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Extracting Statistical Signatures of Geometry and
Structure in 2D Occupancy Grid Maps for Global

Localization
Su-Yong An and Jaeyoung Kim

Abstract—Global localization (or place recognition) is a method
of finding the current location of a robot on a map generated by
a mapping process, and it is an open field that has not yet been
completely solved in the field of mobile robotics. Most existing
approaches to global localization are based on extraction of interest
point features and their descriptors whether from raw laser scans
or 2D occupancy grid maps. In this letter, unlike most approaches,
we propose a novel method of extracting a statistical signature of
geometric and structural features from a submap. A boundary and
free-space features can characterize a geometric shape, while a
reflection symmetry can quantify a structural shape of the submap.
Experiments using five pre-built map publicly available demon-
strate that the proposed method outperforms the other state-of-
the-art image-based methods by examining precision-recall curve
especially when occupancy noise added to the submap is progres-
sively increased.

Index Terms—Localization, SLAM, global localization, 2D
LiDAR.

I. INTRODUCTION

R ELIABLE positioning of mobile robots is essential for
high-level tasks such as guidance, delivery, surveillance,

and cleaning. This is referred as localization in mobile robotics
literature. Localization includes local localization and global
localization [1]. Local localization aims to compensate accu-
mulated location errors based on previous position and sensor
data during robot navigation. On the other hand, global localiza-
tion can locate robots without prior knowledge of the location,
allowing to solve the kidnapped robot problem. This is more
significant and necessary than local localization in situations
where the robots are likely to experience severe positioning
errors.
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There are many methods of global localization depending on
the type of sensors used in map building. As a general process,
features are extracted from maps, stored in a database, and
then compared with sensor data obtained from a current robot
position. Loop closure detection [2], map merging for distributed
multi-robot SLAM [3], and place recognition [4]–[6] in mobile
robotics also deal with problems similar to global localization.

Existing approaches to global localization for mobile robots
can be divided into two categories. The first is a method of
extracting interest point features (i.e., keypoints) from 2D laser
scan data and expressing them as descriptors using surrounding
information around the features [4], [7]. By using acquisition
characteristics of the laser scan data, keypoints are extracted
based on range, normal, curvature, and orthogonality of the
scan data. Descriptors are used for direct matching between
keypoints or to generate scan signatures in conjunction with a
bag-of-words (BoW) framework [5]. However, when applying in
cluttered environments or using a laser scanner with low angular
resolution, this method may fail to extract distinctive keypoints
from a single scan due to sensor noise or its sparseness.

The second method is to convert accumulated laser scans
into a 2D occupancy grid map and extract keypoints from this
image. The keypoints and their descriptors can be extracted using
SIFT [8] and SURF [9] which are representative methods in
the field of visual object recognition. This approach has the
advantage of reusing many algorithms adopted in computer
vision, but is prone to inconsistencies due to noise generated
in the process of projecting the scan data onto the image.

In this paper, we propose a new method to extract statistics
of occupied and unoccupied areas in submap images instead of
extracting keypoints. The proposed method divides the submap
into boundary space and free-space, and represents distribu-
tion characteristics of each space as histograms to generate
submap signatures. These two histograms reveal the geometric
information of the submap. In addition, a symmetry score is
introduced to quantify the structural information of the submap,
and is used as a weight when calculating similarity between
submaps.

In summary, the contributions of this paper are (1) to quantify
geometric distribution of boundary and free-space as statistical
signatures rather than extracting keypoints, (2) to introduce
reflection symmetry to describe structural information (overall
shape of submaps), and (3) to integrate geometric and structural
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information of submaps explicitly to form as one metric used
for submap matching.

II. RELATED WORK

Place recognition (i.e., Global localization) is a field that
is being continuously studied in the field of mobile robotics.
There are a method using an image itself through deep learning
and a method using 2D/3D maps generated by several types
of sensors [10]. Since this paper deals with place recognition
through the feature analysis of 2D grid maps, this section mainly
focuses on the method using 2D LiDAR sensors.

Bosse and Zlot [4] outlined first works on extracting key-
points from raw laser scans and defining the information around
the keypoints as descriptors. They applied combination of two
keypoint detectors and six descriptors to a large-scale SLAM
problem, reporting that combination of the curvature cluster-
based keypoint detector and the moment grid descriptor showed
the best performance. Since the descriptor was generated using
information within a relatively large radius (i.e., 9 m) centered
on the keypoint, it can be seen that descriptors play a role in
encoding the entire submap, not as a local descriptor.

