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Aggregation Functions for Simultaneous Attitude and
Image Estimation With Event Cameras at High

Angular Rates
Matthew Ng , Zi Min Er, Gim Song Soh , and Shaohui Foong , Member, IEEE

Abstract—For fast-moving event cameras, projection of events
onto the image frame exhibits smearing of events analogous to high
motion blur. For camera attitude estimation, this presents a causal-
ity dilemma where motion prior is required to unsmear events, but
an image prior is required to estimate motion. This dilemma is typ-
ically circumvented by including an IMU to provide motion priors.
However, IMUs limited dynamic range of ±2000 ◦/s are shown
to be insufficient for high angular rate rotorcrafts. Contrast Max-
imization is an event-only optimization framework that computes
the optimal motion compensation parameter while generating an
event image simultaneously. This letter analyses the performance of
existing aggregation functions of the contrast maximization frame-
work and proposes a non-convolution-based aggregation function
that outperforms existing implementations. The use of discrete
event images for optimizers is discussed, demonstrating alternate
avenues of the framework to exploit. The effect of motion blur in
motion-compensated images is defined and studied for Contrast
Maximisation at high angular rates. Lastly, the framework is ap-
plied to rotation datasets with angular rates exceeding 2000 ◦/s to
demonstrate high angular rate motion estimation without motion
priors.

Index Terms—Aerial systems: perception and autonomy, visual
servoing.

I. INTRODUCTION

F IRST conceived in 1991 [1], event cameras are neuromor-
phic cameras that mimic the neural architecture of the

eye for the perception of the world. Unlike traditional cam-
eras, which transmit pixel information frame-wise at a prede-
fined clock speed, event cameras such as the Dynamic Vision
Sensor (DVS) [2], [3] transmit pixel information pixel-wise
asynchronously. Each pixel in the DVS responds to changes in
light intensity. When the change exceeds a predefined threshold,
an event at the pixel location is registered, time-stamped, and
transmitted out. Depending on the hardware, event cameras have
an event throughput between 2 million to 1.2 billion events per
second.
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One well-studied application for event cameras are its use
in camera attitude estimation using image alignment. However,
reconstructing an image for events under motion results in a
smeared image analogous to motion blur. These methods depend
on a priori information to perform image motion compensation
to recover a sharp image. The motion prior can be recovered
from the IMU [4] or by exploiting environmental conditions to
develop a priori for motion compensation [5]. This presents a
causality dilemma where motion prior is required to construct
an image, but an image is required to recover motion.

The Contrast Maximisation (CM) framework [6] is an open-
ended optimisation algorithm that seeks to recover a motion
parameter that maximises the contrast of an event image. It is an
event only method that simultaneously generates both motion-
compensated event image and an instantaneous state estimate.
The overall computation complexity of the framework depends
on 5 features.

1) The size of the event packet; Either fixed packet size or
fixed time intervals (variable packet size)

2) The warp function; Depending on the expected motion to
be estimated, affects the number of optimization parame-
ters.

3) The aggregation function which defines how individual
events influence the intensity of other events spatially.

4) The loss function which collects the event image into a
singular metric for optimization.

5) Lastly the optimization algorithm which can be either local
or global, gradient or non-gradient based.

Given the customizability of the framework, any minor
changes can affect the accuracy of the warp, speed of compu-
tation, and the quality of the resultant event image. As such,
this paper builds upon existing CM literature (which focuses
on loss functions [7], [8]) to develop a better mathematical
and computational understanding of aggregation functions. In
addition, the use of non-gradient-based optimizers with a sparse
aggregation function is demonstrated; Lastly, as this work fo-
cuses on applications at high angular velocity, the impact of
motion blur on the CM framework.

II. METHODOLOGY

Underpinning the CM framework are aggregation functions.
Any event-based method (including methods outside the CM
framework) that builds an event image or Image of Warped
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Events (IWE) would apply an aggregation function [9]. The
choice of aggregation function may also dictate and limit the
scope of optimizers usable in the framework. As such a short
discourse is dedicated in the CM methodology to introduce the
various aggregation functions.

