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Abstract—The emerging paradigm of Continuous-Time Simul-
taneous Localization And Mapping (CTSLAM) has become a
competitive alternative to conventional discrete-time approaches in
recent times and holds the additional promise of fusing multi-modal
sensor setups in a truly generic manner, rendering its importance
to robotic navigation and manipulation seminal. In this spirit,
this work expands upon continuous-time concepts, evaluates their
suitability in common stereo and stereo-inertial online configu-
rations and provides an extensible, generic, robust and modular
open-source implementation to the community. The presented ex-
perimental analysis records the performance of our approach in
these setups against the state-of-the-art in discrete-time Simulta-
neous Localization And Mapping (SLAM) on established datasets,
achieving competitive results, and provides a direct comparison
between online discrete- and continuous-time approaches for the
first time. Targeting the absence of open-sourced, continuous-time
pipelines and their associated, oftentimes prohibitive, initial devel-
opmental overhead, our implementation is made public.

Index Terms—Visual-Inertial SLAM, Sensor Fusion.

I. INTRODUCTION

THE joint task of estimating a system’s ego-motion and si-
multaneously mapping its surroundings, known as SLAM,

is achieved in practice by combining multiple, complementary
sensing modalities. Over the last decade, a number of cost-
effective and portable sensor setups have been consolidated in
machine perception, including visual-monocular [1]–[4], stereo-
visual [5], Inertial Measurement Units (IMUs) [6]–[10], Global
Navigation Satellite System (GNSS) / Real-Time Kinematic
Positioning (RTK) [11], [12] and Light Detection And Ranging
(LIDAR) [13] sensors, among others. The SLAM optimization
problem has traditionally been posed over a discrete set con-
sisting of the most-informative states for motion estimation and
mapping (e.g. keyframes in visual SLAM), effectively keeping
the growth of the problem tractable under realistic hardware
constraints. Common difficulties amongst these techniques lie
with the absence of inter-state motion information, necessitating
discretized kinematic constraints, the introduction of quanti-
zation errors and the cumbersome integration/synchronization
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of (asynchronous) multi-rate sensing modalities. For instance,
IMU measurements are commonly pre-integrated into relative
constraints, whereas scan lines of rolling-shutter cameras and
LIDARs sensors prove to be problematic due time offsets be-
tween individual measurements. Alternative approaches based
on assigning each measurement its individual state, however,
swiftly become computationally prohibitive, especially for high-
rate sensing modalities. CTSLAM formulations target these
shortcomings and allow asynchronous measurements to be reg-
istered at their exact acquisition time, making them appealing
in the context of multi-modal sensor calibration [14]–[16],
rolling shutter camera [16]–[18] and event-based vision [19],
[20] applications. Continuous-time parametrizations not only
enable more straightforward sensor fusion schemes, but also
allow for a reduction in overall state size in scenarios with
low dynamicity, occurring aboard trains or cars [21], [22] for
instance. While CTSLAM systems are typically more compu-
tationally demanding than their discretized counterparts, recent
works [23], [24] show promising results towards a more efficient
use of continuous-time parametrizations.

In light of these advances and advantages, this work presents
a novel stereo-inertial CTSLAM pipeline that extends upon Hy-
perSLAM [23], which presented a monocular proof-of-concept
in purely simulated batch optimization scenarios. Based on
several continuous-time adaptions of classical methods, the
proposed system is capable of reliably estimating the ego-motion
in real world experiments while being generic, modular and
readily extensible to other sensing modalities. The presented
approach is benchmarked against state-of-the-art discrete-time
SLAM systems [5], [6], [9], [25] on well-established, public
datasets [26], [27] achieving competitive results. To the au-
thors’ best knowledge, this is the first work providing a direct
cross-comparison between online continuous- and discrete-time
frameworks on multiple benchmarking datasets and, thus, breaks
ground for more transparent comparisons across continuous-
time approaches. Concisely, this work

a) investigates the suitability of continuous-time methods in
common, real world setups,

b) extends these approaches to the realm of online (i.e. non-
batch) operations and stereo-inertial cases and

c) provides an extensive and modular open-source imple-
mentation of the presented algorithms.