Fast Laser Interest Region Transform (FLIRT), a multi-scale
interest region operator for 2D range data, is proposed in [7].
FLIRT is a method of extracting keypoints based on a curve
approximation of a laser scan and defining occupancy infor-
mation in the polar region around the keypoint as a descriptor.
This approach was used together with RANSAC to prove its
effectiveness by applying it to solving loop closure and global
localization in indoor and outdoor environments.

FLIRT has been further extended to geometrical FLIRT
phrases (GFP) for practical applications to large-scale
datasets [5]. The idea of this approach is based on BoW scheme
with introducing a weak geometrical verification. Each keypoint
from a raw laser scan is associated with a predefined word,
and a histogram of word frequency is used as a signature
of a place. Subsequently, for higher retrieval performance in
outdoor environments with a lot of laser scan data, geometrical
landmark relations (GLARE) was proposed [6], which describes
spatial relations of landmarks as a scan signature unlike BoW
method. A 2D histogram of relative orientations and distances
of co-occurring landmarks is defined as a scan signature through
a soft-voting scheme which can deal with sensor uncertainties
and noisy range data. It showed a faster search performance than
GFP by applying an approximate nearest neighbor search in the
query process.

Another method is to convert a raw laser scan into a 2D image
and extract keypoints from the image using existing computer
vision techniques. Li and Olson [11] proposed a method to
extract stable keypoints by rasterizing LiDAR data by projecting
it into 2D Euclidean space, followed by applying a multi-scale
Kanade-Tomasi detector, a variant of a Harris corner detector.
This method is easy to apply to SLAM applications because it
uses the covariance matrix that naturally accompanies the corner
detector algorithm to calculate spatial uncertainty of keypoints.
Experiments with 2D/3D datasets have demonstrated that the

repeatability performance of the keypoint detector was superior
to other methods.

Millane et al. [12] proposed a method of generating a signed
distance function (SDF) map by applying distance transform
after thresholding an occupancy probability grid of a submap.
In this SDF map, points with high curvature were defined as
keypoints, and their descriptors were constructed by adding
an average SDF value to an orientation histogram of SIFT
descriptors. Since the keypoint and descriptor extraction was
performed on the SDF, it has the advantage of simultaneously
capturing features of geometry of free and occupied space. This
work has recently been extended to solve 3D localization [13].

A map merging method for multi-robot systems using spec-
trum analysis of a 2D grid map was proposed in [3]. For submaps
created by different robots, orientations of the submaps were first
compared using Hough spectra, and translations were obtained
with additional X and Y spectrum through a projection to the
x and y axes of the submap image. This approach has been
proposed as a map merging for multi-robot systems, it can be
also applied to solve global localization or loop closure.

Unlike the methods based on the extraction of keypoints and
descriptors, the proposed method defines the geometric and
structural distribution of whole submaps as statistical signatures.
Since it does not rely on direct matching of keypoints extracted
from submaps, it is insensitive to small noise or unexpected ap-
pearance of objects when constructing 2D grid maps. Moreover,
the proposed method is compatible with any sensor capable of
generating 2D grid maps (e.g., ultrasonic sensor, 2D/3D LiDAR,
and 3D depth camera), and thus it is independent of sensor
modality.

III. SUBMAP FEATURE EXTRACTION

Given a submap image, we extract three features: a boundary,
a free-space, and a symmetry feature. The boundary and free-
space features can describe a geometric shape of the submap,
whereas the symmetry feature can quantify overall shape of
the submap. Our method explicitly considers the geometric
and structural information of the submap concurrently, thereby
having the advantage of being robust against noise.

Boundary feature: A submap can also be viewed as an object
with a specific shape. Therefore, we define a shape function used
in shape-based image classification to describe a distribution
of a boundary area. We express the distribution of distance
between two boundary points as a histogram by modifying the
D2 function [14] used for 3D shape matching to a 2D version.
Advantages of the D2 function include computational simplicity,
invariant to rotation and translation, and insensitive to small
perturbations.

Free-space feature: Since a free-space in maps indicates an
area where robots can actually be located, the distribution of the
free-space along with that of the occupied area provides very
useful information for robot localization [12]. We represent the
distribution of the free-space as a histogram by defining free-
space nodes and calculating their shortest path distance from
each node to the other nodes. Even if there are static or dynamic
obstacles that were not in the free-space at the time of map
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Fig. 1. Overall block diagram to calculate a submap similarity. Geometric
features (boundary and free-space feature) and structural feature (reflection
symmetry scores) are extracted from Sq and compared to all pre-built features
from the submap Si in a database to find the most similar submap.

