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MPR-RL: Multi-Prior Regularized Reinforcement
Learning for Knowledge Transfer
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Abstract—In manufacturing, assembly tasks have been a chal-
lenge for learning algorithms due to variant dynamics of different
environments. Reinforcement learning (RL) is a promising frame-
work to automatically learn these tasks, yet it is still not easy to
apply a learned policy or skill, that is the ability of solving a task, to
a similar environment even if the deployment conditions are only
slightly different. In this letter, we address the challenge of trans-
ferring knowledge within a family of similar tasks by leveraging
multiple skill priors. We propose to learn prior distribution over
the specific skill required to accomplish each task and compose the
family of skill priors to guide learning the policy for a new task
by comparing the similarity between the target task and the prior
ones. Our method learns a latent action space representing the skill
embedding from demonstrated trajectories for each prior task. We
have evaluated our method on a task in simulation and a set of
peg-in-hole insertion tasks and demonstrate better generalization
to new tasks that have never been encountered during training.
Our Multi-Prior Regularized RL (MPR-RL) method is deployed
directly on a real world Franka Panda arm, requiring only a set of
demonstrated trajectories from similar, but crucially not identical,
problem instances.

Index Terms—Machine learning for robot control, reinforcement
learning, transfer learning.

I. INTRODUCTION

UMANS are adept in transferring a learned skill, that
His the ability of solving a task, to a new similar task
efficiently—for example humans are able to grasp an unseen
object by prior experience. However, most state-of-the-art rein-
forcement learning (RL) methods learn every task from scratch
and it is not easy to apply the learned policy to a new problem,
even if it is a very similar one [1]. Consequently, millions of
new interactions with different environments can be required to
solve variant tasks, which is infeasible for a real robot system.
Also, retraining is resource and time consuming, meanwhile
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Fig. 1. Anillustration of the experimental setup for two robot systems: (a) 2D
maze navigation task and (b) a 7-DOF redundant Franka Panda for peg-in-hole
tasks. We train multiple skill priors for a family of problems from demonstrated
trajectories for each task.

sample collection in a new environment is costly and repetitive.
Therefore, it is imperative to address these problems in order
to apply RL in similar environments directly on real physical
robots.

The state-of-the-art methods require policy training in simu-
lation to prevent undesired behavior and later domain transfer,
or guided policy search for single skills in a family of similar
problems [2]-[4]. The successful deployment of simulation-to-
reality methods [5] requires that the simulation is close enough
to the physical system. However, for real world robotic appli-
cations, the dynamics encountered in the deployment phase are
often radically different from those seen during training, which
might lead to the failure of transferring knowledge. Our prior
work [6] utilized a framework for learning latent action spaces
for RL agents from demonstrated trajectories [7] and connected
it to a variable impedance Cartesian space controller, allowing
us to learn contact-rich tasks safely and efficiently. However,
the method [6] requires demonstration from an expert or expert
policy in the precise domain we are solving.

In this work, we consider the problem of transferring knowl-
edge within a family of similar tasks. Our fundamental as-
sumption is that we are presented with a family of problems,
formalized as Markov Decision Processes (MDPs) that all share
the same state and action spaces. Crucially however, we allow for
members of the family to exhibit different transition dynamics.
Informally, our assumption is that while transition probabilities
are different, they may be correlated or overlapping for parts
of the state space. We then propose a method — Multi-Prior
Regularized RL (MPR-RL) — that leverages prior experience
collected on a subset of the problems in the MDP family to
efficiently learn a policy on a new, previously unseen problem
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from the same family. Our approach learns prior distributions
over the specific skill for each task and composes a family of
skill priors to guide learning the policy in a new environment.
We have evaluated our method on a 2D maze navigation task
shown in Fig. 1(a) and contact-rich peg-in-hole tasks shown
in Fig. 1(b). We show that our MPR-RL method can guide
the policy learning over similar problems and that the com-
position of multiple skill priors accelerates training the RL
policy.

