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Abstract—This work presents a novel active visuo-tactile based
framework for robotic systems to accurately estimate pose of ob-
jects in dense cluttered environments. The scene representation
is derived using a novel declutter graph (DG) which describes
the relationship among objects in the scene for decluttering by
leveraging semantic segmentation and grasp affordances networks.
The graph formulation allows robots to efficiently declutter the
workspace by autonomously selecting the next best object to remove
and the optimal action (prehensile or non-prehensile) to perform.
Furthermore, we propose a novel translation-invariant Quaternion
filter (TIQF) for active vision and active tactile based pose esti-
mation. Both active visual and active tactile points are selected
by maximizing the expected information gain. We evaluate our
proposed framework on a system with two robots coordinating on
randomized scenes of dense cluttered objects and perform ablation
studies with static vision and active vision based estimation prior
and post decluttering as baselines. Our proposed active visuo-tactile
interactive perception framework shows upto 36 % improvement in
pose accuracy compared to the active vision baseline.

Index Terms—Interactive perception, visuo-tactile perception,
force and tactile sensing, perception for grasping and manipulation.

I. INTRODUCTION

OR a variety of applications ranging from safe object-robot
I ' interaction to robust grasp and manipulation, the ability
to accurately estimate the 6 degree-of-freedom (DoF) pose of
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Fig. 1. Experimental setup: A Robotiq two-finger adaptive robot gripper is
equipped with 3-axis tactile sensor arrays and mounted on a URS robotic arm
and a Franka Emika Panda robot with an Azure Kinect (RGB-D) sensor attached
to its end-effector. The scene consists of objects placed randomly in dense clutter.
An optical tracker is used to provide ground-truth pose of the target object.

objects is critical. Especially in unstructured cluttered environ-
ments, objects may be occluded from certain viewpoints or may
have other objects resting on each other leading to challenging
scenarios for accurate object pose estimation. Such scenarios are
common for logistic or retail warehouse robots as well as robots
operating inside households. Interactive perception wherein pur-
poseful physical interactions produce new sensory information
to change the state of the environment to enhance perception
has been proposed to deal with such scenarios [1]-[3]. Par-
ticularly, prehensile and non-prehensile manipulation actions
such as grasping or pushing objects can be used to rearrange
the cluttered scene to reduce uncertainty in perception [4]-[6].
Such interactive perception maneuvers need to leverage dy-
namic visual viewpoints as the scene changes upon executing
the manipulation actions. Furthermore, there might be residual
uncertainty in the pose estimate through visual perception due
to incorrect calibration of the sensors, environmental conditions
(occlusions, variable lighting conditions), or object properties
(transparent, specular, reflective) [7], [8]. Tactile perception can
be used to verify the visual pose estimate to provide a robust and
correct pose estimation [9]-[11].

Vision-based pose estimation in clutter using RGB images or
3D point clouds have been proposed in several works [12]-[16].
As single viewpoints for pose estimation in clutter is extremely
challenging, prior works have used multi-views and combined
the observations to recover the object pose [13]. The next best
view (NBV) calculation for selecting multiple views have been
proposed through information gain metrics such as Shannon
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Fig. 2.

entropy [15], mutual information [17] and so on. As vision-based
methods are susceptible to failure in cases of dense object clutter,
interactive perception methods have been proposed [18]. Seman-
tic scene understanding methods that are critical for interactive
perception have been proposed such as support graphs [19]-
[21] which describe the support relationships between objects
through geometric reasoning. However, these works abstract
the real world objects as simple shapes such as cubes, cylin-
ders and spheres to draw support relations which may not be
always applicable in realistic scenes. Similarly, analytical grasp
planning relying on geometrical cues may fail in dense clutter
with complex objects due to unknown object dynamics. Hence,
data-driven approaches have gained popularity for performing
manipulation in unstructured scenes [22]. In [23], grasping
objects in clutter was demonstrated using generative grasping
convolutional neural networks (GG-CNN). Zeng et al. [18]
proposed a framework for learning to push and grasp policy that
were learnt simultaneously using deep-RL for objects in clutter
for grasping applications. Taking advantage of the synergies of
combining prehensile and non-prehensile manipulation actions
is of interest while yet to be comprehensively explored by the
research community. Furthermore, incorporating mechanisms
to choose the best type of action for a given object can increase
the autonomy of the robot.

As there may be residual uncertainty with visual estimation,
prior works have considered using high-fidelity tactile data to
finely localize an object provided with a visual estimate [24]-
[26]. A known issue in this context is handling the sparsity
and density of tactile and visual information respectively. We
introduced in [26] a novel translation-invariant Quaternion filter
(TIQF) for point cloud registration which we extend in this work
to active vision-based and active tactile-based pose estimation.
While tactile data can be collected in an uniform or randomized

The proposed framework for active visuo-tactile interactive perception for object pose estimation in dense clutter.

manner or even manually through human tele-operation, these
approaches often result in longer data collection time, human
intervention and degradation of the sensors due to repeated
actions. Hence, active approaches wherein the robot reasons
upon the next best action to reduce the collection of redundant
data and overall uncertainty of the system have been proposed by
Kaboli et al. in uncluttered scenarios [1], [4], [27], [28]. Using
their proposed framework, the robotic system autonomously and
efficiently explores an unknown workspace to collect tactile data
of the object (construct the tactile point cloud dataset), which
are then clustered to determine the number of objects in the
unknown workspace and estimate the location and orientation
of each object. The robot strategically selects the next position
in the workspace to explore, so that the total variance of the
workspace can be reduced as soon as possible. Then the robot
efficiently learns about the objects’ physical properties, such
that with a smaller number of training data, reliable observation
models can be constructed using Gaussian process for stiffness,
surface texture, and center of mass.

