-
edge of the task. 10-fold cross validation reports an aver-
age loss of 0.184 and a standard deviation of 0.000052. The
graph indicates causal links between contType and inCont
via contHeight and contSize, while contColor and
contCurvature do not impact the dropping success.

We obtained the following discretization intervals for the four
variables that affect inCont (all values are in cm). We obtained
the following contSize (s) intervals (in cm):

s1 : [6.3, 11.2], s2 : (11.2, 14], s3 : (14, 17], s4 : (17, 22],

s5 : (22, 30],

the following contHeight (h) intervals (in cm):

h1 : [1.5, 2.9], h2 : (2.9, 6.3], h3 : (6.3, 9.5], h4 : (9.5, 12.3],

h5 : (12.3, 19],

and the following xOff/yOff intervals (in cm):

x/y1 : [−6,−3.6], x/y2 : (−3.6,−1.2], x/y3 : (−1.2, 1.2],
x/y4 : (1.2, 3.6], x/y5 : (3.6, 6]

Querying the causal model for sphere dropping success given
the object type reveals that the task is most likely successful for
bowls (69%) followed by plates (59%) and glasses (25%). The
model also indicates that larger-sized containers are more toler-
ant to x/y-offsets and yield a higher chance of dropping success.
(Fig. 7). Surprisingly, a similar trend cannot be determined with
the container height (Fig. 7). The reasons are twofold: First, the
container height depends not only on the size but also on the
type of container (e.g., glasses typically have a larger height
than plates). Consequently, not all object types are represented
in all height intervals, e.g., plates are only covered in h1 and h2,
whereas cups are distributed among h2-h4. Second, cups and

8930 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 4, OCTOBER 2022

Fig. 7. Visualisation of the conditional probability table for P (inCont =
1|ΠinCont). All values are in cm.

Fig. 8. Shows real-world success probabilities for the task of stacking cubes,
evaluated for two robots (TIAGo and UR3) at 36 different points (black dots).
The probabilities are interpolated between the nine measurement points for each
dropOff value.

plates were found to contribute to a higher dropping success
chance. As a result, the largest success chances can be obtained
in interval h2.

Overall, we conclude that the obtained success probabilities
resemble our intuitive understanding of the physical processes
for both scenarios. Nevertheless, real-world experiments have a
higher complexity due to the many environment uncertainties.
We, therefore, expect the simulation to be less conservative than
reality, as we have higher control over the variables involved in
the stacking process.

B. sim2real Accuracy of the Causal Models

To evaluate how well the causal model and the real-world
match, we introduce the sim2real accuracy score. It is defined
as the normalized difference in predicted probabilities over the
set of points that were evaluated in real-world experiments.1

The results for the real-world experiments of the cube stacking
scenario are presented in Fig. 8, where the black points indicate
the nine stacking locations (all possible combinations of x- and
y-offset values) for each of the four drop-off heights. The plots
show the contours of the probabilities, meaning the stacking
success probabilities are interpolated between the nine mea-
surement points. The sim2real accuracy amounts to 71% for the
TIAGo and 69% for the UR3. The largest discrepancy between
model and reality can be determined for the higher drop-off
positions. For the real-world measurements, the stacking success
drops earlier, at around 2 cm or 3.5 cm. It is also interesting to

1A visual demonstration of our experiments can be found under https://youtu.
be/rl_zDfUZ2Kk.

TABLE I
THREE EXAMPLES OF FAILURE EXPLANATIONS FOR BOTH SCENARIOS OF CUBE

STACKING AND SPHERE DROPPING. INTERVALS THAT WERE SUBJECT TO

CHANGES IN THE CLOSEST SOLUTION ARE MARKED IN BOLD LETTERS

Fig. 9. Compares success probabilities for the task of sphere dropping between
the real experiments (evaluated at 9 different points marked as black dots) and
the causal model. The black rectangles denote the xOff/yOff value range (in
cm) evaluated in the robot experiments.

compare similarities regarding probability outcomes between
the two differently embodied robots. The similarity with respect
to the 36 measured positions amounts to 85%.