II. RELATED WORK

The theoretical groundwork for the application of continuous-
time SLAM was done by Furgale et al. [14], who formulated it as
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a Maximum a posteriori Likelihood Estimation (MLE) problem
with the aim of significantly compressing the state size of the
underlying optimization problem associated with multi-sensor
configurations. Given the benefit of such a formulation for the
monocular, visual-inertial case, it was later extended to include
temporal offset calibration between a camera and an IMU in [15].
Around the same time, Lovegrove et al. [17] explored the
CTSLAM problem with rolling-shutter cameras in a simulated
monocular visual-inertial setup, where the characteristics of the
rolling-shutter effect were explicitly modelled by exploiting the
continuous-time parametrization. Analogously, in [19], [20],
Mueggler et al. applied a continuous-time formulation to handle
the asynchronous nature of sensing cues produced by event cam-
eras in a monocular visual(-inertial) setup. The problem of ad-
dressing loop closure in large scale environments in continuous-
time was first investigated by Anderson et al. [28]. Work
conducted by Droeschel and Behnke [13] provided insights
into the benefits of utilizing continuous-time state estimation in
LIDAR applications aboard vehicles, and was able to improve
upon state-of-the-art mapping methods at the time. Park et al.
[29], [30] also explored means to enable life-long applications
as well as target- and structureless calibration methods in the
context of continuous-time LIDAR approaches. Anderson et al.
also analyzed the impact of moving to a hierarchical wavelet
decomposition to represent the continuous-time motion in their
adjacent work [31], which allowed for adaptive refinement of the
underlying representation. A further example of the advantages
of continuous-time representations when treating inertial data is
presented by Rehder et al. [32], who applied it to the intrin-
sic calibration of multiple IMUs. Zhang and Scaramuzza [33]
utilized Gaussian processes to model continuous-time represen-
tations in a probabilistic context to tackle temporal associations
in a principled manner. The prospects of applying general-
ized, non-uniform B-Splines of arbitrary order to simulated
visual monocular problems was further researched in our previ-
ous work [23]. Moreover, several authors, including Haarbach
et al. [34], Ovrén and Forssén [35] and Sommer et al. [24],
all advocated in favour of more efficient parametrization and
interpolation methods. A recent, comparative study by Cioffi
et al. [36] further substantiated the advantages of continuous-
time approaches over conventional approaches in batch oper-
ation on common datasets. Consolidating insights from [23],
[24] and building on the bulk, state-of-the-art continuous-time
research, we further explore stereo and stereo-inertial configu-
rations, demonstrating the competitiveness of continuous-time
approaches against established discrete-time frameworks.

III. METHODOLOGY

A. Parametrization-Agnostic Non-Linear Optimization

Let Θ be the collection of motion-parametrizing states, Φ
the collection of sensor-specific parameters (e.g. intrinsics,
distortion parameters, etc.) and Ψ the exteroceptive param-
eters (e.g. visual landmarks, gravity, etc.). Furthermore, let
m(tm) ∈ Ms represent a measurement acquired by the sensor
s ∈ S at time tm, where S denotes a collection of sensors.

Fig. 1. a) Associated segment and bases (in orange) corresponding to an
interpolated estimate for a given query point. b) Contributions of increments
between adjacent bases (in blue) to the interpolated query point.

Individual measurements m are compared against their asso-
ciated predictions m̂(tm,Θ,Φs,Ψ), through the definition of a
weighted residual ‖rs‖Σs

= r�s Σsrs. Dropping non-essential
dependencies and potential regularization terms, the generic,
parametrization-agnostic, multi-modal minimization problem,
i.e. valid for discrete- and continuous-time approaches and an
arbitrary combination of sensors, is defined as

Θ∗,Φ∗,Ψ∗ = argmin
Θ,Φ,Ψ

∑
s∈S

∑
m∈Ms

‖rs (m̂,m)‖Σs
. (1)

B. Continuous-Time Parametrization

Continuous-time representations [37], [38] have long been
established and utilized across a variety of applications where
continuous approximation, interpolation or regression is essen-
tial. In recent times, some of these representations, such as
B-Splines [23], [35], [38], have also gained traction within the
field of Computer Vision due to several advantageous character-
istics such as compact representation, local support and inherent
smoothness. Consequently, they are well suited to model time-
dependent transformations Twb(t) between the world frame w
and the body frame b as illustrated in Fig. 1. Split representa-
tions, which parametrize transformationsTwb(t) as pairs of unit
quaternions qwb(t) ∈ SU(2) and translations wxwb(t) ∈ R3, in
particular, were shown to enhance the overall accuracy and con-
vergence rate in Non-Linear Least Squares (NLLS) optimiza-
tions in [34], [35], whilst accommodating different sampling
rates in rotations and translations, rendering them especially
suitable. Hence, we adopt the split parametrization from [23]
which is based on the formalism of non-uniform, C2-continuous,
cumulative, cubic B-Splines and interpolates transformations
Twb(t) as follows,