The main contributions of this letter are: (1) we learn multiple
skill priors for a family of similar problems from demonstrated
trajectories for each prior task; (2) we propose to learn an adap-
tive strategy for composing multiple priors to guide the policy
learning on a new problem by comparing the similarity between
the target task and the prior ones; (3) we evaluate our method
on a maze navigation environment and a number of peg-in-hole
task variants with a Franka Panda arm and demonstrate that our
MPR-RL method can be generalized to a new environment and
be deployed directly on the real robot.

II. RELATED WORK
A. Knowledge Transfer Learning

Transfer learning has been a promising technique to leverage
prior experience to improve learning efficiency and generaliza-
tion ability [8]-[10]. Recently, transferring knowledge within
a family of Markov decision processes (MDPs) has been in-
vestigated. In [11], variational policy embedding (VPE) was
proposed to learn a master policy to accelerate the adaptation
to new members of the family. Similar to [11], we transfer
knowledge betweeen MDPs with the same state spaces and
action spaces. We also use a low-dimensional latent space to
represent the behavior of the policy. A method [12] decomposes
multi-task problems to handle novel task combinations by learn-
ing modular neural network policies that are shared across all
tasks or robots. Gupta et al. proposed invariant feature spaces to
transfer skills from one agent to another [13]. In their case, the
agents have prior knowledge about each other and have different
state spaces and action spaces, while our method focuses on
transferring knowledge between a family of tasks for one agent.
Yet their work is still limited to tasks or robots in simulation. In
comparison, our MPR-RL method can be deployed on the real
system directly. Another approach for transferring knowledge is
domain randomization [14]-[17] that learns one policy feasible
to variant MDPs with different dynamics. However, a variety of
simulated environments with randomized properties are required
to enable the policy to adapt to novel MDPs. Our approach
utilizes prior knowledge for each task and transfers knowledge
to a novel MDP.

B. Meta Reinforcement Learning

Most modern RL approaches learn every task from scratch and
consequently the generalization of RL applied to robotics is still
challenging. Meta RL approaches essentially aim to learn a good
space that can quickly be adapted in order to learn a new skill.
Model-agnostic meta learning (MAML) [18] has demonstrated
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good performance on continuous control tasks in simulation,
which explicitly updates policy parameters after a few steps.
Several methods [19], [20] have been proposed to improve the
generalization performance of MAML, however applications to
real robot systems still remain challenging.

To deploy meta RL in the real world, a dynamics model prior
was trained to accelerate the policy adaption to the local context
in [21]. Another recent work [22] combines gradient-based meta
learning with latent variable generative models to adapt the meta
RL policy to large variations both in simulation and on real
systems. Although these methods achieve success in real world
environments, they are struggling in solving contact-rich tasks.
In [23], a latent structure of each task is learned to solve a family
of contact-rich insertion tasks by randomizing task parameters.
An off-policy meta RL algorithm, probabilistic embeddings for
actor-critic meta RL (PEARL) [24], is leveraged to embed each
insertion task into the latent space. Despite the recent advances
in the field, these methods still require the RL model to be trained
in simulation and then deployed on the real system. This might
cause inconsistency between simulation and reality during the
real world deployment. In this letter, instead of learning a meta
model, we compose multiple skill priors to solve a target task
by using the knowledge from a family of similar problems.

C. Skill Prior Reinforcement Learning

Prior knowledge of the task can significantly improve the
RL learning performance and generalization capabilities. One
approach for leveraging prior knowledge is to learn a deep
latent space of skills and a prior distribution on skills within
that space, using offline experience [7]. This skill prior based
RL performs more efficiently over long-horizon tasks, but still
requires many interactions to learn a new task. Skill-based
learning with demonstrations [25] was proposed to accelerate
the learning of a new task by using a small number of task-
specific demonstrations. The work [6] extended the framework
in [7] by connecting it to a variable impedance Cartesian space
controller and it allows us to learn contact-rich tasks directly
on the real robot. The key idea of these works is to learn a
prior over skills along with a skill library to guide exploration in
skill space and enable efficient downstream learning, even with
large skill spaces. In contrast, our MPR-RL method focuses on
short-horizon and more complex tasks.