A. Contrast Maximization

The CM framework is a direct estimation method that max-
imizes the contrast of an event image given an event stream.
It assumes, events motion compensated by an optimal motion
parameter and aggregated, yields a high contrast event image
due to common trajectories of events describing the same tex-
ture. Let E = {ek}Nk=1 describe an event stream and each event
ek = (tk,xk, sk) where tk is the timestamp, xk = (xk, yk) is
the x-y position of the event in an event image, and sk the
sign of intensity change. In the CM framework, events are first
warp to a common time reference tref for a candidate θ which
parametrizes the motion of the camera. The warp, defined in
(1), geometrically maps events spatially from xk to a sub-pixel
location x′

k with the weights of the map restricted temporally
by tk − tref .

x′
k = W (xk, tk, θ) (1)

The warp events are used to build an event image, H , defined
as the sum of events that fall within the pixel. Theoretically
defined using a Dirac delta, since it is untenable to sum infinite
for any meaningful calculation, the discrete-time approximation,
the Kronecker delta function is adopted, which is 1 if x = x′

k

(see (2))

H(x′
k) =

N∑
k=1

δ (x− x′
k) (2)

where x = x′
k ⇒ δ(x− x′

k) = 1. In practice, however,
since (1) warps to sub-pixel locations, the Kronecker delta
function is adapted to define data associations between events.
There are four possible ways:

1) Kronecker Delta: A naive single pixel update where x′
k is

rounded to the nearest integer in the Kronecker delta (see
(3)).

H1(x
′
k) =

N∑
k=1

δ (x− �x′
k�) (3)

where �·� is the rounding function. The main advantage
of this method is the sharp event image produced if x′

k is
optimally mapped since events are hard assigned to a pixel.
The drawback of this method is the sparsity of the image
due to discontinuities between neighbouring pixel intensi-
ties. Discontinuities between event edges propagate down
the framework, limiting the effectiveness of optimizers
requiring a continuous first derivative.

2) Fully Connected Gaussian: Replacing the Kronecker
Delta function with a Gaussian function [6], [8] (see (4))

with σ = 1 pixel.

H2(x
′
k) =

N∑
k=1

1

2πσ2
exp

(
− α

2σ2

)
(4)

where α = (x− xk)
2 + (y − yk)

2. This function as-
sumes event associations at subpixel locations to neigh-
bouring pixels is normally distributive. It produces a
smooth contrast map that is ideal for optimization but
is extremely costly to compute since the corresponding
Gaussian weight must be computed at every event pixel
location for all x′

k. For an event camera sensor with
M pixels and N is the number of events in an event
stream, it is MN operations per function call for the fully
connected Gaussian. The operation has a time complexity
of O(mn). If computation time is a nonissue, this method
is ideal because event influence is not truncated in image
generation.

3) Bilinear Interpolation Kernel: Kernelized methods re-
place the Kronecker Delta function with two steps: a kernel
summation followed by Gaussian smoothing. The Kernel
sums a subset of x. Bilinear Interpolation Kernel [10]
improves on the naive single-pixel update through bilinear
voting for 4 neighbouring pixels around x′

k. Let

⎡
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(5)
where �·� and �·� are floor and ceiling functions respec-
tively, and b the bilinear weights of the 4 pixels surround-
ing x′

k. Then IB(x
′
k) =

∑N
k=1 b is the temporary event

image built using the bilinear interpolation kernel.

H3(x
′
k) = IB(x

′
k) ∗G(x) (6)

To improve the smoothness of IB(x′
k), a Gaussian filter

with σ = 1 pixel is convolved on the image, spreading the
influence of x′

k beyond the 4 neighbours (see (6)).
4) 3x3 Gaussian Kernel: Replacing IB with

IG(x
′
k) = H2(x

′
k)∀x = �x′

k� ± 1 (7)

H4(x
′
k) = IG(x

′
k) ∗G(x) (8)

This kernel replaces the bilinear voting with a 3x3 Gaus-
sian kernel with σ = 1 pixel [11]. The weights of the
kernel are calculated based on (4) for the immediate
9 neighbours in a 3x3 grid, following that a Gaussian
smoothing (see (8)). This achieves a similar effect to
convolving the event image by a larger σ.
Kernelized methods results in a 4N and 9N operation cost
for IB and IG respectively. Gaussian smoothing functions
are at worst a O(mr2) complexity, where r is the radius
of the smoothing kernel. This results in an overall O(n+
mr2) complexity for H3 and H4.