Twb(t) =

[
R (qwb(t))

wxwb(t)

0 1

]
∈ SE(3) with (2)
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qwb(t) = qwi ∗
k∏

j=1

(
q−1
w(i+j−1) ∗ qw(i+j)

)λj(t)

(3)

wxwb(t) =
wxwi +

k∑
j=1

(
wxw(i+j)−wxw(i+j−1)

)
λj(t), (4)

where R(q) converts a quaternion to a rotation matrix and
qλ denotes the quaternion power. Interpolated transformations
Twb(t) are computed by blending a collection of k + 1 bases
{Bi, . . . ,Bi+k} (see Fig. 1), where the i-th basis with associ-
ated timestamp ti is defined as Bi := {ti, qwi,

wxwi}. Here, k
represents the Degree of Freedom (DoF) of the spline of choice,
which is set to k = 3 in this manuscript to arrive at a cubic
representation. In (3) and (4), the bases are blended according to
λj(t), which is the j-th entry of the k-dimensional interpolation
vector Λi(t) from (5). Λi(t) itself is defined as the matrix multi-
plication between the generalized mixing matrix Πi from [23],
[37] and the stacked vector of normalized times U i(t). In
particular, U i(t) is defined as [1, ui(t), u

2
i (t), . . . , u

k
i (t)]

�

where individual entries are powers of the normalized time
ui(t) = (t− ti−1)/(ti − ti−1) such that ti−1 ≤ t < ti holds for
valid query times t. The expression for Λi(t) simplifies to

Λi(t) = ΠiU i(t) =
1

3!

⎡
⎢⎢⎢⎣
6 0 0 0

5 3 −3 1

1 3 3 −2

0 0 0 1

⎤
⎥⎥⎥⎦U i(t) (5)

for uniform, cumulative, cubic B-Splines. As presented in [23],
[24], the above formulae also give rise to closed-form solutions
for instantaneous angular and linear velocities/accelerations,
which are omitted here.

C. Visual Sensor Model

Extending upon notions from Section III-A, the utilized visual
sensor model comprises the relative transformation T bs (with
body frame b and sensor frame s), the intrinsic matrix as well
as parameters related to the chosen lens distortion model in its
set of optimizable quantities Φs. Abstracting from the specific
distortion model, one defines a generic function Γ : R3 → S2,
mapping distorted, homogeneous, normalized pixel coordinates
of landmark detections in the image plane to undistorted on-
unit-sphere vectors sb ∈ S2, so-called bearings, as introduced
in [23]. Conversely, predicted homogeneous landmarks sL̂ at
time tm are obtained by transformation of the corresponding
wL̂ ∈ Ψ to the sensor frame using T̂wb(tm) according to

sL̂(tm) = T sb T̂ bw(tm)wL̂ ∈ R4. (6)

Visual predictions are compared against their corresponding
measurements sb via

rs = ∠ (m̂,m) = ∠
(
sL̂, sb

)
∈ R, (7)

where ∠(·, ·) measures the angle between vectors. In this work,
we forgo a detailed treatment of the distortion covariance prop-
agation trough Γ and, instead, select a constant weight Σs, as
defined in (1), for all visual residuals rs. Note that (7) remains

Fig. 2. Schematic system overview outlining (from left to right) the most
relevant steps and components of the implemented pipeline.

valid for unsynchronized and rolling shutter setups, and merely
requires appropriate modification of the individual measurement
times tm to model these effects.