Fig. 2. Example of a submap partitioning procedure. (a) Original global map,
fr079 [21], (b) Extraction of junction nodes (yellow) and their clustering (red),
(c) Submaps extracted from the global map.

building, the shortest path distance does not change much, thus
it is insensitive to small perturbations.

Symmetry feature: A typical indoor environment can be clas-
sified into three types: corridors, rooms, and lobbies [15]. These
spaces exhibit considerable symmetry due to structural charac-
teristics of indoor buildings, and in particular, a reflection sym-
metry [16] can be a good feature to describe the overall structure
of a place. Therefore, we compute a reflection symmetry score
to quantify the structural feature of submaps and use it as a
weighting factor for calculating submap similarity.

This section describes the extraction of the above three fea-
tures from submaps and calculation of a similarity score between
two submaps (Fig. 1).

A. Submap Partitioning

Assume that we have created a complete 2D occupancy grid
map M using an available sensor such as a 2D laser scanner
(Fig. 2(a)). To locate robots, we need to compare the most
recently created submap with some part of M, so the process
of dividing the M into submaps is necessary. We split it into
submaps based on junction nodes extracted from M.

First, a binary map MB is created and then distance trans-
form [17] is applied for free-space detection on M. Since

Fig. 3. Construction of boundary histogram. (a) Sampled boundary points in
example submaps, (b) Representation of boundary histogram.

the raw distance transformed image contains many free-space
regions, a morphological operator (erosion), followed by an
image thinning technique [18] are applied to make 1-pixel wide
edge map ME depicting only the major free-space. Finally,
possible junction nodes are selected by performing junction
test [19] on all nonzero pixels in ME , and clustered using
DBSCAN [20] (Fig. 2(b)). The global map is thus expressed
as the sum of submap images with a fixed radius r around each
junction node (Fig. 2(c)), M � ⋃

∀i∈JM Si, where Si is a i-th
partitioned submap, andJM is the refined set of junction nodes.
The submap radius r is dependent on range sensing capability
of a sensor used.

B. Boundary Feature

A boundary of a submap (i.e., distribution of occupied pixels)
represents the overall outer shape of a place, which is the
main characteristic that distinguishes the place. We perform the
following procedure to quantify the boundary information.

1) Submap Binarization: Each pixel value of a submap repre-
sents a degree of occupancy. The binary image SB

i is obtained
by performing inverse-binary thresholding (SB

i (u, v) = 1, if
Si(u, v) < TB , otherwise 0) to remove ambiguous pixels inside
the submap and thus we only consider the clearly occupied
pixels.

2) Thinning: During map building process, structures such as
walls may be expressed as densely occupied areas due to sensor
noise or mapping errors. Therefore, a thinning algorithm [22]
is performed on SB

i to generate a boundary edge map SE
i with

1-pixel wide.
3) Uniform sampling of boundary points: Here, the boundary

indicates a set of nonzero pixels in SE
i . We can reduce the

amount of computation by reducing the number of bound-
ary points PB

i = {p1, p2, . . . , pNB
} after removing adjacent

ones through uniform sampling (Fig. 3(a)).
4) Construction of Histogram [14]: For all pairs of boundary

points in PB
i , we calculate the pairwise Euclidean distance and

construct a NB × NB symmetric matrix as

DB
i =

⎡
⎢⎢⎣

d11 · · · d1NB

...
. . .

...

dNB1 · · · dNBNB

⎤
⎥⎥⎦ , dmn = ‖pm − pn‖ , (1)
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Fig. 4. Construction of free-space histogram. (a) Distribution of free-space
nodes in example submaps, (b) Representation of free-space histogram.

where each element of {dmn|m < n} is accumulated into the
corresponding bin �dmn

Δb
� of a 1-D histogram (Fig. 3(b)):

Hb
i =

{
hb
i (k)|k = 1, . . ., Nhb

}
, (2)

where Hb
i is a normalized vector denoting histogram of DB

i ,
and hb

i (k) indicates the number of elements in the k-th bin. The

number of bin Nhb =
⌈

2r
Δb

⌉
is dependent on map size 2r and

fixed bin width Δb.
Fig. 3 illustrates different submaps and their corresponding

boundary histograms. The histogram of submap 3 and that of
the other submaps are significantly different in the peak pattern.
However, submap 24 and 39 exhibit similar pattern changes
despite having different shapes. Therefore, there is a limit to
distinguishing all submaps with only boundary distribution,
and it has implications that not only boundary information but
also utilization of free-space should be considered to improve
submap matching performance.