Singh et al. proposed to pre-train behavioral priors [26] from a
diverse multi-task dataset to accelerate learning new skills. How-
ever, training behavioral priors needs a wide range of previously
seen tasks to achieve robustness. A recent work [27] proposes
a bottom-up approach to learning a set of reusable skills from
multi-task, multi-sensory demonstrations and use these skills
to synthesize long-horizon robot behaviors. In comparison, our
approach is able to learn multiple skill priors for a family of
problems and be adapted directly on the target physical system
by consuming a fraction of the interaction samples.

III. APPROACH

Our approach to transferring knowledge for RL is based on
exploiting prior knowledge from demonstrations for learning a
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policy for a new task. The process is composed of two distinct
phases: a prior learning phase and a policy learning phase. In
the former we learn a latent skill space, along with a set of
guiding distributions (priors) for each demonstrated task; in the
latter, we utilize the learned priors to speed up policy learning.
For this, we regularize the RL objective with a relative entropy
term based on the learned skill priors. Below we formularize the
problem setting, then we detail our skill prior learning, derive our
multi-prior regularization method and finally propose a method
to determine skill prior contribution during the task learning
phase.

A. Problem Formulation

An RL agent acts according to a policy distribution 7y (als)
with states s € S and actions a € A. The agent is trained based
on a reward signal r : S X A — R and aims to maximize the
expected return:

GO)= E

T~TH

T
ZW(st,at)] : (1)

t=0

where T is the episode horizon, 7 is the state-action trajectory
and v € (0, 1] is the discount rate at time ¢.

We consider a family of tasks where each task is formu-
lated as a Markov decision process (MDP) defined by a tu-
ple (S, A, T,r, p,7) of states, actions, transition probability,
reward, initial state distribution, and discount factor. A family of
MDPs, M, share the same state space and action space, while
the dynamics for these MDPs and transition probabilities are
different.

We assume access to a dataset D of demonstrated trajectories
7i = {(s0,a0), - .-, (sT,, ar,)} for each task. We aim to leverage
these trajectories to learn a skill prior p; (a¢|s:) for each specific
MDP M;. Our objective is then to learn a policy 7y (als) with
parameter ¢ that maximizes the sum of rewards G () for a new
MDP M,,.., by leveraging the prior experience contained in the
dataset D.

B. Skill Prior Learning

In the prior learning phase, we use demonstrated trajectories
7; to learn distributions over skill priors. We use a variational
autoencoder (VAE) [28] model to learn a low-dimensional skill
latent space Z from a dataset of pre-collected trajectories. The
VAE model consists of a skill encoder ¢(z|a) that outputs the
latent representation z of a skill and a decoder pg..(a|z) that
predicts a sequence of low-level actions @ = {a¢, -+ , @t -1}
that the skill embedding z represents, where H € N7 is the
action horizon. As described in [7], the skill prior model pq (2|s¢)
is used to generate a prior distribution over the latent space
Z based on the state s;. This distribution serves as guidance
for the policy to determine which skills are worth exploring.
Following [29] we train the VAE by optimizing the evidence
lower bound (ELBO):

log p(a) > E,[logp(a|z) — 5 (logg(z|a) —logp(z))], (2)

where (3 is a hyperparameter used to tune the regularization term.

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 3, JULY 2022

In skill prior RL (SPiRL) [7], the learned skill prior is lever-
aged to guide learning a high-level policy 7y (z|s) by introducing
an entropy term. They propose to replace the entropy term of
Soft Actor-Critic (SAC) [30] with the negated KL divergence
between the policy and the prior. Similarly, our method uses the
embedding space Z as the RL action space as shown in Fig. 2
and the policy is over skills 7y (z|s), for ease of notation, we will
still use a as the action in Section III-C.

C. Multi-Prior Regularized Reinforcement Learning

Our MPR-RL can be derived in the following way. In maxi-
mum entropy RL [30], the RL objective is regularized with the
policy entropy:

J0)= E , 3)

T
Z yir(se, a) + al'y
t=0

where I = H(mg(a|s;)) is the policy entropy term and « is
the temperature parameter which decreases over time. This
means that the policy is initially incentivized to explore more
widely [30]. The regularization term I' can be rewritten as the
relative entropy between the policy and the uniform distribution
over actions U (a;):

Ty = —Dxp(mo(atlst), Ulat)). %)

This formulation can be exploited to guide the learning process
with a learned non-uniform distribution [7]:

I't = —Dxky(mg(a|st), plat]se)). Q)

This means that the policy is initially incentivized to explore
according to the learned distribution p(a¢|s;) which can aid the
learning process if p(a¢|s;) is similar to the optimal policy in
the task. For instance, this is the case when it is learned from
demonstrations of the same task. Following [7], we also call the
distribution p(ay|s) skill prior.