D. Inertial Sensor Model

We make use of the inertial sensor model introduced by
Rehder et al. [32], which comprises the sensor-specific transfor-
mation T bs, the estimated gyroscope and accelerometer biases
B̂ω(t) and B̂α(t) ∈ R3, the non-orthonormality axis-alignment
matrices Sω and Sα ∈ R3×3 alongside a gravity estimate wĝ ∈
Ψ. Its corresponding residual is defined as

rs = m̂−m =

[
sω̂ws

sα̂ws

]
−
[
sωws

sαws

]
, (8)

where predictions m̂, comprising angular velocities sω̂ws and
linear accelerations sα̂ws, are derived from the associated, pre-
dicted temporal derivatives of T̂wb(tm). In particular,

rs =

[
SωRsb

bω̂wb + B̂ω

SαRsbR̂bw (wα̂wb − wĝ) + B̂α

]
−
[
sωws

sαws

]
, (9)

where additional terms for off-centered inertial sensors as well
as explicit time-dependencies are dropped for conciseness. In
this work, Sω and Sα are set to identity and kept constant and
the biases B̂ω and B̂α are modeled as splines.

E. System Description

1) System Overview: The proposed pipeline, depicted in
Fig. 2, follows established paradigms and conceptually distin-
guishes between the initial acquisition and pre-processing of
raw inputs in the frontend and the subsequent integration of the
extracted information into an NLLS optimization problem in
the backend. As illustrated in Fig. 3, the backend also manages
contractions and expansions of the sliding optimization window
to allow online operations, adds, or removes, residuals to/from
the active set of optimizable parameters (see (1)) and integrates
additional constraints to assert the stability of the minimization.
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Fig. 3. Factor-graph-like representation of the underlying, continuous-time
optimization problem of the proposed pipeline. The continuous-time representa-
tion is constructed from individual segmentsZi, which depend on a collection of
(shared) optimizable basesBi. (Asynchronous) measurements (e.g. observations
of landmarks li ∈ L or IMU measurements) depend on the bases associated with
the segment at which the sensor data is received. Individual bases Bi reside in
the optimization problem as long as their corresponding segment is partially or
entirely contained in the optimization window W .

The optimization itself relies on the Ceres Solver [39] to solve
for the optimal states Θ∗,Φ∗ and Ψ∗ upon expansions of the
sliding window.

2) Visual Frontend: The presented system extracts and tracks
visual cues in the stereo-visual image stream based on the
established Kanade–Lucas–Tomasi (KLT) [40], [41] approach.
In particular, salient visual cues in the image stream are identified
using the Shi-Tomasi feature detector [42], followed by initial
tracking of visual features between corresponding stereo image
pairs (i.e. geometric tracking), and subsequent tracking across
consecutive frames (i.e. temporal tracking) in the image stream
to generate a consistent and information-rich set of feature tracks
similar to the method from Qin et al. [5], [8]. In order to
increase the reliability of detected tracks, an additional, tighter
constraint, requiring candidate cues to be successfully tracked
across two independent paths, is introduced. In particular, it is
enforced that (left) temporal tracking followed by (left-right)
geometric tracking yields the same result as (left-right) geo-
metric tracking followed by (right) temporal tracking across
complete stereo frames. Aiming to further reduce the number
of low-quality feature tracks and boost the overall reliability of
the frontend, cross-checked features are further required to fulfil
the epipolar constraint from (10), where rE is the violation of
the epipolar constraint, E(·) denotes the essential matrix, f b
expresses a bearing vector (∈ S2) in frame f , and the angle
θmax corresponds to the angular equivalent of a given pixel error
on the image plane. Specifically, θmax = arctan(xmax/f) with
pixel error xmax and focal length f . The remaining, purified
visual tracks are subsequently transmitted to the backend in
an independent and unsynchronized manner and await their
conversion into visual residuals rs(m̂,m) (see Section III-C)
and ultimate integration into the optimization problem.

rE := ab�
E (T ab)

bb

‖E (T ab) bb‖
, ‖rE‖

!
≤ sin (θmax) (10)

3) Inertial Frontend: Based on the ability of continuous-time
methods to directly fuse inertial measurements into the opti-
mization problem, we circumvent conventional pre-integration
of inertial measurements and are able to limit the pre-processing

Algorithm 1: Sliding Optimization Window Update.
Input

Measurement m(tm) from sensor s
if W = ∅ then

Initialize motion parametrization Θ s.t. tm ∈ T
else If tm 	∈ W then

Optimize for optimal parameters Θ∗,Φ∗ and Ψ∗

while tm 	∈ W do
Extrapolate new basis Bnew and add it to Θ

end while
while ‖W‖ > tmax do

Remove residuals rs associated with oldest Boldest

Remove oldest Boldest from Θ
end while

end if
Create residual rs and add it to the optimization

to the conversion into compatible, internal formats before asyn-
chronous submission to the backend.