Lastly, the focus of the event image is calculated using a focus
loss function. The notion stems from the intuition that if events



4386 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 2, APRIL 2022

describing the same texture are motion-compensated accurately,
the aggregation function yields a sharp image. As focus loss
functions are well-studied, the loss function Variance is adopted
for its fast runtime, relatively minimal performance loss as
compared to the best performing loss function, and extensive
use in CM literature. As such, the contrast of the event image is
calculated using (9).

C(θ) =
1

Pn

Pn∑
i=1

(H(xi)− μH)2 (9)

μH =
1

Pn

Pn∑
i=1

(H(xi)) (10)

where Pn is the total number of pixels in an event image, and
μH the mean of the event image (see (10)).

B. Pseudo Fully Connected Gaussian

Apart from optimizer choice, the aggregation step is the most
computationally expensive part of the framework [6]. Motivated
to reduce the time complexity further. We propose a redefinition
of the Gaussian function, that achieves linear time complexity,
eliminates additional computation of the Jacobian and retains
the accuracy achieved by (4). Inspired by the empirical rule of
the field of statistics that states: For a normal distribution 98.9%
of the observable data falls within 3 standard deviations of the
mean. Extending this heuristic to event influence, it can be said
that 98.9% of the event influence forx′

k is expended for eventsx′

up to 3 standard deviations of x′
k. As such this method replaces

the Kronecker delta with a single-step Gaussian function as in
(4), but calculating the Gaussian weight for neighbouring pixels
rσ from x′

k as shown in (11) where 1 ≤ r ≤ 3.

H5(x
′
k) = H2(x

′
k)∀x = �x′

k� ± rσ (11)

Assuming r = 3, σ = 1 pixel, this means a 7x7 kernel is
applied, and the convolution step is omitted since influence
outside the 7x7 grid can be considered negligible. As values
outside 3σ have a magnitude ≤ 6× 10−5, this reduces the
operation cost of the aggregation step to 49N . Resulting in an
aggregation function with linear time complexity (O(n)) which
is independent of the sensor size.

Given the high temporal resolution of event cameras, the num-
ber of events arriving per event sequence is ≈ 20, 000/10ms.
The computation cost for a DVS240 (M = 43, 200) and a 720p
camera (M = 921, 600) will be identical in that 10ms window.
In practice, it was found that the choice of r depended on the
optimizer with more robust optimizers functioning well at r = 1
and most optimizers such as AdaGrad optimizing well at r = 2.

1) Analytical Derivative of H5(x
′
k): Since this method,

shown later, is numerically equivalent to (4), it is possible to
take the analytical derivative of the Gaussian function for opti-
mization. Taking the partial derivative of H5(x

′
k) with respect

to x′
k:

∂H5

∂x′
k
=

N∑
k=1

β

2πσ4
exp

(
− α

2σ2

)
∀x = �x′

k� ± rσ (12)

TABLE I
SUMMARY OF DIFFERENCES BETWEEN AGGREGATION FUNCTIONS

where β = (x− xk) + (y − yk). When simplified to (12)
and σ = 1, the first-order derivative is shown to be linearly
proportional to the zeroth-order Gaussian by β. Since the com-
ponents of β are precalculated in α, no additional computation
is required to generate (12).

The differences between aggregation functions are summa-
rized in Table I. It shows compactly how the proposed function is
composed of the individual benefits of the different aggregation
functions.

