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AirPose: Multi-View Fusion Network for Aerial 3D
Human Pose and Shape Estimation
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Abstract—In this letter, we present a novel markerless 3D human
motion capture (MoCap) system for unstructured, outdoor envi-
ronments that uses a team of autonomous unmanned aerial vehicles
(UAVs) with on-board RGB cameras and computation. Existing
methods are limited by calibrated cameras and off-line processing.
Thus, we present the first method (AirPose) to estimate human
pose and shape using images captured by multiple extrinsically
uncalibrated flying cameras. AirPose itself calibrates the cameras
relative to the person instead of relying on any pre-calibration.
It uses distributed neural networks running on each UAV that
communicate viewpoint-independent information with each other
about the person (i.e., their 3D shape and articulated pose). The
person’s shape and pose are parameterized using the SMPL-X body
model, resulting in a compact representation, that minimizes com-
munication between the UAVs. The network is trained using syn-
thetic images of realistic virtual environments, and fine-tuned on a
small set of real images. We also introduce an optimization-based
post-processing method (AirPose+) for offline applications that
require higher MoCap quality. We make our method’s code and
data available for research at https://github.com/robot-perception-
group/AirPose. A video describing the approach and results is
available at https://youtu.be/xLYe1TNHsfs.

Index Terms—Aerial systems, deep learning for visual
perception, datasets for human motion, human detection and
tracking, perception and autonomy, sensor fusion.

I. INTRODUCTION

THREE-DIMENSIONAL human shape, pose and motion
are extensively used in medical research, sports analytics,

animation, gaming, etc. To acquire such data, several types of
sensor and marker-based motion capture (MoCap) systems exist,
e.g., using pressure sensors [1], reflective markers [2] or iner-
tial measurement units (IMUs) [3]. Markerless systems using
only RGB cameras are suitable for subjects that are difficult
to instrument with active/passive markers or sensors (e.g., ani-
mals). Commercial markerless systems work well in controlled
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Fig. 1. AirPose: A novel, distributed, multiview fusion network for 3D pose
and shape estimation of humans using uncalibrated moving cameras. Real image
sequence (left). AirPose+ Estimates of the person (right). UAV poses are also
estimated but here we manually place them for clearer illustration. ArUco
markers were in the scene but never used for any of our methods.

laboratory environments, but not outdoors in unconstrained
scenarios [4]. For outdoor settings, unmanned aerial vehicles
(UAVs) with on-board cameras provide an attractive solution.
However, using classical MoCap techniques with UAVs present
strong challenges like a markerless setting, uncontrolled light-
ing, complex backgrounds, and most importantly, uncalibrated,
dynamic cameras.

Recent works like AirCap [5] use multiple UAVs to track and
follow a person, record RGB images, and then post-processes
them to obtain human 3D pose and shape. Thus, the UAVs
cannot use human poses in realtime for their own trajectory
planning. Furthermore, the self-localization estimates of the
UAVs is often not accurate enough to be used for onboard camera
calibration [5]. To address these challenges, in this letter we
present a new method, AirPose, for on-board estimation of 3D
body pose and shape of a single person from multiple, mov-
ing, and extrinsically-uncalibrated cameras. A novel input
representation for cropped camera images allows our method
to leverage monocular methods like HMR [6] for the multi-
camera scenario. The network architecture of AirPose enables
distributed processing of different camera views on each UAV,
and efficient sharing and fusion of relevant information between
the UAVs. We develop a synthetic data generation pipeline to
solve the problem of training such a network.

Finally, we demonstrate and evaluate our approach through
hardware-in-the-loop experiments using a real world-dataset
collected from 2 commercial UAVs. Comparison with existing
multi-view methods (incl. AirCap [5]) is difficult because they
need calibrated cameras (see Section II). A better baseline is
a state-of-the-art monocular human pose estimation method,
like SPIN [7]. Since SPIN (and others like it) is not trained
on aerial images, we train it from scratch using our synthetic
data, fine-tune it on our real datasets and use it as a baseline to
compare with our method. In summary, our novel contributions
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are: (1) A distributed and decentralized system of neural net-
works (AirPose) for uncalibrated moving cameras that estimates
human 3D pose and shape, while simultaneously calibrating the
cameras with respect to the human. (2) A compact input image
representation that significantly improves the human position
estimate, even for the monocular case. (3) A realistic-looking
synthetic training data generation pipeline for overhead, multi-
view images of humans with ground-truth pose and shape. (4) An
off-board optimization-based method, AirPose+, which further
refines the MoCap quality and the camera calibration. (5) Code
and data of our method for research purposes.