Using only one skill prior limits the method to policy learning
in the same task as where the skill prior was learned. For this
reason, we extend this approach from one learned skill prior
to several skill priors learned in different tasks. To this end,
we regularize the RL objective with a weighted sum of relative
entropies:

m
Ty == w;Dxi(mo(arlse), pi(ast)), (6)
i=1
where w; is an adaptive weight and Y " ; w; = 1, and p; (a¢|s;)
are skill priors from different tasks of the family. This means
that the policy is initially incentivized to explore according to a
mixture of different skill priors depending on the weight factors.
While there are many options, in the next section we explain how
we define the weight factors based on the current transition.

D. Learning Prior Weight

The key idea behind our method is to give high weight to those
regularizing priors that come from similar tasks. We assume
that the tasks only differ in dynamics, therefore we predict the
weights based on the transitions. To this end, we train a prior
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MPR-RL framework: we pre-train multiple skill priors for a family of similar MDPs. Once skill priors p;(z|s;) and the skill decoder pg..(alz) block

are learned, the skill policy 7y (z|s¢) is trained by composing multiple prior divergences for a target task to generate embedding action z that can be decoded into

a sequence of real action commands.

predictor (s, at, s¢11) to discriminate between state-action-
state transitions generated by each member M/; in our family of
MDPs. Intuitively, when the transitions in all members are very
similar, our model 2 predicts uniform weights. Conversely, in
cases when members of the family differ a lot, {2 can clearly
identify the correct problem setting.

We design a prior predictor Q(s;, a;, s;+1) as a feed-forward
neural network to determine each prior weight w;. The training
of the prior predictor is treated as a supervised learning problem
using the demonstrated datasets for a family of accessible MDPs.
In contrast to constant weights, this allows different skill priors
to guide exploration in different parts of the state space. As a
consequence, knowledge from different tasks can be transferred
for learning in a new environment.

In our case, we represent predictor {2 as a multi-layer neural
network and assume the prior divergence weights are multino-
mial probabilities that sum up to 1. Therefore, we use the softmax
function as the activation function in the output layer of neural
network. Once learned, the predictor is used as an approximator
that outputs the adaptive weight w; for each skill prior.

E. MPR-RL Algorithm

Assuming that the agent has access to prior knowledge of
m similar MDPs, we aim to transfer the learned knowledge
to a new MDP. We regularize the policy with the negated KL
divergences between the policy and each skill prior. The policy
g for a new MDP M, can be learned by optimizing the
objective function. We propose to utilize a learned predictor
Q(st, at, st41) to determine the importance of each prior for a
new task. The framework of our MPR-RL is illustrated in Fig. 2.
We learn a low-dimensional latent representation z € Z for RL
action. Multiple priors for a family of MDPs are pre-trained to
estimate the KL divergence with a skill policy my(z|s;). The
policy mg(z|s;) over the latent action space is trained to output
embeddings that are decoded into sequences of real actions by
the skill decoder pge.(alz).

Our MPR-RL approach is summarized in Algorithm 1. We
modify the Soft Actor-Critic (SAC) by adding the sum of mul-
tiple KL divergences between the skill policy and pre-trained

Algorithm 1: MPR-RL

Input : Learning rates A\, A\g, \,, target divergence
0, target update rate 7, priors p; and prior
predictor 2
Output: Trained policy mg(z¢|s¢)

1 Initialize the policy mg(z|s:), critic Qg (s, z¢), target

network QQ5(s¢, 2¢) and initialize replay buffer B

2 for each episode=1,M do

for each step=1,N do

Select high-level action z; ~ g (2¢|st)

Execute action z; and receive reward 7

Store transition tuple (s, 2¢, ¢, S¢+1) in B

end

for each gradient step do

w = Q(St, Qy, 8t+1)