III. EXPERIMENTS

In this section, 3 experiments are conducted, each designed
to expose different characteristics of the aggregation function in
the framework. First, the proposed aggregation function is vali-
dated using a common optimizer, answering the question: “Can
aggregation functions be made faster?” Second, a discussion
on the use of discrete aggregation functions and its impact on
optimizer choice, answers the question: “What other features in
the framework be exploited?” Lastly, we define and describe a
type of motion blur unique to event cameras and its effects on
the CM framework. All experiments are conducted on a single
core i7-3840QM CPU at 2.8GHz.

In total, three optimizers will be demonstrated:
1) Gradient Descent (Local Optimizer)
2) Particle Swarm (Metaheuristic Optimizer)
3) Branch-and-Bound (Global Optimizer)
Motivated by the rich literature available and its simplicity,

Particle Swarm Optimization (PSO) was chosen as a medium
between the fast gradient-based local optimizers presented in [6],
[10], while trading off the certainty and complexity of Branch-
and-Bound (BNB) [11] for comparison in the CM framework.
It was also chosen to demonstrate the fundamental non-gradient
requirement needed by discrete aggregation functions for opti-
mization.

For concise presentation of data, gradient descent (GD), BNB,
and PSO are appended with an ordinal numeral referring to
the aggregation function used for optimization, e.g. GD using
H2(x

′
k) is abbreviated to GD2 and GD using H5(x

′
k) is abbre-

viated to GD5.

A. Validation of Proposed Function

In this subsection, the proposed function is validated and
compared. For each method described above, a CM routine is
performed on the same set of 10ms event subsequence of the
‘dynamic_rotation’ Event-Camera dataset [12] which were gen-
erated using a DAVIS240C [13]. This 10ms subsequence is the
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Fig. 1. Event images generated using the Kronecker Delta function from the
optimized value of θ for each aggregation function.

TABLE II
OPTIMIZATION RESULTS OF THE INTERIOR-POINT ALGORITHM

same 10ms subsequence provided by [11] in the publicly avail-
able ‘CMBNB-demo’. The optimizer applied for this comparison
is MATLAB’s fmincon interior-point algorithm. This method
was chosen because of its deterministic nature. Given the same
initial conditions, event subsequence, aggregation function, and
focus loss function, the optimized results are repeatable, ensur-
ing results are due only to the changed aggregation function.

A camera under rotation motion is described in homogeneous
camera calibrated coordinates by a rotation matrix, such that the
warp mapping xk to x′

k is described in (13).

W (xk, tk, θ) = KR(tk, θ)K
−1xk (13)

R(tk, θ) = exp
(
[θ(tk − tref )]×

)
(14)

where (14) is the rotation matrix, θ the angular velocity of the
camera in angle-axis representation, [θ(tk − tref )]× the skew
symmetric matrix of θ(tk − tref ), and K the intrinsic camera
calibration matrix.

Fig. 1 shows the event image generated using the Kronecker
Delta by the value of θ arrived by the interior-point algorithm
for each aggregation function tested. The corresponding contrast
as calculated from Fig 1, the average per-function-call runtime
(AvgFR) of each aggregation function, and total function calls
(TFC) in the optimization routine are shown in Table II. It can be
seen that the proposed aggregation function yields the sharpest
image for the same event subsequence in Fig. 1(d). While
the kernel size is larger at 7x7, the resultant per-function-call
runtime is the fastest due to the omission of the convolution
step.

Fig. 2. Contrast surface map of the 4 aggregation functions at θx ≈ 0.00317.

Fig. 3. Contrast surface map of ∂C(θ)/∂θy of the 4 aggregation functions at
θx ≈ 0.00317.

The contrast surface map is plotted to understand the aggrega-
tion function’s effects on the optimiser. Since R(tk, θ) ∈ SO(3)
the resultant contrast surface plot would be 4-dimensional; there-
fore, a volume slice along the x-axis is taken. The chosen x-axis
location, θx ≈ 0.00317 (the exact value is used in plot gener-
ation), is the x-axis rotation arrived by the algorithm running
the 3x3 Gaussian Kernel function and represents a failure point
for the local optimiser. The entire lower and upper bound range[
−0.05 0.05

]
is generated for θy and θz .