C. Free-Space Feature

A free-space provides useful information about internal struc-
tures of a place [12]. We quantify a distribution of the free-space
by performing the following steps.

1) Extraction of Free-Space Nodes: The process of find-
ing free-space nodes is analogous to the submap partitioning
process (Section III-A) in that it goes through the process
of image binarization, distance transform, and thinning. How-
ever, in this case, uniformly sampled free-space nodes VF

i =
{v1, v2, . . . , vNF

} instead of junction nodes are obtained
from the 1-pixel wide edge map of the submap (Fig. 4(a)).

2) Calculation of Shortest Path Distance: We can easily find
a shortest path from any vm to vn by constructing an undirected
graph G(V, E) whose vertices and edges are free-space nodes
and their connections. The undirected graph G can be repre-
sented by an adjacency matrix A = [amn], where each element
amn is the Euclidean distance between vertices (i.e., free-space
nodes). If an occupied pixel exists on the straight pathvm ↔ vn,
then amn has an infinite value. We use Dijkstra’s algorithm [23]
to find a shortest path distance.

3) Construction of Histogram: In a similar manner to the
construction of the boundary histogram (1), for all pairs of free-
space nodes in VF

i , we calculate the shortest path distance and

Fig. 5. Construction of free-space histogram by varying noise levels. (a)
Distribution of free-space nodes in submap with noise added, (b) Representation
of free-space histogram.

construct a NF × NF symmetric matrix as

LF
i =

⎡
⎢⎢⎣

l11 · · · l1NF

...
. . .

...

lNF 1 · · · lNFNF

⎤
⎥⎥⎦ , lmn = SP (vm,vn), (3)

where SP is a function that returns the shortest path distance
between vm and vn. Each element of {lmn|m < n} is accu-
mulated into the corresponding bin � lmn

Δf
� of a 1-D histogram

(Fig. 4(b)):

Hf
i =

{
hf
i (k)|k = 1, . . ., Nhf

}
, (4)

where Hf
i is a normalized vector denoting histogram of LF

i .
The bin width Δf is a constant as in the boundary histogram.
We found empirically that the maximum value of lmn is bounded
within four times of submap radius r, so the number of bin Nhf

becomes
⌈

4r
Δf

⌉
.

Submap 24 and 39 were not distinguished well by the bound-
ary histogram (Fig. 3), however, when the free-space histogram
was applied, there is a more pronounced difference as shown
in Fig. 4(b). On the other hand, interestingly, histogram pattern
changes of submap 3 and 24 are similar unlike the case of the
boundary histogram. This implies that the free-space histogram
has complementary relationship with the boundary histogram,
and the performance of distinguishing submaps can be improved
through the combination of the two histograms.

The robustness of the free-space histogram against noise was
tested by randomly placing Nf number of virtual obstacles
(e.g., moving persons, temporarily located indoor structures
such as tables or chairs) which did not exist during map building
process (Fig. 5(a)). Although the distribution of free-space nodes
alters due to the addition of virtual obstacles, this does not
significantly affect the shortest path distance, thus leading to
negligible changes in the histogram (Fig. 5(b)).

D. Reflection Symmetry Score

Both the boundary and free-space histogram described above
quantify a geometric shape of a submap, whereas a symmetry
quantifies a global structural shape. Symmetry types include ro-
tation, reflection, translation, and glide reflection symmetry [16].
Among these symmetries, a reflection is the most common
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Fig. 6. Calculation of reflection symmetry scores based on two reflection
symmetry axes. The two axes (α, β) are not necessarily orthogonal to each
other. (a) Original submap, (b) Extracted line segments and their reflection
symmetry axes, (c) Rotated and Gaussian-blurred image of boundary edge map,
(d) Intensity response of reflection symmetry based on the α-axis.

type of symmetry found in indoor environments. We obtain
two reflection symmetry scores for each submap through the
procedure below.

1) Extraction of Line Segments: As a first step, we apply a
probabilistic Hough Transform [24] to the boundary edge map
SE
i to find line segments LS

i = {λ1, λ2, . . . , λNL
| Γ(λk) >

λθ}, where Γ returns a length of λk (Fig. 6(a, b)).
2) Finding Axes of Symmetry: Since the indoor structure of

the building is mostly rectangular, two axes of reflection sym-
metry (α, β) are found by voting on the anglesΘ(λk) ∈ [−π

2 ,
π
2 ]

of the extracted line segments.
3) Calculation of Reflection Symmetry Score: We make a

rotated boundary edge map SEα
i by rotating the SE

i so that
the symmetry axis α is vertically aligned. Then a Gaussian
smoothing which can attenuate sensor uncertainties and noisy
range data is applied to obtain a blurred image SGα

i (Fig. 6(c)).