Our contributions are as follows:

1) A novel graph-based method for autonomous active de-
cluttering of the scene, enabling the robot to choose the
next object to remove and the optimal action (prehensile
or non-prehensile) to perform (Fig. 2(a)).

A novel pose estimation method termed translation-
invariant Quaternion filter (TIQF) for both visual and
tactile-based pose estimation.

An active visual viewpoint selection and active tactile
touch selection for accurate pose estimation through in-
formation gain approach (Fig. 2(b)(c)).

Evaluation of the proposed framework on a setup with two
robots coordinating to achieve the objective with extensive
ablation studies.

2)

3)

4)
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Fig. 3. (a) Pipeline for the declutter graph from the semantic segmentation
network and the grasp affordance network. (b) Push action formulation.

II. METHODS

A. Problem Formulation and Proposed Framework

We propose a novel framework shown in Fig. 2 to robustly
estimate the 6 DoF pose of a known object of interest or target
object through active visuo-tactile perception in dense clutter
by interactively decluttering the other objects in the workspace.
Firstly, the robot deterministically declutters the workspace by
using either prehensile or non-prehensile actions. This provides
the flexibility to choose the action with the highest probability
of success. The robot reasons upon the next object to remove to
declutter the workspace with minimal actions. Secondly, upon
sufficient decluttering the robot actively chooses viewpoints
for vision-based pose estimation using an information gain
approach. Finally, an active tactile based pose estimation is
performed to correct and verify the visual pose estimate.

B. Active Decluttering of the Workspace

In order to interactively declutter the workspace, the physical
geometry relations between various objects in clutter are au-
tonomously inferred. We define a directed scene graph in form
of a tree termed declutter graph G = (V, £) wherein the vertices
in V represent the various objects O; in the scene and the edges
& define the action to be used to declutter the object. The root
node of the graph G is the target object O, which we seek
to localize. Furthermore, the graph explicitly encodes the next
object to be removed by computing a weight signifying how
much it occludes Op and the associated action (grasp or push).
The steps in building the graph are depicted in Fig. 3(a). From
a cluttered scene, a RGB image and a depth image are taken
as inputs to our framework. We use a state-of-the-art semantic
segmentation network [29] and grasp affordance network [23] on
the RGB image and depth image to extract the semantic segmen-
tation M., and grasp success metrics g, € [0, 1] respectively.
We adapted the pretrained segmentation network [29] with our
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own dataset consisting of different objects in clutter and their
respective segmentation masks.

For two objects O;, O; anedge e;; € £ is added if the overlap-
metric is above a threshold 1, or the minimum distance between
the contours d;; is below ji4. Thus, an edge e;; € € is given by

IOUZ']* if (IOUU‘ > Mo)
1/di; if (dij < pa) A (LoUsj < o) )]
0 otherwise.

eij =

The Intersection Over Union (IoU) is used as overlap measure
with ToU;; = €; N €;/C; U €;, where C defines all points be-
longing to the minimum area bounding box of the contours of
the respective object masks. The threshold values i, has been
tuned empirically to be 0.05 and p4 to 0.5. Subsequently, an
action attribute is added to each edge of the graph. Starting with
the leaf vertices, for each vertex Oy, we attribute the incoming
edge to the vertex, e;; € £ in the graph with a prehensile or
non-prehensile action ay, to declutter according to a grasp quality

value g as:
al”™ " g > p
k = Hq
ak = h . (2)
{k G <ty

We use a mix of both types of actions as for some objects with
peculiar shapes, itis challenging for the robot to perform prehen-
sile grasp actions whereas push may be simpler. Since the goal
is to declutter the scene in a deterministic manner, (2) ensures
that if an object can be grasped with high confidence, a grasp
action is executed. If the confidence is below the threshold i,
a push action is executed. The value of 1, has been empirically
set to 0.1. The object to be removed next is inferred from the
leaf nodes with the highest valued e;;, defined in (1).

1) Push Action: We parameterize the push action by a tu-
ple composed of a push point and direction, i.e., a?*" =

(pPush dPush), The trajectory of pushing is a straight line
for a fixed predefined distance. We further assume quasi-static
pushing [30] and that the object moves on a flat 2D surface. Given
the segmentation mask, we compute vectors v; Vi between the
centroid of the bounding box of each object and the object
to be pushed. The vector pointing towards the clutter is then
given by v = ) . w;Vv; . Therein each vector is weighted with
w;, such that objects that are further away, have less influence
on the direction. Finally, the push direction is obtained from

dpush — _ - The push point pPush is calculated as the point
at the intersection of the contour of the segmentation mask

and push direction Xp”Sh placed at the centroid, as shown in
Fig. 3(b). This ensures the push action is aligned towards the
centroid of the object. However, due to the width of the fingertips
of the gripper, it is not always possible to reach this point due
to surrounding clutter. To incorporate this constraint, we sample
points in the vicinity of the touch point, place a bounding box
in the size of the gripper and calculate the mean loU with
all objects. The size of the gripper is calculated by projecting
the real world gripper length in the image plane using the
transformation between the world frame ¥V and camera frame
C at the configuration where the push affordance is computed.
The point leading to the smallest mean IoU is chosen as pP*s",
Furthermore, we use the tactile sensors embedded in the gripper
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to detect a loss of contact during push which stops the execution
and triggers a recalculation of the push action.