4) Sliding Window Optimization: As introduced in (1),
discrete- and continuous-time SLAM approaches both, in prin-
ciple, pose the associated optimization problem over a finite
collection of motion-parametrizing, optimizable states Θ, and
manage to effectively bound the problem size by only consid-
ering a limited number of most recent and relevant optimiz-
able states in Θ. This concept is depicted as the optimization
window W in the factor graph Fig. 3, where one also observes
that the set of active landmarks (i.e. landmarks with at least
one associated measurement time contained in the window W)
depends on the evolution of W as well. In contrast to conven-
tional formulations, however, continuous-time representations
interpret Θ as a collection of interpolating bases Bi according
to Eq. (2), rather than directly treating them as a finite set of
optimizable transformations in SE(3), abstracting subsets of
bases to segments as illustrated in Fig. 3. Said abstraction of the
states Θ into segments represents one of the essential ideas to
continuous-time methods and empowers them to process incom-
ing measurements in an entirely time-based and asynchronous
manner, running contrary to notions of conventional discretiza-
tion requirements, and allows native support of arbitrary mea-
surement times tm. In fact, not only does it allow to query trans-
formations T̂wb(tm) at arbitrary times contained inside the valid
time range T = [tstart, tend), induced by the span of individual
segments Zi between Zstart and Zend (i.e. first and last segment),
but also drives the prediction of instantaneous velocities and
accelerations.

Based on these notations, the update of the optimization
window, which runs upon processing a new measurement in
the backend, is presented in Algorithm 1. In Algorithm 1, the
extrapolation step for the motion-parametrizing states Θ aims
to predict a plausible path of motion for the system, and, thus,
assumes a constant velocity model to initialize new bases B into
the future. Furthermore, in the case of visual observations, we
make use of the algorithm introduced by Lee and Civera [43]
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TABLE I
THE RMSES OBTAINED ON THE BENCHMARK DATASETS FOR HYPERSLAM AND STATE-OF-THE-ART SYSTEMS. ALL VALUES ARE PROVIDED IN METERS

aEntries with a × are not considered in the average.
bValues are provided as reported in [25] without motion priors (i.e. edgelet-only configuration) for fairness of comparisons.

to obtain initial landmark triangulations from full stereo frames,
and additionally reduce the influence of outliers by applying
a Huber loss to the visual residuals rs (see Section III-C). In
contrast to other approaches [9], the presented pipeline does not
support loop closure detection at present, which remains to be
adapted to continuous-time approaches, serving as aspiration for
future extensions.

IV. EXPERIMENTS

We evaluate the proposed pipeline on two real-world bench-
mark datasets, namely the KITTI [26] and the EuRoC [27]
datasets. Across all sequences in the datasets, the time window
W is adapted to contain the same, fixed number of frames in
order to arrive at similar amounts of information within the
optimization window for each instance in time. Specifically,
we select W to encompass the last 60 frames, which, in turn,
corresponds to a temporal window size of 3 s for EuRoC and
6 s for KITTI. Empirically, we choose the temporal spacing
between bases Bi to be twice the camera frequency, which suf-
fices to parametrize the dynamicity of all considered sequences
adequately (see Section IV-C), that is, ti = 0.1 s for EuRoC and
ti = 0.2 s for KITTI.

Owing to the absence of other directly comparable, pub-
licly available online CTSLAM systems, we compare the pro-
posed continuous-time approach, against other state-of-the-art,
discrete-time approaches; namely, VINS-Fusion [5], SVO [25],
OKVIS [6], and ORB-SLAM3 [9]. While these methods follow
different paradigms with respect to the motion parametriza-
tion, this comparison aims to contextualize the performance
achieved by the proposed framework against other popular
discrete-time alternatives to SLAM from the literature. Since
the proposed pipeline does not currently support loop-closing
(see Section III-E4), loop-closure-capabilities offered by VINS-
Fusion and ORB-SLAM3 are deactivated for the sake of fairness.
The evaluated Root Mean Square Errors (RMSEs) and relative
translation and rotation errors for the compared methods are
presented against the provided ground-truth information using
open-source evaluation tools [44], [45]. All experiments were

run using a AMD Ryzen 7 4700U@4 GHz CPU with one
dedicated thread each for the front- and the backend.