The results for the sphere dropping experiments are presented
in Fig. 9. We obtained 72% sim2real accuracy for the tested
data points. We observed the most significant discrepancy for

https://youtu.be/rl_zDfUZ2Kk.
https://youtu.be/rl_zDfUZ2Kk.

DIEHL AND RAMIREZ-AMARO: WHY DID I FAIL? A CAUSAL-BASED METHOD TO FIND EXPLANATIONS FOR ROBOT FAILURES 8931

TABLE II
COMPARISON OF OUR EXPLANATION GENERATION PIPELINE WITH OTHER APPROACHES

Fig. 10. BFS for explaining Cube Stacking - Example 2 from Table I.

the plate, which was predicted to have a much larger success
probability by the model. One reason could have been, for
example, that the surface of the real plate was not perfectly flat
as in the simulations.

We can conclude that for both tested scenarios, the probability
model obtained from simulated data matches reasonably well
with reality and thus can be utilized for the explanation of failures
that occur in the real world. Furthermore, the model generalizes
well to differently embodied robots. We want to emphasize
that the causal model was not retrained or adapted when the
real scenarios were tested. If we had obtained a lower sim2real
accuracy or more significant differences between the two robots,
it would be advisable to include robot-specific variables (such
as the gripper type and orientation) and adapt the model with
real-world data. But even then, the model that we obtain from the
simulation can be used as an excellent experience prior, allowing
for faster applicability and learning.

C. Explainability Capabilities

Finally, we provide several concrete examples to showcase
how our method finds explanations for robot failures. We set the
probability threshold that distinguishes a failure from success
to ε = 0.8 for all examples. Table I provides three examples for
both scenarios of stacking a cube and dropping a sphere. Cube
Stacking - Example 2 is particularly interesting, as it showcases
that there are often multiple correct explanations for the error.
In this case it would have been possible to achieve a successful
stacking by either going from dropOff = z4 to dropOff =
z3 or by changing xOff = z4 to xOff = z3 (the search tree is
visualised in Fig. 10). Which solution is found first, depends on
the variable prioritization within the tree search due to the BFS
principle.

Our closest solution will lead to a minimal number of interval
changes and thus provides the simplest solution in terms of
Occam’s razor principle [1]. For instance, in Sphere Dropping
- Example 2, it would have also been possible to change the
container to a larger bowl. But instead, the search process found
it was easier to adapt the xOff position. The advantage of
the current uninformed BFS is that this principle is always
applicable and does not require any human domain knowledge.

D. Comparison of Our Failure Explanation Approach With
Baseline Methods

We compare our method of finding explanations of robot task
failures with the two closely related methods of Context-Based
History (CB-H) [19] explanations, and the ranked Semantic
Scene Graph method (SSG-R) [20], based on the criteria that
are summarized in Table II. For CB-H all failures and their
causes need to be manually defined in the form of Fault Trees.
In SSG-R failures are not modeled, but explained in form of
a list of spatial relations (like close to or occluded) and object
features (like fragile or heavy), automatically detected through
the semantic scene graph model MOTIFNET [21]. We explain
failures via contrastive variable parametrizations. Due to these
differences in failure representation, all three methods have
different requirements during the learning phase. For learning
the encoder-decoder network that generates language failure
explanations for CB-H, simulations must be annotated with
the respective failure cause. In [19], 2100 annotated time-steps
were used to train for six different failure causes. However, the
number of required samples will drastically increase for the two
discussed examples of cube stacking and sphere dropping due
to the increased number of failure possibilities. Additionally,
samples are more expensive than in our method since it is re-
quired to label the failure cause instead of a simple binary action
success label. In SSG-R, pairwise ranking distinguishes between
relevant and irrelevant relations. Pairwise relation preferences
must be provided via domain knowledge of the failure scenario
and which are more expensive than the automatically retrievable
binary action success labels from our method. Another difficulty
in terms of applicability to the presented scenarios of cube stack-
ing and sphere dropping provide the continuous variables (e.g.,
contSize or xOff), which are discretized into more than
two categories (as opposed to binary object relations). For these
variables, MOTFNET is not applicable. While, in principle, a
range of variables was detected to influence the action outcome
causally, it is due to a specific variable parametrization that they
lead to the action failure. Our method automatically discerns
between relevant and irrelevant relations. Last but not least,
neither CB-H nor SSG-R learn an action success model, which
can be useful for other tasks beyond failure explanation, e.g.,
failure prediction and prevention.