It can be seen from Fig. 2 that all 4 functions generates
a similarly smooth contrast map. However taking the partial
derivative of the contrast map along θy shows that the 3x3
Gaussian Kernel in Fig. 3(c) is irregular compared to the Fully
Connected Gaussian in Fig. 3(a). As the interior point algorithm
is gradient-based, it is understandable why the optimizer ter-
minated at θ ≈ (0.00317, 6.76× 10−5,−0.00267) evident by
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TABLE III
ESTIMATED CONTRAST ACROSS 4 DATASETS. A HIGHER CONTRAST THAN INPUT CONTRAST IS BETTER

the deep valley in Fig. 3(c). Considering the probability of
event influence at μ± 4σ is approximately 3.35× 10−4 %, and
decreases exponentially with higher σ, Fig. 3(d) shows that the
assumption of negligibility is a safe assumption as the partial
derivative contrast map between Fig. 3(d) and Fig. 3(a) are
similar with the Pseudo Fully Connected Gaussian having the
computational advantage of not calculating values near 0%
influence, yielding an almost 1300% faster function runtime.
Since both the 3x3 Gaussian Kernel and Bilinear Interpolation
Kernel do not compute values outside of 1σ, the proposed
method yields a 100% faster function runtime by excluding the
convolution step.

To verify the robustness of the proposed Pseudo Fully Con-
nected Gaussian for application in the CM framework, GD5
is applied to the entire ‘dynamic_rotation’ dataset. The ‘dy-
namic_rotation’ dataset was chosen because it contains a person
moving separately in the scene, such that events describing the
person and the scene would have different velocities. It directly
challenges the primary assumption of CM that all events encode
similar velocities (trajectories and speed). Let θ and θ̄ be the
ground truth and estimated angular velocity of the event camera.
Then ε is the percentage error in estimating angular velocity:

ε =

∣∣∣∣
θy − θ̄y

θ̄y

∣∣∣∣ · 100% (15)

Fig. 4 plots the angular velocity estimated by GD5 on the
entire sequence and a selected zoomed-in section to highlight
the close tracking performance of the function at high angular
velocities of the dataset. The entire sequence is grouped into
10ms event packets. The angular velocity is estimated for each
packet, and its percentage error is calculated using (15). GD5
has an average percentage error of ε = {3.13%, 2.85%, 1.93%}
about the x, y, and z-axis respectively across the entire sequence,
performing well within the error bounds as presented in [10],
[11].

Lastly the optionality of Gaussian filtering in H3(x
′
k) and

H4(x
′
k) is discussed. The CM routine is performed for each ag-

gregation function on the 4 datasets published by [12]. H3(x
′
k)

and H4(x
′
k) have an additional case where the contrast is maxi-

mized without Gaussian filtering. The 10ms event subsequence
is extracted from the 30 - 30.01 s of each dataset. It was chosen
for two reasons: It is assumed that any motion in the scene is
developed (i.e. the camera or the actors have started moving),
and it is the midpoint of all datasets. Table III shows that for
H4(x

′
k) Gaussian smoothing is an essential step in the CM

process. Additionally, as H5(x
′
k) where r = 1 is equivalent to

H3(x
′
k) without the Gaussian filter, the results shows further

Fig. 4. Comparison of estimated angular velocity (dashed line) against the
groundtruth as provided by [12] for the ‘dynamic_rotation’ sequence.

that in some cases, the framework is able to perform better with a
smaller kernel size. Lastly for particularly challenging scenes in
‘dynamic_rotation’,H5(x

′
k) andH2(x

′
k)were the only method

able to exit the initial condition, demonstrating the occasional
insufficiency of r = 1.

B. Discrete Aggregation Functions

The aggregation function chosen is highly dependent on the
type of optimizer used in the CM framework. Consider gradient-
based methods that require a continuous first derivative to drive
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Fig. 5. Contrast surface map of the Kronecker Delta function (3) at θx ≈
0.00317.