2) Grasp Action: We used the generative grasping CNN
(GG-CNN) [23] for providing grasp affordances in terms of the
grasp position, the orientation and the probability of success of
the grasp given by the quality measure g, which is also used in
the declutter graph creation. Since we require object specific
grasping, we use our semantic segmentation output to mask
the depth image input to GG-CNN. Furthermore, in order to
improve the object specific grasp estimates, we move the robot
to a new viewpoint above the centroid of the chosen object
given by the segmentation mask at a predefined height. The
grasp action a9"**P is defined by a grasp point p9"**?, a grasp
angle a97**P and an end point to place the object at pP!*°® as
a tuple (p97@°P, a975P prlace) If the grasp action fails during
execution detected by a loss of contact using tactile sensors,
the execution is stopped and recalculation of the grasp action is
triggered using the vision sensor.

C. Translation-Invariant Quaternion Filter (TIQF) for Pose
Estimation

We tackle the active visual and active tactile pose estima-
tion problem via a Bayesian-filter based approach termed as
translation-invariant quaternion filter (TIQF). The TIQF is a
sequential filtering method for point cloud registration that is
applicable to sparse as well as dense point clouds. Point cloud
registration problem given known correspondences can be for-
malised as

SZ:ROz—Ft ’L:LN, (3)

where s; € R are points in the scene cloud S extracted from
sensor measurements and o; € R? are the corresponding points
belonging to the model cloud O extracted from the model mesh,
R € SO(3)andt € R? are the unknown rotation and translation
respectively which aligns o, to s;. We decouple the rotation and
translation estimation by finding the relative vectors between a
pair of corresponding pointsas s;; = s; — s;andoj; = 0; — 0;.
This simplifies Equation (3) as:

s; —s; = (Roj +t) — (Ro; + t), 4)
Sji = ROji. (5)

As Equation (5) is independent of t, this is termed as translation-
invariant measurements. Given a rotation estimate R, the trans-
lation estimate t can be found in closed form solution as:

N

=0

To estimate rotation, we cast the problem into a Bayesian
estimation framework. We denote the rotation estimate R in
its quaternion form as the state x which needs to be identified
through measurements z obtained via actions a upto time ¢. Upon
decluttering, the objects’ pose remain unaltered during active
vision-based and tactile-based pose estimation as we perform
guarded touch actions [31]. Hence the state estimate is provided
by a recursive Bayes filter as:

p(X\ZLt, al:t) = Up(Zt\K at)p(X|Z1:t—17 al:t—l)a (N
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where 7 is a normalization constant. We estimate the current
belief p(x|z1.+,a1.¢) through a Kalman filter. To derive a linear
filter, we derive a linear state and measurement model. We
reformulate Equation (5) using quaternions as:

Sji =X®0j; OX", (8)

where © is the quaternion product, x* is the conjugate of x, and
s;; = {0,s;;} and 0j; = {0,0,;}. As x is an unit quaternion,
using the fact that x* ® x = x ® x* = 1 to get:

ginX—X(Daji:O. (9)

We can rewrite Equation (9) as:

—sT —o”f,
O Sl |0 % k=0 (10)
Sji Sy Oji  —Oj;

0 —(sji —0i5)" x =0 (1)

(sji —05i) (8j+si+o;+0)"|
where [ |* is the skew-symmetric matrix form. Equation (11)
is of the form H;x = 0 where H, is the pseudo-measurement

matrix such that
0 —(Sji — Oji)T

H, =
(sji —0ji) (sj +si+0;+0i)"

(12)
4x4

The Equation (11) represents a noise-free state estimation where
H, solely depends on the corresponding measurements. It can
be inferred that x must lie in the nullspace of H;. Similar to [32],
we design a pseudo-measurement model as:

H,x = z", (13)
wherein we enforce the pseudo-measurements z" = 0. As we

assume the x and z; to be Gaussian distributed and a static
process model, the resulting Kalman equations are given by:

xp = %1 — Ky (HiXe 1) (14)
= (I-KH,)ZF, (15)
K, =3¢ H! (S H + 507 (16)

where X;_; is the normalized mean of the state estimate at
t — 1, K; is the Kalman gain and $¥ , is the covariance matrix
of the state at t — 1. The parameter X! is the measurement
uncertainty at timestep ¢ which is state-dependent and is defined
as follows [33]:

1 _ _
S = 17 [tr(itflitTA + 57 ) — (R X+ 570,
(17

where p is a constant which corresponds to the uncertainty of the
correspondence measurements and is empirically set to 0.05 and
tr refers to trace. However, Kalman filter does not preserve the
constraints on the state-variables such as the unit-norm property
of the quaternion in our case [33]. Hence, a common technique
is to normalise the state and the associated uncertainty after each
update:

(18)
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The rotation estimate X (quaternion) is converted to R € SO(3)
and used to estimate the translation according to Equation (6).
Thus, with each iteration we obtain a new rotation and translation
estimate which is used to transform the model. The transformed
model is used to recompute correspondences and repeat the
Kalman Filter update steps. We calculate the change in homoge-
neous transformation between iterations Arrop < " i.e., if
the difference in the output pose is less than a specified threshold
which in our experiments is 0.1 mm and 0.1° respectively and/or
maximum number of iterations in order to check for convergence
(m(l:l?_itT[QF = 100)

D. Next Best Action for Pose Estimation

1) Next Best View (NBV) Selection: The next best view
(NBV) problem seeks to find the most optimal next view point
to observe an environment given previous measurements by
minimising some aspect of the unobserved space through an
objective function [15]. In comparison to existing approaches
for NBV which is used for mapping the entire environment [15]
or for object reconstruction [34], we design an object-driven
active exploration method for object pose estimation.

We extract the approximate centroid of the current target
object from our semantic segmentation network. We capture
a point cloud from an initial view that is randomly sampled
within the constraints of the workspace and the robot. The se-
mantic segmentation output is used to crop the entire point cloud
around the region of interest of the target object. We discretize
the resulting point cloud into a 3D occupancy grid OG with
resolution g,..s. Each cell ¢; in the occupancy grid is represented
by a Bernoulli random variable and has an occupancy probability
p(c;). There are two possible states for each cell with ¢; = 1
indicating the cell is occupied and ¢; = 0 for an empty cell. A
common independence assumption of each cell with other cells
enables the calculation of the overall entropy of the occupancy
grid as the summation of the entropy of each cell. The Shannon
Entropy of the entire grid can be computed as [35]:

H(0G) = — > plei)log(p(ci)) + (1 = plei))log(1 — p(c;))
c;€0G

(19)

To estimate the NBV, we compute the expected entropy-based
information gain. As it is intractable to calculate the exact
entropy from a predicted viewpoint, we perform a common
simplifying approximation by predicting the expected mea-
surements 2V from a viewpoint a?**" using ray-traversal
algorithms. A sensor model representing our RGB-D sensor
is defined with the given horizontal and vertical field of view
(FoV) and resolution to cast a set of rays R = r1,72,...7;
for a given distance d,q, in the z-axis of the sensor model
coordinate frame. A viewpoint a¥**¥ € Av*% is defined as the
3D position p*“* € R3 and orientation RV*** € SO(3) of the
camera frame. We perform Markov Monte-Carlo sampling of NV
viewpoints on the hemisphere space located above the centroid
Ocentroid Of the target object. The size of the sphere is limited
by the kinematic workspace limits of the robot. The 3D position
pY?®" is sampled as a point on the hemisphere and the orientation
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Fig. 4.  Monte-carlo sampling of visual viewpoints and touch points for next

best view (NBV) and next best touch (NBT) action selection respectively.

of the view as axis of rotation € and angle # is computed with

view

fl _ P _ — Ocentroid 7 (20)
||pmew - Ocent’roidH
o hx Z
6 =cos! (h-Z), e= AxiA, 21
[ x Zj|

where Z = {0,0,1} is the Z-axis of the world frame as shown
in Fig. 4. Using the resulting angle-axis formulation (é&,6)
or equivalent rotation matrix RV**" from (21), the camera is
oriented towards the target object. The grid cells which are
traversed by the rays are computed to be occupied or free and
the respective log-odds are updated accordingly [36]:

. log2a— if zview=hit
l(émew) { glfph

loglfﬁ if 2V =myiss

(22)

where p;, and p,,, are the probabilities of hit and miss which are
user-defined values set to 0.7 and 0.4 respectively as in [36].
The expected information gain by taking a viewpoint a}’*"
and corresponding expected measurement 27*°“ is given by
the Kullback—Leibler (KL) divergence between the posterior
entropy after integrating the expected measurements and the

prior entropy [15]:
El(p(eilay”, 277°))] = H(p(es)) — H(p(eilay’™”, 57"))

(23)
Hence, the selected action aV*¢"* is given by:
av** = argmax (E[I(p(ci|al™®, 2V°"))]) 24)

azze'w cAview

2) Next Best Touch (NBT) Selection: Similar to next best
view selection, for tactile-based pose estimation we select the
action to extract measurements that would reduce the uncer-
tainty of the estimated pose. We define an action al°® as a ray

represented by a tuple al¢ = (s, d), with s as the start point

and 3 the direction of the ray. The TIQF algorithm and active
touch selection is initialised with minimum of 3 points, hence
for initialisation the touches are sampled randomly given the
visual-pose estimate. We generate the set of possible actions
Ao by Monte-Carlo sampling of actions around each face of a
bounding box placed on the current estimate of the object. The
predicted measurement upon performing an action is estimated
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by ray-mesh intersection algorithm. We seek to choose the action
ai"c* e A!°c_ that maximizes the overall Information Gain mea-
sured by the Kullback-Leibler divergence between the posterior
distribution p(x|z1.;,4a1.;) after executing action &, and the
prior distribution p(x|z1.+—1,a1.+—1). We denote the predicted
action and associated measurement as z and a respectively.
Given that the prior and posterior are multivariate Gaussian
distributions from our definitions in the TIQF formulations, the
KL divergence in discrete form can be computed in closed form
as [37]:

1 det(3;— a1 &
aioc* = arg max — lOgLil) + tT’(E;}lzt)) —d
ay 2 det(Zt)

+(xe — %em1) T8 (% — )_(tl)‘| , (25)

where d is the dimension of the quaternion state vector and
d = 4 in our case, X;_1 is the normalized mean of the quaternion
state estimate at £ — 1, and ¥X ; is the covariance matrix of
the state at ¢ — 1. This enables to evaluate an exhaustive list
of actions at marginal computation cost in real time without
the need to prune actions or setting trade-offs with computation
time as compared to literature [38], [39]. Timing analysis of our
active action generation and selection approach is provided in
our prior work [26]. The next best action for pose estimation is
graphically depicted in Fig. 4.

The stop criterion for both the NBV and NBT selection is
defined similarly as the convergence criteria: if the change in
position and rotation between each sensor acquisition is less than
a specified threshold £5%°P = {&5°7 £5°P}. In our experiments

we set &7 = Smm, £5F = 2°.

III. EXPERIMENTS

A. Experimental Setup

The experimental setup shown in Fig. 1 consists of a Universal
Robots URS robot with a Robotiq 2F140 Gripper and a Franka
Emika Panda robot with the standard Panda Gripper. The stan-
dard gripper pads of the Robotiq 2F140 are replaced with the
tactile sensor array from XELA Robotics on the fingertips and
the phalanges. The tactile sensing system consists of Np = 140
taxels that provide 3-axis force measurements on each taxel in
the sensor coordinate frame. It is composed of eight tactile sensor
arrays in total, where 4 tactile sensor arrays are on each finger:
phalange sensor (24 taxels), outer finger (24 taxels), finger tip (6
taxels) and inner finger (16 taxels). The tactile sensors function
on the principle of Hall-effect sensing and are covered with
a soft, textile material. The raw data from the XELA sensor
is a relative value of force measurement but it is not directly
characterized to Newtons. The normal force values (along z axis)
range between 36000 and 45000. We normalize the raw values
received from the sensor. An Azure Kinect DK RGB-D camera
is rigidly attached to the Panda Gripper with a custom designed
flange which provides the vision point cloud *S. Hand-eye
calibration is performed to find the transformation between the
Panda Gripper and the camera frame and consequently trans-
formed into the common world coordinate frame WV [40]. A
marker-based optical tracking system from Advanced Realtime
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Fig. 5. Experimental objects. The properties evaluated by human subjects: C:
complex shape, D: deformability, T: transparency. v': high, x: low.

Tracking' is placed overlooking the workspace which provides
the ground-truth pose of the target objects only. The markers are
placed only on the target object.

We used 12 objects in total: olive oil bottle, cleaner, spray,
transparent wineglass, shampoo, transparent box, sponge, can,
black box, screwdriver, duster, marker as shown in Fig. 5. The
objects have been chosen according to the following criteria:
varying shape between simple (e.g. can) to complex (e.g. screw-
driver), varying degrees of transparency (highly transparent
box to highly opaque black box), varying center of mass (e.g.
shampoo) and varying degree of deformability (e.g. sponge).
Some of the objects such as the transparent box and wineglass
are intentionally chosen to test the robustness of the framework.
The background has been intentionally chosen to be plain white
to increase the visual perceptual difficulty of the transparent
objects. Four objects i.e., olive oil bottle, spray, cleaner and
transparent wine glass are used as the target object whose pose
needs to be accurately estimated while the other 8 objects are
used to clutter the workspace. A software architecture developed
in ROS is used for the data communication between the two
robots, camera, and tactile sensors. For the implementation of
the finite state machine, we used the Octomap library [36] for
the NBV calculations.

The robot experiments were executed on a workstation run-
ning Ubuntu 18.04 with 8 core Intel 17-8550 U CPU @ 1.80 GHz
and 16 GB RAM. The maximum allowed speeds for the URS
and Panda were 75 mm/s and 100 mm/s respectively for safety
constraints. The fine tuning of the semantic segmentation net-
work [29] employed NVidia GeForce RTX 2080 Super GPU
with 8 GB RAM. No further training of the grasp affordance
network [23] was performed.