A. Evaluation on KITTI

The KITTI dataset focuses on large-scale outdoor
environments captured atop a moving vehicle and employs a
sensor-suite comprising multiple stereo rigs, a LIDAR sensor
as well as an Inertial Navigation System (INS). It consists of
eleven sequences, which vary in complexity with respect to their
underlying motion as well as with respect to the occurrence of
dynamic objects in the scenes. Here, we utilize the pre-rectified
stereo image streams, captured at 10 Hz and at a resolution of
1241× 376 pixels, to evaluate our approach in the stereo case
against the provided ground-truth motion estimate, which was
obtained from a combined global positioning and INS.

From Table I one observes that, considering the overall scale
of the environment, HyperSLAM achieves similar performance
with respect to ORB-SLAM3 on most sequences and almost
consistently better estimates than VINS-Fusion, which is also
reflected in the relative error plots Fig. 5. Failure cases are limited
to a single sequence, namely KITTI01, where dynamic obsta-
cles are present, which HyperSLAM cannot currently handle.
Further analysis also reveals that the small gap in performance
with respect to ORB-SLAM3 is caused by substantially slower
movements along the vertical axis (relative to the horizontal,
in-plane motions), which our method cannot properly estimate
due to the relatively short optimization window compared to the
typical duration of the sequences. Despite this, as Fig. 4 reveals,
the observed drift for the in-plane motion remains unaffected.

B. Evaluation on EuRoC

The EuRoC dataset comprises a collection of 6-DoF flight
paths, for which stereo-inertial data was captured aboard a Micro
Aerial Vehicle (MAV) in indoor environments. Every sequence
provides gray-scale stereo image streams, captured with syn-
chronized, global-shutter cameras operating at 20 Hz with a reso-
lution of 752× 420 pixels, alongside time-synchronized inertial
measurements, ground-truth camera poses, and corresponding



6460 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 3, JULY 2022

Fig. 4. Metric motion estimates after SE(3) alignment for selected KITTI
sequences for the stereo configuration.

Fig. 5. Relative translation and rotation errors as a function of travelled
distances on selected KITTI sequences for the stereo configuration.

calibration files. The recorded flight paths consist of sequences
from both the large-scale Machine Hall (MH) as well as the
small scale Vicon Room (VR) indoor environments, which vary
in the complexity of the undergone motion. We make use of the
provided visual and inertial information in these sequences and
fix the ex-/intrinsic camera parameters to the ones provided in
the calibration.

Table I reveals that our continuous-time method performs con-
siderably better from a global perspective than VINS-Fusion [5],
on par with SVO [25] and OKVIS [6], and worse than ORB-
SLAM3 [9] in terms of RMSE. A common failure case across all
approaches is the sequence V203 in the stereo setup, where the
apparent motion is considerable, leading to substantial motion

Fig. 6. Metric motion estimates after SE(3) alignment for selected EuRoC
sequences for the stereo-inertial configuration.

blur and, ultimately, loss of reliable visual information. A similar
reason underlies the other failure case of HyperSLAM and
VINS-Fusion on V103, where the undergone motion is fast and
similar KLT feature tracking strategies lead to impaired quality
in the tracked, visual cues for both approaches. In the stereo-
inertial case, one observes a similar ordering of the considered
methods in relative RMSE performance with lower absolute
values among the compared frameworks with one failure case
each for OKVIS and HyperSLAM. Both failures are restricted
to one of the most challenging sequences, V203, where both
motion estimates yield detached local solutions, but inconsistent
global ones. Considering that open-loop approaches can never
recover from single point failures like these, the presented RM-
SEs only provide insights on the general, global performance
of the different methods. In order to also investigate the local
estimation accuracy, we further illustrate the obtained SE(3)-
aligned trajectories in Fig. 6 and provide relative error plots in
Fig. 7. These results reveal that HyperSLAM compares well to
all other approaches in terms of relative errors in translation and
rotation and even outperforms most of them in terms of local
drift for short distances, including ORB-SLAM3. Based on these
results, we can infer that continuous-time approaches have the
potential to achieve better local consistency than discrete-time
methods.