Fig. 6. Event image generated using the Kronecker Delta function from the
optimized value of θ arrived by PSO.

the direction and termination point of the optimization. Out
of the 5 functions tested, the Kronecker Delta has the fastest
function runtime at 1.1ms. Practically, however, it is unusable in
gradient-based optimization because its first derivative contrast
map is highly irregular due to the sparsity of events describing
the scene (see Fig. 5(b)). In the case of the tested subsequence
of the ‘dynamic_rotation’ dataset, the optimizer was not able to
exit its initial condition.

First mentioned in [11], discrete event images are gener-
ated using hard assign aggregation functions such as (2). The
method has been shown to yield similar results with clearly
superior performance in the BNB global optimization method
compared to the 3x3 Gaussian Kernel (a soft assign aggregation
function). However, discrete event images limit the scope of
optimizers available to non-gradient-based methods. Consider
PSO, an optimization method that does not require objective
functions to be differentiable. Since the contrast surface map of
the Kronecker Delta function in Fig. 5(a) is similar to the smooth
contrast surface maps in Fig. 2. The intuition would be to apply
PSO to the CM framework since particles of PSO surf on said
contrast map towards the “global” minimum, and any concerns
for the smoothness of the Jacobian of C(θ) can be conveniently
disregarded.

Two aggregation functions, PSO1 and PSO5, are compared.
From Fig. 6 it can be seen that both aggregation function yield
similar results. Plotting the contrast of the overall best estimate
of θ in the swarm (see Fig. 7) shows both methods converging
at similar rates with the Pseudo Fully Connected Gaussian
terminating almost 100 iterations earlier. While not indicating a
superior performance since the termination condition of PSO can
be further tuned by changing the inertia weight or terminating
condition, the optimizer was not specifically tuned to favour

Fig. 7. Plot of the convergence rate for 2 aggregation functions in PSO.

Fig. 8. System setup to capture event data at different rotational speeds.

Fig. 9. Grayscale image taken using DVS240 of a chair and mannequin.

either function. Instead, the similar convergence rate gives con-
fidence that discrete event images do not impede the convergence
rate of non-gradient based optimizer and, in the case of PSO, can
benefit from the faster function runtime of the Kronecker Delta
with proper tuning.

C. Motion Blur in Event Cameras

This subsection explores the impact of motion blur on the
CM framework. The DVS240 event camera is mounted onto a
rotational rig for accurate rotation. The rotational rig comprises
a T-motor U8, US Digital E6 Rotary Encoder, and VESC6 that
provides closed-loop rotational control of the U8 motor. The
DVS240 is interfaced via USB to a LattePanda Alpha. Fig. 8
illustrates the setup.

Motion blur is the apparent streaking of texture of objects
under motion. For a moving camera under high rotation, all
objects within the camera view can exhibit motion blur. This
is illustrated in Fig. 9 where Fig. 9(a) shows the static scene
as taken using a DVS240, and Fig. 9(b) the same scene as the
camera rotates 360 ◦/s. Existing studies on image deblurring in
event cameras focus on deblurring the low frame rate intensity
image of the DAVIS camera using the high temporal resolution
event data [14]–[16].
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Fig. 10. Event Image generated of the same scene using the Kronecker Delta
function for DVS240 rotating at various rotation rates.

TABLE IV
CONTRAST CALCULATED FROM THE ESTIMATED VALUE OF θ

In the CM framework, by nature of definition, motion blur is
the result of poor motion compensation of event data when map-
ping from spatiotemporal events to spatial images usingH(x′

k).
Event cameras are not exempt from motion blur despite their
high temporal resolution. Pixel front-end noise and commonly
adopted timestamping-during-readout scheme result in latency
of actual event detection time among projected pixels describing
the same texture [17]. In the CM framework, which uses the
temporal difference to weight motion compensation, this results
in apparent motion blur. Fig. 10 shows event images generated
using the Kronecker Delta function for events recorded at various
rates. Note the increasingly washed-out profile of the chair and
mannequin, as events are not propagated back to the correct
pixel location in the event image due to different timestamps
describing the same texture.

The impact is quantitatively assessed through two measures.
First, a comparison of contrast as it is the main metric used
to terminate optimization. Secondly, the percentage error in
estimating angular velocity since one of the use cases for the
CM framework is to estimate the event camera’s attitude.