We calculate an average intensity of S ̂Gα
i corresponding to the

position of all nonzero pixels inSEα
i , where theS ̂Gα

i is vertically
flipped image of the SGα

i (Fig. 6(d)):

sαi =

∑
(u,v)∈Nα

nz
S ̂Gα
i (u, v)

|Nα
nz|

, (5)

where Nα
nz and |Nα

nz| are the set of nonzero pixels in SEα
i and

its number, respectively. A score sβi by the reflection symmetry
axis β can be calculated in a similar way.

E. Submap Similarity

Once a query submapSq is generated during robot navigation,
it is compared against all submaps to find a best matched submap
in the database. The submap matching score s is calculated by
aggregating the three features, leading to explicitly including
geometric and structural information as follows

s = m(Sq,Si) =

structural feature︷ ︸︸ ︷
Ω(sαq , s

β
q , s

α
i , s

β
i )

×
[
ωb · d(Hb

q,H
b
i ) + ωf · d(Hf

q ,H
f
i )
]

︸ ︷︷ ︸
geometric feature

, (6)

where ωb and ωf are the weights of the boundary and free-space
histogram, respectively, whose sum is 1.0. The function d(A,B)
is Bhattacharyya distance [25] of two histograms. The reflection
symmetry axes (α, β) are independent of each other, thus Ω can

TABLE I
DESCRIPTION OF DATASETS USED

be denoted as

Ω = φ(sαq , s
α
i ) · φ(sβq , sβi ), (7)

φ(si, sj) = ηe

(
− (si − sj)

2

2σ2

)−1

, (8)

where η is a scaling factor and σ is an adjusting factor that
controls the effect of structural feature on the submap matching
score s. The submap similarity ρ is the reciprocal of s, so it
increases as the two submaps are similar.

IV. EXPERIMENTAL EVALUATION

A. Datasets and Baseline Methods

To validate the proposed method, we used five publicly avail-
able datasets for our experiments (Table I) [21]. All maps are pro-
vided as images which consist of corridors, rooms, and lobbies,
varying in size from approximately 45×16 m to 125×100 m with
a resolution of 0.05 m per pixel (Fig. 7). In general, the number
of submaps should increase as the size of the map increases,
however, fewer submaps are extracted for killian composed of
long corridors because the submap database was built based on
junction node extraction.

The proposed method was compared with the baseline meth-
ods below, which include Shape context [26], SIFT/SURF-based
BoW and Term Frequency-Inverse Document Frequency (TF-
IDF) [8], [9], [27], and SDF [12].

Shape Context: The shape context is an algorithm that de-
scribes global shapes in binarized images, and is mainly used
for image matching, classification, and retrieval. The number of
angular bins and radial bins are the main parameters of the shape
context, and in our experiments, the matching performance was
measured with 24 and 12, respectively.

SIFT/SURF+BoW: SIFT and SURF are methods for extract-
ing local features and descriptors in images and are widely used
in computer vision and robotics fields. A BoW in conjunction
with the local feature extractor is mainly used for image classi-
fication, search, and scene recognition. In this paper, parameters
of the local feature extractor were set so that no more than 300
features were extracted for each submap, and a codebook size
of the BoW was set to 1024.

SIFT/SURF+TF-IDF: TF-IDF uses word frequency and in-
verse document frequency to weight the importance of each
feature, and is generally known to outperform the BoW. The
parameter setting was the same as that of the above BoW method.

SDF: Submap matching is performed using RANSAC based
on keypoints and descriptors extracted from the local SDF
geometry. Up to 200 keypoints were extracted per submap.
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Fig. 7. The maps used in experiments [21]. (a) fr079, (b) intel, (c) csail, (d) aces, (e) killian.

Fig. 8. Noisy submap generation by adding boundary and free-space noise.
(a) Original submap without noise, (b) Submap with noise level 1 (Nb,Nf ) =
(50, 10), (c) Submap with noise level 2 (Nb,Nf ) = (100, 20).