Q =r+ Y[Qg(st+1, mo(2t41]5t41)) —

a Y wiDxL(mo(zey1lst41)s Pi(ze41]8t41))]
1=0

0 0—XVylQoy — E w; Dx1. (7o, pi)]
¢ ¢ — AoVl (Q¢— ) ]
o <— o — )\ava[ (Z szKL(ﬂ-Gapi)

=0

P TP+ (1—7)p

e ® N s W

11
12

13

—9)]

14
15
16 end

17 return the trained policy g (2¢|s¢)

end

skill priors. During each gradient step, we predict the prior
divergence weights and compose all priors to estimate the policy
entropy. The temperature parameter « in equation (3) trades
off the cumulative reward and the regularization term. We tune
the regularization weight o automatically by defining a target
divergence d between policy and action priors. We formulate it
as a constraint optimization problem:

T

ZVtT(St,at)] )

t=0

max E
T~




7656

5.ty wi Dy (79, pi) <6, @)
=0

where p; is the prior model for each MDP. This leads to the
update rule for a:

a4 o — AV [Oé (ZMDKL(W&7P¢) - 5>] , (8

=0

where A, is the learning rate. The regularization weight o con-
trols the stochasticity of the optimal policy. Due to the constraint
term, o should decrease over time if the knowledge from a family
of MDPs is transferred to a new MDP successfully.

IV. EVALUATION

We evaluate our approach on a simulated maze navigation
environment [31] and a contact-rich peg-in-hole environment
with a real Franka Panda arm. The goals of all experiments are
three-fold: (1) to evaluate the performance of our MPR-RL on
a novel MDP; (2) to test whether the prior predictor accelerates
the learning process for a novel MDP; (3) to investigate whether
our MPR-RL is able to achieve better generalization ability
compared to the baseline. In the following, we first describe
the experimental setup in [V-A, then present experiment results
for the simulated task in IV-B and the real robot tasks in IV-C,
lastly show ablation experiments in IV-D.

A. Experimental Setup

For training the skill embedding variable, the encoder and
decoder of the VAE model are implemented as a long short-term
memory (LSTM) of 128 hidden units to represent a sequence of
robot commands. Similar to [7], each skill prior is represented
as a 5-layer fully-connected network with 128 hidden units per
layer. For the maze navigation environment, a convolutional
network is used to extract the image feature concatenated with
the agent proprioceptive state. The prior predictor is modeled
as a 3-layer neural network with 32 units per layer to avoid
overfitting.

We use MPR-RL in Algorithm 1 to learn a latent action
with RL discount factor 0.99 and batch size 128. The latent
variable z is embedded as the Gaussian posterior distribution
of different dimensions. We use Adam as the optimizer, with
an initial learning rate of 1e-3. We tuned some hyperparameters
in our experiments and chose the regularization weight 5 in
equation (2) as 5e-5. During RL policy training, all pre-trained
models of multiple skill priors for different MDPs were kept
fixed.

We evaluate the performance of our MPR-RL using adaptive
weights and compare with several baseline methods: (1) MPR-
RL hard-max weight, where only the skill prior with the maxi-
mum task likelihood under the transition is used, (2) MPR-RL
uniform weight, (3) SPiRL without (w/o) prior knowledge from
the target MDP, (4) Soft Actor-Critic (SAC), and (5) Behavioral
Cloning with SAC (BC+SAC). When SPiRL has full access to
the demonstration data from the target task, it is a baseline that
is provided as a target to try to reach. We compare all methods’

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 3, JULY 2022

TABLE I
COMPARISON OF DIFFERENT METHODS

Access to Access to Online
Method similar task | target task | learning Result
MPR-RL adaptive v X v success
MPR-RL hard-max v X v success
MPR-RL uniform v X v fail
SPiRL X v v success
SPiRL w/o knowledge v X v fail
SAC X X v fail
BC+SAC X v v fail
TABLE 11

PARAMETERS FOR DIFFERENT MAZE ENVIRONMENTS

Parameter Minimum | Maximum
damping ¢ 0.4 1.6
x linear friction iz 0.2 1.2
y linear friction 1y 0.2 1.2

access to the demonstration data from the target or similar task
in Table I.