B. Robot Experiment Results

Given the estimated pose R, tes; and the ground truth poses
Ry, ty:, we employ the model-free translation and rotation
error metric and the model-dependent Average Distance of
model points with Indistinguishable views metric (ADI) [16]
for evaluation. The translation and rotation error is defined as
follows:

(26)
27)

errr = ||test - tgtHQ;

errg = cos’l((Tr(RestR;tl) —-1)/2)

![Online]: Available. https://www.ar-tracking.com/en
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TABLE I
ABLATION STUDIES FOR BASELINES (A) STATIC VISION, ACTIVE VISION (B) BEFORE AND (C) AFTER DECLUTTERING AND OUR PROPOSED
ACTIVE VISUO-TACTILE WITH DECLUTTERING METHOD

s Active vision without
Static vision

Active vision with Active visuo-tactile with

decluttering decluttering decluttering
Ly norm (Trans) L, norm (Trans) Ly norm (Trans) Ly norm (Trans)

ADI (mm) | (mm) | ADI (mm) | (mm) | ADI (mm) | (mm) | ADI (mm) | (mm)],
Obj 1 41.90 £ 4.56 118.44 + 38.35 11.54 + 1.88 40.61 + 1.18 10.39 + 0.34 27.04 + 2.01 7.38 + 1.68 13.88 £+ 5.81
Obj 2 34.60 £+ 1.54 159.72 + 62.29 14.71 = 0.76 152.59 £ 151.73  9.31 £ 1.61 16.61 + 2.13 4.06 + 3.12 6.38 + 3.58
Obj 3 49.79 £ 3.99 169.76 + 7.91 35.99 + 1.14 104.82 + 40.19 13.42 + 1.86 31.42 + 1.40 7.94 + 2.38 14.75 £ 1.58
Obj 4 216.22 £+ 100.48  368.07 + 58.98 63.88 + 2932  224.38 + 20.95 82.4 £+ 10.56 180.29 + 24.28 12.57 £ 3.52  15.75 + 1.83
Mean 85.63 £ 87.28 203.99 + 111.61  31.53 £ 24.15 130.60 = 77.55 28.88 + 35.72  63.84 £ 77.88 7.99 + 3.50 12.69 + 4.28
Median  45.85 £ 7.59 164.74 + 25.66 25.35 +£ 1223 128.71 £ 55.99 11.90 + 2.06 29.23 + 7.40 7.66 £+ 1.94 14.31 £ 0.94

The bold entities signify our proposed method which has the highest accuracy among baseline ablation studies.

where, ||x||2 is the Ly norm of x. As objects having an axis
of symmetry can produce infinite rotational solutions, we only
report the Lo norm of translation error for all the objects. Instead,
we use the ADI metric as it is not affected by symmetric objects.
The ADI metric is defined as follows:

=3

p1€0

€rradi = min H(Rgtpl + tgt) - (Restp2 + test)||7

p2€0
(28)

for all points p1, po € and M is the total number of points in O.
For both the metrics, lower values signify higher accuracy.
Considering the implementation of robot actions, we used
both vision and tactile feedback for the push, grasp and touch
actions. For instance, given a push or grasp action, the tactile
readings are continuously sampled at 40 Hz to detect possible
loss of contact during pushing or grasping. We use a constant
grasping force of 5 N provided by the Robotiq 2F140 gripper.
For the push actions, the contacted taxels’ normalized raw force
values are monitored such that they are constantly above a
predefined threshold i.e., f, > 7, (set to 1.06). On the other
hand, for touch actions for localization, we use guarded motions
so that the robot does not accidentally push or topple other
objects or the target object. As soon as the normalized force value
measured on any of the taxels exceeds the threshold f,. > 7
(set to 1.02), the motion is stopped and the 3D locations of
the excited taxels are recorded as the tactile point cloud tS. We
compare our active visuo-tactile pose estimation by decluttering
the scene with 3 baselines: (a) static vision without decluttering,
(b) active vision without decluttering and (c) active vision with
decluttering. This ablation study is performed to evaluate the
importance of each part of the framework. In all cases, the
pose estimation is performed using our TIQF algorithm with
the same initial conditions and scene segmentation to ensure
uniformity. We repeated all the baseline experiments and our
proposed framework twice for each target object by randomly
changing the scene clutter each time. In total, we performed
32 experimental trials including baselines. The results for the
experiments are shown in Table I. Fig. 6 shows the accuracy of
the pose estimation using Ly norm of the translation error and
ADI for the active vision and active touch-based pose estimation.
A typical run of the whole framework consisting of 4 objects to
declutter, followed with 3 different viewpoints for active vision
and 4 touch-acquisitions respectively takes around 795 s, while
87% of the time is used for robot actions alone. We also report

Overall Object 1 Object 2 Object 3 Object 4

—— Active Vision
Active Tactile

200

60 150

40 100

20

01 234567 01234567 01234567 01234567 01234567

30

20 6
4 10
10 10

012 3 45 6 7
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Fig. 6. Plots showing the mean and standard deviation for Lo norm error
(translation) (top) and ADI (bottom) for the four target objects after declutter-
ing. The overall plot shows the median and median absolute deviation of the
combined data from all objects.

an overall success rate of 83.3% for grasp actions and 70% for
push actions for the decluttering phase.