To conclude, both CB-H and SSG-R would require significant
changes and adaption to find explanations for the experiment
scenarios discussed in this letter. One of the most significant
differences of both methods with ours is the requirement of
failure-cause labels instead of action success labels, which are
typically easier to obtain.

VI. CONCLUSION

This letter presents our novel approach to finding causal
explanations for robot failures. First, we learn a causal Bayesian

8932 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 4, OCTOBER 2022

network from simulated task executions. We show that the model
is transferable to the real world with 70% and 72% accuracy over
two tasks of stacking cubes and dropping a sphere into different
containers and is agnostic to differently embodied robots. Fur-
thermore, we propose a new method to generate explanations of
execution failures based on the causal model. This method finds
a contrastive explanation comparing the action parametrization
of the failure with its closest parametrization that would have led
to a successful execution, which is found through breadth-first
search (BFS). For future work, we would like to incorporate
a language model that automatically encodes the contrastive
failure explanations into a vector of words, such that it can
be communicated more intuitively to a wide range of potential
users. Furthermore, we want to investigate how the obtained
causal models can also be used to predict and prevent failures
from happening.

REFERENCES

[1] T. Miller, “Explanation in artificial intelligence: Insights from the social
sciences,” Artif. Intell., vol. 267, pp. 1–38, 2019.

[2] T. Hellström, “The relevance of causation in robotics: A review, catego-
rization, and analysis,” Paladyn, J. Behav. Robot., vol. 12, no. 1, pp. 1–2,
2021.

[3] J. Pearl and D. Mackenzie, The Book of Why: The New Science of Cause
and Effect. New York, NY, USA: Basic Books, Inc., 2018.

[4] A. Mitrevski, P. G. Plöger, and G. Lakemeyer, “Representation and
experience-based learning of explainable models for robot action ex-
ecution,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2020,
pp. 5641–5647.

[5] K. Lee, Y. Su, T.-K. Kim, and Y. Demiris, “A syntactic approach to robot
imitation learning using probabilistic activity grammars,” Robot. Auton.
Syst., vol. 61, no. 12, pp. 1323–1334, 2013.

[6] S. Karapinar and S. Sariel, “Cognitive robots learning failure contexts
through real-world experimentation,” Auton. Robots, vol. 36, no. 4,
pp. 469–485, 2015.

[7] D. Lewis, “Causal explanation,” in Philosophical Papers vol. II, New York,
USA: Oxford University Press, 1986, pp. 214–240.

[8] A. S. Bauer, P. Schmaus, F. Stulp, and D. Leidner, “Probabilistic effect
prediction through semantic augmentation and physical simulation,” in
Proc. IEEE Int. Conf. Robot. Automat., 2020, pp. 9278–9284.

[9] J. Brawer, M. Qin, and B. Scassellati, “A causal approach to tool affor-
dance learning,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2020,
pp. 8394–8399.

[10] K. C. Stocking, A. Gopnik, and C. Tomlin, “From robot learning to robot
understanding: Leveraging causal graphical models for robotics,” in Proc.
5th Conf. Robot Learn., 2022, vol. 164, pp. 1776–1781.

[11] T. E. Lee, J. A. Zhao, A. S. Sawhney, S. Girdhar, and O. Kroemer,
“Causal reasoning in simulation for structure and transfer learning of robot
manipulation policies,” in Proc. IEEE Int. Conf. Robot. Automat., 2021,
pp. 4776–4782.

[12] A. A. Bhat, V. Mohan, G. Sandini, and P. G. Morasso, “Humanoid infers
archimedes’ principle: Understanding physical relations and object affor-
dances through cumulative learning experiences,” J. Roy. Soc. Interface,
vol. 13, no. 120, 2016, Art. no. 20160310.