B. Simulated Maze Navigation Task

We evaluated our method in a simulated 2D maze navigation
task based on the D4RL environment [31]. The goal is to navigate
the agent from a fixed start point to target locations. The RL
state space is represented as the combination of agent position,
velocity and a 32 x 32 pixel view centered around the agent.
The action space is chosen as the 2D velocities of the agent. A
sparse binary reward is received when the agent moves in close
vicinity to the goal. For each maze navigation MDP, we collected
20 K goal-reaching trajectories to train the prior model and the
prior predictor is learned using the combined 60 K trajectories
of three MDPs (not the target MDP). For SPiRL, we use 85 K
goal-reaching trajectories as in [7] to train the skill prior model
and the latent space.

To vary the dynamics of the maze environment, some pa-
rameters are randomized as listed in Table II. We consider
the damping ¢, x linear friction p, and y linear friction fi,.
We generated datasets from three maze MDPs with different
dynamic parameters.

Fig. 3(a) shows the learning curves of our MPR-RL and the
baselines. In all experiments, both our MPR-RL with adaptive
weight and SPiRL succeed in learning to reach the goal. Our
method does not need experience from the novel target MDP,
while SPiRL fails to transfer prior knowledge from a family of
MDPs to anovel one. Also, the results of MPR-RL with adaptive
weight and uniform weight indicate that weighting divergences
for optimizing the objective function in equation (6) has critical
influence on transferring knowledge between a family of MDPs.
It can also be seen that the variance of hard-max method is larger,
which means that its performance is not stable as our adaptive
weighting. Without prior knowledge from the target task, SPiRL
fails to learn a solution policy. SAC from scratch and BC + SAC
cannot finish the task.

The exploration behaviors of four methods are shown in
Fig. 4. Our MPR-RL with adaptive weight is able to learn a
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Fig. 3.

Comparing learning curves of MPR-RL with baseline methods: (a) rewards for maze navigation task; (b) rewards for inserting hexagon peg experiments;

and (c) rewards for inserting square peg experiments. Our MPR-RL method converges to good performance when used with adaptive prior weighting. Without
prior knowledge from the target task, SPiRL fails to learn a solution policy. SAC from scratch and BC + SAC cannot finish the task. Shaded areas show standard

deviation for three seeds.

MPR-RL Adaptive Weight MPR-RL Hard-max Weight

MPR-RL Uniform Weight SPiRL w/o Prior Knowledge

Fig. 4.

Exploration behavior of our MPR-RL compared with baseline methods. The start and goal positions are depicted in green and red respectively. Darker

blue indicates recent exploration areas. Our MPR-RL method is able to explore the vicinity in a novel MDP by transferring knowledge from a family of similar
MDPs. The prior predictor helps the policy to explore in the goal point area. In comparison, SPiRL cannot learn the policy if no prior knowledge of the new MDP

is available.

navigation policy in a new MDP successfully by transferring
prior knowledge, while if no predictor €2 (uniform weight) is
used the agent concentrates on exploring other area far away
from the goal. It can be observed that hard-max weighting
scheme decreases the agent’s exploration ability. For SPiRL
using priors from the family of MDPs except the target one, the
agent explores a confined area of the maze around the start point
and fails to reach the goal. We conclude that SPiRL needs prior
experience from the target MDP to achieve similar performance
as our method. We clarify our MPR-RL is more sample efficient
because when we adapt our policy to a new MDP environment or
even other systems from the same MDP family, itis not necessary
to collect the samples in the new MDP for MPR-RL, while it is
for SPiRL.

C. Real Robot Experiments

In the contact-rich peg-in-hole tasks, we use four different
shapes as a family of MDPs: circular, hexagon, square and trian-
gular as shown in Fig. 1(b). The different shapes induce different
contact dynamics and thus modify the transition probabilities
of the MDPs in the family. We test two cases: (1) inserting
hexagon peg by using prior knowledge from circular, square
and triangular ones; (2) inserting square peg by using prior
knowledge from circular, hexagon and triangular ones. These
two cases offer the possibility to interpolate between some of
the other shapes.