C. Discussion

As seen from Table I, the ADI metric and the Ly norm de-
creases and accuracy improves from static vision to our proposed
active visuo-tactile estimation with decluttering approach. We
note approximately 44.7% reduction in median ADI error with
active vision compared to static vision. This corroborates with
prior work [13], wherein selecting viewpoints actively can im-
prove accuracy over static viewpoints. Moreover, demonstrating
the validity of our proposed decluttering strategy, we see a reduc-
tion of 53% in median ADI error before and after decluttering.
On the other hand, active vision-based pose estimation on a
scene without clutter may still have residual uncertainty. This is
demonstrated by the improved performance of 35.6% in median
ADI using active tactile-based pose estimation. We intentionally
used a transparent wineglass as a target object which is very chal-
lenging for pose estimation from visual perception as it is nearly
invisible to a time-of-flight (ToF) depth sensor. This is seen by
the relatively higher errors in Table I (Object #4) in comparison
to other target objects. However, visuo-tactile based estimation
using TIQF reduces the ADI error by nearly 85% compared to
active vision after decluttering. The errors are consistent with
other target objects, highlighting the strength of tactile sensing
for challenging objects for visual modality. Furthermore, the
ability of the TIQF to handle dense and sparse clouds is shown
by the improved accuracy in vision and tactile-based estimation
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respectively over each action as shown in Fig. 6. The TIQF
converges to a stable pose estimate with < 1 cm average error
within 4 touches. In Fig. 6, we note that a change in modality
from active vision to active tactile during interactive perception
helps to improve the accuracy of pose estimation.

IV. CONCLUSIONS

In this letter, we proposed an active visuo-tactile pose esti-
mation framework for objects in dense clutter. We proposed a
novel declutter graph based approach for scene representation
for decluttering which allows to select the next object to re-
move and provides the optimal action to perform. The declutter
scene graph further encodes two types of actions: push and
grasp action. Furthermore, we extended our novel TIQF for
active vision based and active tactile based pose estimation.
We performed an object-driven exploration strategy for active
viewpoint and active touch point selection. In the evaluation, we
demonstrated that our proposed method significantly improves
the accuracy of pose estimation over mono-modal baselines. We
also demonstrated the importance of using a secondary modality
to correct or verify the estimation from a first modality.

ACKNOWLEDGMENT
The video can be found in: https://youtu.be/sjqWRFLL2Xw

REFERENCES

[1] M. Kaboli et al., “Tactile-based active object discrimination and target
object search in an unknown workspace,” Auton. Robots, vol. 43, no. 1,
pp. 123-152, 2019.

[2] J.Bohg et al., “Interactive perception: Leveraging action in perception and
perception in action,” IEEE Trans. Robot., vol. 33, no. 6, pp. 1273-1291,
Dec. 2017.

[3] R.Bajcsy, “Active perception,” Proc. IEEE, vol. 76, no. 8, pp. 966-1005,
Aug. 1988.

[4] M. Kaboli, D. Feng, K. Yao, P. Lanillos, and G. Cheng, “A tactile-based
framework for active object learning and discrimination using multimodal
robotic skin,” IEEE Robot. Automat. Lett., vol. 2, no. 4, pp. 2143-2150,
Oct. 2017.

[5] M. Kaboli, D. Feng, K. Yao, P. Lanillos, and G. Cheng, “Tactile-based
manipulation of deformable objects with dynamic center of mass,” in Proc.
IEEE-RAS 16th Int. Conf. Humanoid Robots, 2016, pp. 752-757.

[6] K. Yao, M. Kaboli, and G. Cheng, “Tactile-based object center of mass
exploration and discrimination,” in Proc. IEEE-RAS 17th Int. Conf. Hu-
manoid Robots, 2017, pp. 876-881.

[7] M. Kaboli and G. Cheng, “Robust tactile descriptors for discriminating
objects from textural properties via artificial robotic skin,” IEEE Trans.
Robot., vol. 34, no. 4, pp. 985-1003, Aug. 2018.

[8] Q. Li, O. Kroemer, Z. Su, F. F. Veiga, M. Kaboli, and H. J. Ritter, “A
review of tactile information: Perception and action through touch,” IEEE
Trans. Robot., vol. 36, no. 6, pp. 1619-1634, Dec. 2020.

[9] P. K. Murali et al., “Intelligent in-vehicle interaction technologies,” Adv.

Intell. Syst., vol. 4, pp. 1-27,2021.

R. Dahiya, “E-skin: From humanoids to humans,” Proc. IEEE, vol. 107,

no. 2, pp. 247-252, Feb. 2019.

R. Dahiya et al., “Large-area soft e-skin: The challenges beyond sensor

designs,” Proc. IEEE, vol. 107, no. 10, pp. 20162033, Oct. 2019.

C. Mitash et al., “Physics-based scene-level reasoning for object pose

estimation in clutter,” Int. J. Robot. Res., pp. 1-22, 2019.

K. Wu, R. Ranasinghe, and G. Dissanayake, “Active recognition and pose

estimation of household objects in clutter,” in Proc. IEEE Int. Conf. Robot.

Automat., 2015, pp. 4230-4237.

Y. Xiang et al., “Posecnn: A convolutional neural network for 6D object

pose estimation in cluttered scenes,” in Proc. Robot.: Sci. Syst., 2018,

pp. 1-10.

(10]
(11]
[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]
(31]
[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

4693

C. Potthast et al., “A probabilistic framework for next best view estimation
in a cluttered environment,” J. Visual Commun. Image Representation,
vol. 25, no. 1, pp. 148-164, 2014.

S. Hinterstoisser et al., “Model based training, detection and pose estima-
tion of texture-less 3D objects in heavily cluttered scenes,” in Proc. Asian
Conf. Comput. Vis., Berlin, Heidelberg: Springer, 2012, pp. 548-562.