B. Performance Evaluation

First, a query submap Sq was obtained by cropping an image
with radius r around randomly selected location (u, v) on a
global map, followed by randomly rotated. In addition, to verify
robustness against noise, here we added two different types of
noise which are a boundary noise and a free-space noise. In
this paper, two-stage noise levels were defined according to the
number of noise elements (Nb, Nf ), where Nb and Nf denote
the number of the boundary noise and that of the free-space
noise, respectively. Fig. 8 illustrates the query submap S̃q where
noise is injected. The boundary noise is distributed around the
randomly selected Nb number of occupied pixels, simulating
sensor noise or mapping errors. The free-space noise is placed
on randomly selected Nf number of unoccupied pixels in the
form of a circle with radius rn or a square with width 2rn,
denoting moving obstacles or temporarily installed internal
structures.

The query submap S̃q was compared to all submaps in the
database to find the best match based on the submap similarity
ρ. If the difference between the location of the query submap and
that of the submap with the highest similarity is within 1.0 m,
then this match is determined to be a true match; otherwise,
it is a false match. We performed 2,000 queries per dataset
with parameters listed in Table II to construct precision-recall
curves by varying the submap similarity threshold. Based on
this, we quantitatively evaluated the performance of the pro-
posed method by examining the area under precision-recall
curve (AUPRC), recall at a precision of 0.9 (RP9), and F1
score.

TABLE II
PARAMETERS USED IN EXPERIMENTS

The proposed method, SIFT+TF-IDF, and SDF showed rea-
sonable performance in all datasets from the experiments in
which only simple random rotation was added without noise
injecting into the query submap (Fig. 9, Table III). However,
the performance superiority of the proposed method to the other
methods was remarkable as the noise level increased. To sum
up, when based on the three measurements of AUPRC, RP9,
and F1 score, the proposed method compared to SIFT+TF-IDF
which had best performance among baseline methods in the ex-
periment of noise level 2 demonstrated the average performance
improvement of 10.3%, 104.7%, and 6.3%, respectively.

Overall, the performance based on the fr079 and intel datasets
was better than that based on the other datasets, which is due to
relatively high proportion of distinct regions on the map (Fig. 7).
In particular, in case of the fr079 and intel, the map is composed
of rooms of various sizes, whereas most of areas of the killian
dataset consists of long corridors, leading to inherently include
many duplicated submaps in the submap database. Therefore,
the performance based on the killian dataset was lowest among
all datasets.

A maximum sensing range of a sensor used in localization
process affects the determination of the submap radius r. A
visible range of general indoor environments except for special
environments such as long corridors or very large halls can be
limited to within 10 m, so the experiments were performed
with three submap sizes up to a maximum radius of 10 m
(Fig. 10, Table. IV). As a result, we found that there were gradual
performance improvements in all datasets without exceptions
because distinct regions were more likely to be included as the
submap radius increased.
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Fig. 9. Precision-recall performance comparison with six baseline methods on two noise levels. Each column represents datasets used in experiments. The first
row: without noise, second row (noise level 1): (Nb,Nf ) = (50, 10) noise added, third row (noise level 2): (Nb,Nf ) = (100, 20) noise added.

TABLE III
PERFORMANCE COMPARISION BY VARYING NOISE LEVEL

1AUC: Area under precision-recall curve
2RP9: Recall at a precision of 0.9
3F1: The harmonic mean of precision and recall (F1 score)
4Numbers: All numbers should be divided by 1,000 to get the original meaning
5Noise Level 1: Boundary and free-space noise with (Nb,Nf ) = (50,10)
6Noise Level 2: Boundary and free-space noise with (Nb,Nf ) = (100,20)
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Fig. 10. Precision-recall performance comparison with three submap radii. As the submap radius increases, the performance of the proposed method also
increases.

TABLE IV
PERFORMANCE COMPARISION BY VARYING SUBMAP RADIUS

V. CONCLUSION

The key contribution of this paper is the idea of extracting
statistical signatures rather than keypoints to describe geometric
and structural shape of submaps. In particular, by dividing a
submap into a boundary and a free-space using existing com-
puter vision algorithms, statistical values of each area were
explicitly extracted. Moreover, reflection symmetry, which is
often seen in building structures, was quantified in order to
capture structural information of a submap. We explicitly in-
tegrated these three features to define a similarity score be-
tween two submaps. Our comparative experiments with the
state-of-the-art image-based methods demonstrated that the pro-
posed method was fairly effective at distinguishing between
submaps especially when severe noise is injected to submaps.
Overall, we achieved an average performance improvement
of 10.3% (AUPRC), 104.7% (RP9), and 6.3% (F1 score), re-
spectively, in experiments using five pre-built map publicly
available.
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