To implement contact-rich tasks, we use a Cartesian
impedance controller. For a robot with k joints, the observation
vector s; is composed of: (1) joint positions g € R* and joint
velocities ¢ € R¥, (2) end-effector position offset e € R? and
rotation 6, in the z direction, and (3) the environment contact
force along the z direction F,,; € R.

To train the skill prior in advance, we collect 100 insertion
trajectories for each MDP using a finite state machine that
divides each trajectory into downward reaching, spiral motion
alignment and insertion. The purpose of spiral alignment is
to search for the target hole in a large area. In our case the
Archimedean spiral motion is defined in polar coordinates (7,

©):
©)

where by describes how far away from the origin the spiral should
start and b; represents the distance between each turn of the
spiral. We also use a sin function to control the rotation along the
z axis during spiral motion. The reward function is negatively
proportional to the distance between the end-effector and the
hole.

To train skill prior RL on the real robot directly, the system
stiffness term K € R6*6 is incorporated into the agent action.
Therefore, we extend the policy action as the combination of
end-effector pose & € SE(3) in Cartesian space and variable
stiffness matrix K. Stiffness matrix K contains 6-dimensional
end-effector stiffness coefficients. One extra null-space stiffness
coeffcient for the redundant robot is set as a constant value.

rp = bo + b1<p,
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Fig. 5. Confusion matrix of visualizing the similarity among all peg-in-hole

tasks. Through predicting transition samples from four tasks, the prior predictor
estimates the similarity accurately. C, H, S and T stand for circular, hexagon,
square and triangular respectively.

Our 8-dimensional action space is thus composed of: (1) end-
effector translations € R? in Cartesian space, (2) rotational
angle 6, € R around the z axis, and (3) the diagonal coefficients
k € R* that determine the variable stiffness matrix K for the
corresponding four Cartesian components.

We use demonstrated trajectories to train the skill prior for
each task and trained the prior predictor with the labeled trajec-
tories from all tasks. We sample 100 transitions from each task
and discriminate the task category by the prior predictor. We
evaluate the performance of the prior predictor by calculating a
confusion matrix of different tasks. In Fig. 5 it can be seen that
there is a sharp distinction between the triangular shape and other
shapes, while the circular peg is more similar to the hexagon.
We hypothesize that the triangular shape leads to more complex
dynamics during insertion interactions. We note that due to
the lightweight design of the prior predictor, discrimination
accuracy is overall low at around 75%. Nevertheless, this is
sufficient to adequately weight the priors associated with similar
tasks in the MDP family.

Fig. 3(b) and Fig. 3(c) show the learning curves of our
MPR-RL method and baselines over the real world hexagon and
square peg-in-hole tasks respectively. Each method is trained
using three different seeds. We can see that SPiRL with prior
knowledge of the current MDP learns slightly faster, which is
expected. MPR-RL policy with adaptive weight is able to learn
to insert the target peg in the new MDP although it converges the
reward plateau slower. MPR-RL with hard-max weight also suc-
ceeds in learning the policy, but shows fluctuating performance.
The other methods fail to learn the skill. It demonstrates that
our approach can transfer knowledge from a family of MDPs
to a novel MDP successfully. In both experiments we conclude
that the adaptive weight predictor {2 among a family of MDPs
is essential for transferring knowledge for our MPR-RL policy.

We evaluate the trained policies on hexagon peg-in-hole tasks
with different goal positions and initial rotational angles between
the peg and the workpiece. The success rates are shown in
Table III. For all cases, MPR-RL with adaptive weight achieves
highest success rates, although it has no prior knowledge of
the new MDP. In comparison, when SPiRL has no access to
prior knowledge of the current MDP, it shows poor insertion
performance. Also, similar to the results shown in the maze
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TABLE III
SUCCESS RATE FOR HEXAGON PEG-IN-HOLE TASK

Method Ilem | 2cm | 3em | 5° 10° 15°
MPR-RL adaptive 0.86 | 0.80 | 0.82 | 0.90 | 0.85 | 0.72
MPR-RL hard-max 0.65 | 0.62 | 053 | 0.72 | 0.63 | 0.58
MPR-RL uniform 042 | 032 | 0.18 | 039 | 0.22 | 0.20
SPiRL w/o knowledge | 0.35 | 0.17 | 0.14 | 0.14 | 0.11 | 0.08