C. Analysis on Continuous- Vs. Discrete-Time Formulations

As the temporal spacing between bases is one of the vital
parameters influencing the accuracy of the proposed method,
we present a quantitative analysis on the relation between the
achieved RMSEs and the selected spacing, ranging from 60 to
600 ms, for the stereo case in Fig. 8. Three regions of interest
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Fig. 7. Relative translation and rotation errors as a function of travelled
distances on selected EuRoC sequences for the stereo-inertial configuration.

Fig. 8. RMSEs achieved by HyperSLAM for MH01, MH02 and V202, in the
stereo configuration, normalized by the respective minimally achieved RMSE
as a function of the temporal spacing between bases, normalized by the image
acquisition frequency.

emerge: (a) an underconstrained region due lack of measure-
ments, (b) a wide basin of well-behaved convergence, and (c)
an overconstrained region, where the undergone motion can no
longer be parametrized appropriately. The effect observed in
case (c) becomes more predominant under motion with higher
volatility, causing V202 to expose a smaller convergence basin
than MH01 and MH04 and showcases the inter-dependence
between the temporal spacing and the dynamicity of the motion.
Fluctuations in RMSEs for case (b) can mostly be attributed to
isolated, local under-parametrization of sections exhibiting high
dynamics and/or abrupt change in orientation.

We found that choosing the spacing at twice the image
acquisition frequency mitigates this under-parametrization and
provides competitive local accuracy at a reasonable level of com-
putational effort, entailing that our implementation achieves near
real-time operation on KITTI, while still running sub-real-time
on EuRoC. Taking into consideration that most discrete-time
systems employ keyframing strategies, which effectively enlarge
the scope of the optimization window artificially, while keeping
the computational effort constant, the gap in global accuracy
with respect to ORB-SLAM3 is put into perspective.

While the stereo-inertial configuration already serves an ex-
ample of asynchronous processing of measurements, we further
highlight the applicability of continuous-time methods to non-
synchronized stereo and stereo-inertial inputs under realistic as-
sumptions. To this end, we run our pipeline on a modified image
stream, where every third frame is a complete pair of stereo
images and intermediate frames are monocular only, constituting
a setup which discrete-time approaches, like ORB-SLAM3, are
unable to handle. The obtained RMSEs in Table I, referred to as
“HyperSLAM (Ours, async.),” confirm the ability of our method
to largely preserve the local and global estimation quality in both
considered configurations under the asynchronous stereo input,
resulting in an average drop in accuracy of 20 and 13 percent,
respectively.

Based on the above observations, we conclude one the one
hand that the absence of a continuous-time analog to con-
ventional keyframing is one of the main performance-limiting
factors to the online operation of continuous-time approaches,
while on the other hand, these approaches are inherently ro-
bust against non-synchronized inputs. Furthermore, an adaptive,
non-uniform spacing of bases B could be deployed to further
reduce the computational overhead and adaptively parametrize
regions of low, respectively high, volatility in a more resourceful
manner, while promising to increase the local accuracy. Another
vital milestone in the development of increasingly competi-
tive continuous-time approaches lies with the formulation of
continuous-time loop-closure strategies, which were to benefit
the global consistency as well as the long-term reliability of
CTSLAM systems. To facilitate the aforementioned modifica-
tions, we propose to use interpolating motion parametrizations,
which, in contrast to non-interpolating B-Splines, would greatly
simplify the dynamic insertion and removal of bases.

V. CONCLUSION

Following the great promise of CTSLAM over tradi-
tional, keyframe-based approaches, this work consolidates in-
sights from stereo-visual as well as stereo-inertial SLAM and
continuous-time formulations into a novel, complete framework.
We demonstrate that CTSLAM achieves competitive accuracy
and performance compared to the state of the art in discrete-time
SLAM on established datasets. For the first time, this work
also offers a direct comparison between online discrete- and
continuous-time methods on these benchmark datasets, setting
a precedent for fairer comparison of future continuous-time
approaches. Given the lack of publicly available CTSLAM
systems and benchmarks, the proposed system narrows the gap
between the application of continuous-time and discrete-time
formulations to the SLAM problem. Future research directions
will focus on incorporating additional sensors into the proposed
framework, on obtaining a more globally consistent state esti-
mation by means of transferring and profiting from established
concepts used in discrete-time methods as well as reducing
the computational overhead. Overall, the proposed method and
the insights arising from the experimental analysis presented
here open up promising research directions towards a more
integrated, multi-sensor fusion framework, capable of fusing
unsynchronized inputs in a principled and generic manner.
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