[13] D. Song, K. Huebner, V. Kyrki, and D. Kragic, “Learning task constraints
for robot grasping using graphical models,” in Proc. IEEE/RSJ Int. Conf.
Intell. Robots Syst., 2010, pp. 1579–1585.

[14] C. Uhde, N. Berberich, K. Ramirez-Amaro, and G. Cheng, “The robot
as scientist: Using mental simulation to test causal hypotheses extracted
from human activities in virtual reality,” in Proc. IEEE/RSJ Int. Conf.
Intell. Robots Syst., 2020, pp. 8081–8086.

[15] M. Diehl, C. Paxton, and K. Ramirez-Amaro, “Automated generation of
robotic planning domains from observations,” in Proc. IEEE/RSJ Int. Conf.
Intell. Robots Syst., 2021, pp. 6732–6738.

[16] T. Chakraborti, S. Sreedharan, and S. Kambhampati, “The emerging
landscape of explainable automated planning & decision making,” in Proc.
Int. Joint Conf. Artif. Intell., 2020, pp. 4803–4811.

[17] B. Seegebarth, F. Müller, B. Schattenberg, and S. Biundo, “Making hybrid
plans more clear to human users — a formal approach for generating
sound explanations,” in Proc. Int. Conf. Automated Plan. Scheduling, 2012,
pp. 225–233.

[18] V. Raman and H. Kress-Gazit, “Explaining impossible high-level robot
behaviors,” IEEE Trans. Robot., vol. 29, no. 1, pp. 94–104, Feb. 2013.

[19] D. Das, S. Banerjee, and S. Chernova, “Explainable AI for robot fail-
ures: Generating explanations that improve user assistance in fault re-
covery,” in Proc. IEEE/ACM Int. Conf. Hum.-Robot Interaction, 2021,
pp. 351–360.

[20] D. Das and S. Chernova, “Semantic-based explainable AI: Leveraging
semantic scene graphs and pairwise ranking to explain robot failures,” in
Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2021, pp. 3034–3041.

[21] R. Zellers, M. Yatskar, S. Thomson, and Y. Choi, “Neural motifs: Scene
graph parsing with global context,” in IEEE/CVF Conf. Comput. Vis.
Pattern Recognit., 2018, pp. 5831–5840.

[22] M. J. Vowels, N. C. Camgoz, and R. Bowden, “D’ya like dags? A survey
on structure learning and causal discovery,” Assoc. Comput. Machinery
Comput. Surv., 2021.

[23] Y.-C. Chen, T. A. Wheeler, and M. J. Kochenderfer, “Learning discrete
bayesian networks from continuous data,” J. Artif. Intell. Res., vol. 59,
no. 1, pp. 103–132, 2017.

[24] M. Scutari, “Learning bayesian networks with the bnlearn R package,” J.
Stat. Softw., vol. 35, no. 3, pp. 1–22, 2010.

[25] X. Zheng, B. Aragam, P. K. Ravikumar, and E. P. Xing, “Dags with no
tears: Continuous optimization for structure learning,” Adv. Neural Inf.
Process. Syst., vol. 31, pp. 1–2, 2018.

[26] D. Margaritis, “Learning bayesian network model structure from data,”
Ph.D. dissertation, Pittsburgh School Comput. Sci., Carnegie Mellon
Univ., 2003.

[27] R. Nagarajan and M. Scutari, Bayesian Networks in R With Applications
in Systems Biology. Berlin, Germany: Springer-Verlag, 2013.

[28] A. Sharma, V. Syrgkanis, C. Zhang, and E. Kiciman, “DoWhy: Addressing
challenges in expressing and validating causal assumptions,” ICMAL
Workshop: The Neglected Assumptions In Causal Inference, 2021.

[29] J. Peters, D. Janzing, and B. Schlkopf, Elements of Causal Inference:
Foundations and Learning Algorithms. Cambridge, MA, USA: MIT Press,
2017.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