C. Wang, D. Zhu, T. Li, M. Q. -. Meng, and C. W. de Silva, “Efficient
autonomous robotic exploration with semantic road map in indoor en-
vironments,” IEEE Robot. Automat. Lett., vol. 4, no. 3, pp. 2989-2996,
Jul. 2019.

A. Zeng, S. Song, S. Welker, J. Lee, A. Rodriguez, and T. Funkhouser,,
“Learning synergies between pushing and grasping with self-supervised
deep reinforcement learning,” in Proc. IEEE/RSJ Int. Conf. Int. Robots
Syst., 2018, pp. 4238-4245.

R. Kartmann, F. Paus, M. Grotz, and T. Asfour, “Extraction of physically
plausible support relations to predict and validate manipulation action ef-
fects,” IEEE Robot. Automat. Lett., vol. 3,1n0. 4, pp. 3991-3998, Oct. 2018.
R. Mojtahedzadeh et al., “Support relation analysis and decision mak-
ing for safe robotic manipulation tasks,” Robot. Auton. Syst., vol. 71,
pp. 99-117, 2015.

M. Schwarz et al., “Fast object learning and dual-arm coordination for
cluttered stowing, picking, and packing,” in Proc. IEEE Int. Conf. Robot.
Automat., 2018, pp. 3347-3354.

J. Bohg, A. Morales, T. Asfour, and D. Kragic, “Data-driven grasp
synthesis—a survey,” IEEE Trans. Robot., vol. 30, no. 2, pp. 289-309,
Apr. 2014.

D. Morrison et al., “Learning robust, real-time, reactive robotic grasping”
Int. J. Robot. Res., vol. 39, no. 2-3, pp. 183-201, 2020.

J. Bimbo, S. Luo, K. Althoefer, and H. Liu, “In-hand object pose estima-
tion using covariance-based tactile to geometry matching,” IEEE Robot.
Automat. Lett., vol. 1, no. 1, pp. 570-577, Jan. 2016.

N. A. Piga et al., “MaskUKF: An instance segmentation aided unscented
Kalman filter for 6D object pose and velocity tracking,” Front. Robot. Al,
vol. 8, pp. 1-17, 2021.

P. K. Murali, M. Gentner, and M. Kaboli, “Active visuo-tactile point
cloud registration for accurate pose estimation of objects in an unknown
workspace,” in Proc. IEEE/RSJ Int. Conf. Int. Robots Syst.,2021, pp. 2838—
2844.

M. Kaboli et al., ““Active tactile transfer learning for object discrimination
in an unstructured environment using multimodal robotic skin” Int. J. Hum.
Robot., vol. 15, no. 01, 2018, Art. no. 1850001.

D. Feng et al., “Active prior tactile knowledge transfer for learning tactual
properties of new objects,” Sensors, vol. 18, no. 2, pp. 1-19, 2018.

L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“DeepLab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected CRFs,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 40, no. 4, pp. 834-848, Apr. 2018.

M. T. Mason, “On the scope of quasi-static pushing,” in Proc. Int. Symp.
Robot. Res., 1986, pp. 229-233.

A. Petrovskaya et al., “Active manipulation for perception,” in Springer
Handbook of Robotics. Cham: Springer, 2016, pp. 1037-1062.

R.A. Srivatsan et al., “Estimating SE (3) elements using a dual quaternion
based linear Kalman filter.” in Proc. Robot.: Sci. Syst., 2016, pp. 1-10.
D. Choukroun, I. Y. Bar-Itzhack, and Y. Oshman, “Novel quater-
nion Kalman filter,” IEEE Trans. Aerosp. Elect. Syst., vol. 42, no. 1,
pp. 174-190, Jan. 2006.

J. Delmerico et al., “A comparison of volumetric information gain met-
rics for active 3D object reconstruction,” Auton. Robots, vol. 42, no. 2,
pp. 197-208, 2018.

F. Bourgault, A. A. Makarenko, S. B. Williams, B. Grocholsky, and H.
F. Durrant-Whyte,, “Information based adaptive robotic exploration,” in
Proc. IEEE/RSJ Int. Conf. Int. Robots Syst., 2002, vol. 1, pp. 540-545.
A. Hornung et al., “Octomap: An efficient probabilistic 3D mapping
framework based on octrees,” Auton. Robots, vol. 34, no. 3, pp. 189-206,
2013.

J. Duchi, “Derivations for linear algebra and optimization,” Berkeley,
California, vol. 3, no. 1, pp. 2325-5870, 2007.

N. Tosi, O. David, and H. Bruyninckx, “Action selection for touch-based
localisation trading off information gain and execution time,” in Proc.
IEEE Int. Conf. Robot. Automat., 2014, pp. 2270-2275.

B. Saund, S. Chen, and R. Simmons, “Touch based localization of parts for
high precision manufacturing,” in Proc. IEEE Int. Conf. Robot. Automat.,
2017, pp. 378-385.

P. K. Murali ez al., “In situ translational hand-eye calibration of laser profile
sensors using arbitrary objects,” in Proc. Int. Conf. Robot. Automat., 2021,
pp. 11067-11073.


https://youtu.be/sjqWRFLL2Xw


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