It can be seen from Table IV that all optimizers with the
various aggregation functions perform similarly with an av-
erage contrast standard deviation of 0.0301. This shows that
the optimizers continue to perform well despite losses in event
data describing the same texture due to misstamped time. Mis-
stamped times are described as losses because aggregation

TABLE V
PERCENTAGE ERROR OF θy AS CALCULATED USING (15), WHERE θy IS THE

ESTIMATED ANGULAR VELOCITY ABOUT THE Y-AXIS OF THE EVENT CAMERA

Fig. 11. Instantaneous estimation of angular velocity without a priori for each
10 ms event packet.

functions accumulate event data mapped to the same pixel area.
An inability to map to the same pixel area results in a loss in
accumulated event magnitude. This does not faze the framework
because both aggregation and loss function work in tandem to
disproportionally reward event locations of high magnitude.

By directly estimating using (3), PSO1 has the advantage to
outperform the other optimizers in contrast maximization. This
performance, however, does not equate to the best-estimated
warp as shown in Table V. While all estimates are within 4%
accurate, the results seem to suggest that a combination that
maximizes warp accuracy with implicit event image generation
for tasks like motion segmentation or scene feature tracking
would be ideal since the contrast estimates are so similar. This
observation, interestingly, would run contrary to conventional
wisdom where sharp images are critical to the performance of a
computer vision algorithm.

IV. INSTANTANEOUS ESTIMATION AT HIGH ROTATIONS

Consider high rotational systems such as a damaged quadrotor
[18] and freerotors [19], where rotations about a single axis
dominates motion estimates. It has been shown that for low
rotations rates of 1150 ◦/s it is still possible to perform motion-
compensation using attitude recovered from the onboard IMU
[18]. However, IMUs typically found on off-the-shelf flight
controllers such as the MPU-9250 [20] are shown to have an
insufficient sensing range of±2000 ◦/s compared to the angular
dynamic range of freerotors which exceeds 2160 ◦/s [21] up to
4680 ◦/s [22].

To circumvent the limitations of the IMU and demonstrate
its effectiveness, the CM framework is applied to the entire
2520 ◦/s rotation dataset. The rotation for each 10ms event
packet is estimated without motion priors and plotted in Fig. 11.
The ground truth is the angular speed reported by VESC6. At
2520 ◦/s the framework is shown to be capable of estimating at
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Fig. 12. In-flight estimation of angular velocity without a priori for each 10 ms
event packet.

twice the angular speed found in the literature with a median
percentage error of 0.386%.

This is further corroborated with in-flight state estimation
on a freerotor. The camera was mounted in a similar side-
facing manner. At rotations greater than 2000 ◦/s, features in
the scene do not persist for more than 2 frames and present a
secondary necessity for the use of this framework. Fig. 12 plots
the yaw rate estimated from events captured using a DVS240
and the corresponding imu data from the event camera. Similar
to Fig. 11, the motion prior for each event packet is assumed
unknown. This effectively restarts the algorithm to zero initial
condition, demonstrating estimation reliability across the entire
flight range. It can be seen that the framework continues to
estimate the yaw rate from events above the sensing threshold
of the onboard IMU, which saturates just below 2000 ◦/s.

V. CONCLUSION

This paper analyzed the impact of aggregation functions in the
CM framework, how it affects optimizer choice, and the effect
of latency in time-stamping on event image generation. The pro-
posed convolution-free aggregation function was shown to yield
superior performance over existing aggregation functions with
an average percentage error of less than 3.2% for the entire ‘dy-
namic_rotation’ dataset. The advantages of the proposed aggre-
gation function are summarized in Table I. Motion-blur was also
shown to have a negligible impact on the framework’s accuracy,
in contrast to conventional computer vision algorithms, which
are typically known to degrade estimation accuracy. Lastly, the
CM framework was applied to high rotation static and flight
datasets demonstrating its ideal application as a simultaneous
image and state estimator for high rotation problems.
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