Maze Navigation

Maze Navigation

1500

/\/\/\/\ A

500 —— 2 priors 500 —— dataset size=10K
—— 3 priors / —— dataset size=20K

5 priors 0 ﬂ dataset size=30K

0.0 0.2 0.4 0.0 0.2 0.4
Training steps (1M) Training steps (1M)

(@ (b)

Reward

Fig. 6. Impact of the number of priors and dataset size on performance of
MPR-RL in maze navigation: (a) rewards for different numbers of priors; (b)
rewards using different sizes of dataset.

circular prior
—— multi-prior 1.0
—— square prior
—— triangular prior

= MPR-RL adaptive weight
—— MPR-RL hard-max weight
0.8 —— MPR-RL uniform weight

00 02 04 06 08 10
Steps (1M)

(b)

Fig. 7. (a) Comparing one action segment in hexagon peg-in-hole task. We
generate trajectories of 10 waypoints using prior knowledge from different
MDPs; (b) Comparison of tuning « through three weighting schemes, o cannot
converge if we average all prior KL divergences (uniform weighting).

navigation task, the prior predictor remarkably improves the
performance of the trained policy.

D. Ablation Evaluation

We investigate the impact of the number of priors and dataset
size on the performance of our MPR-RL with adaptive weight
method shown in Fig. 6. In the maze navigation task we observe
that training with 3 or 5 priors yields similar performance, while
2 priors leads to diminishing reward. We suspect that it is hard
to cover randomized dynamics of the maze environment with
2 priors. We also notice that the dataset size used for training
each prior needs to be large enough to accelerate the learning
of the policy. We conclude that our method needs enough prior
knowledge from seen MDPs, but crucially not the target one, to
benefit the learning the solution policy.

‘We compare one example of action sequences generated when
using different skill priors in a hexagon peg-in-hole task shown
in Fig. 7(a). Each trajectory is an action segment of 10 waypoints
and the red point shows the position of the target hole. It can be
seen that our MPR-RL method combines the knowledge from
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three different MDPs circular, square and triangular and transfer
the inserting skill to a new hexagon MDP. In this specific case, the
action sequence from multi-prior is more similar to the circular
one.

The regularization weight « in equation (8) is tuned automat-
ically during training and the tuning procedure in the hexagon
peg-in-hole experiment is shown in Fig. 7(b). As expected,
a decreases because the sum of weighted prior divergences
is getting close to the target divergence J. It means that the
regularization term of multiple priors accounts less and the skill
policy learns to finish inserting task in the new MDP. We can see
that « also converges by hard-max weighting scheme, but the
fast converge by hard-max weighting restricts the exploration
ability of the policy. In contrast, if the prior predictor is not used
to compose multiple priors, the regularization term is not able
to converge.

V. CONCLUSION AND FUTURE WORK

We have presented an approach that learns multiple priors for
a family of similar MDPs and compose these priors to guide the
RL training of a policy on a new MDP. Our approach learns prior
knowledge over specific skills for similar tasks. We evaluate
our method on a simulated maze nagivation environment with
different dynamics and a number of peg-in-hole task variants
with a Franka Panda arm and demonstrate that our MPR-RL
method can be adapted to the similar MDPs. By incorporating
variable impedance into RL actions, we also show that our MPR-
RL can be deployed directly on the real robot.

In our work, we utilize a neural network to predict the weight
for each MDP prior that needs to be pre-trained and requires an
amount of RL transitions. A promising future work might be
to investigate how all priors can be composed more effectively
(i.e. using Bayesian optimization). A second limitation is that
our MPR-RL is only tested with a small family of MDPs. If a
big family of MDPs are considered, it will be time and effort
consuming to train these priors in advance. Therefore, it will be
interesting to investigate how to learn a distribution over skill
priors that can be adapted to a novel MDP. This could potentially
mitigate the burden of collecting prior experience and accelerate
transferring knwoledge between a big family of MDPs.
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