II. RELATED WORK

1) Optimization Based Methods: State-of-the-art approach to
estimate 3D human pose from multi-view images involves first
extracting 2D features and then fusing them from multiple views.
For example, Huang et al. [8] use 2D joints and silhouettes to fit
the SMPL model to these features. Li et al.’s method [9] is de-
signed for multiple people. They detect 2D joints; use semantic
segmentation to assign them to each person, and then fit SMPL
to the 3D joints. Saini et al. [5] propose an optimization-based
method for moving cameras, where they fit SMPL to 2D joints
and refine the camera parameters simultaneously. These are
computationally expensive methods, unsuitable to run online
on a small UAV. Schwarcz et al.’s method [10] combines 2D
heatmaps in each view using a conditional random field, putting
constraints on temporal consistency and bone length. Amin
et al. [11] use 2D pictorial structures to compute 2D human pose
and simple triangulation for 3D pose. Pavlakos et al. [12] use the
3D pictorial structure model (PSM) and maximize the posterior
probability of the articulated 3D pose, given the images. Qiu
et al. [13] use a recursive PSM that recursively reduces dis-
cretized space bins to obtain refined 3D joints. These approaches
have a speed vs performance trade-off. Finer bins give more ac-
curate joint locations but are computationally expensive. Due to
high latency and compute requirements, these are also unsuitable
for deployment on UAVs.

2) Deep Neural Network Based Methods: Such methods em-
ploy deep neural networks to estimate 3D pose by regressing
directly from the images or by combining image features given
by a neural network. Huang et al. [14] train a feature extraction
network that encodes the image, camera parameters, and a
3D query point together. It is slow at test time due to being
query-based and does not generalize to complex backgrounds
because of the prominent green background during training.
Kadkhodamohammadi et al. [15] train a centralized regressor
for returning 3D joints using 2D joints from all views. Iskakov
et al. [16] perform a fusion of multiview 2D heatmaps and train
a network to refine the fused volume. Remelli et al. [17] and Xie
et al. [18] propose networks that use camera parameters to fuse
information from a pair of views to give 3D joints or improve 2D
joints in each view. All these methods use static and calibrated
cameras, estimate only the pose (not shape) and the communi-
cation overhead is high due to extensive feature sharing. Liang
et al. address the multi-view case in [19], but their drawback is
that the wrong information from the second view can adversely
affect the output of the first even when its own input is correct.

3) Flying Motion Capture Systems: Flycon [20] and Dro-
cap [21] use a single UAV with a camera. Flycon needs the

subject to wear LED markers leveraging mature IR based
MoCap algorithms. Drocap is a markerless system, however,
it uses a high-latency fitting-based method to compute the sub-
ject’s 3D skeleton and the UAV poses for the complete sequence.
Flycap [22] uses RGB-D cameras on multiple UAVs in indoor
environments to reconstruct a 3D point cloud over time. It
requires a template scanning step in which the subject must be
static while a UAV scans them. In our previous work, AirCap,
we introduced autonomous formations of UAVs [23] to collect
multiview images and optimize for 3D pose and shape offline [5]
using onboard GPS-based self-localization. In the current letter,
we present the first system that uses distributed neural networks
for aerial MoCap, making on-board 3D body pose and shape
estimation feasible, without extrinsic camera calibration.

III. APPROACH

A. Problem Statement

Our goal is to develop a method that accurately estimates
the 3D pose and shape of a person from multiple uncalibrated
cameras with the following constraints. It should be able to run
onboard UAVs with small computation capabilities and limited
wireless communication. A naive approach to this problem is to
use a state-of-the-art monocular human pose estimator on each
UAV. This facilitates distributed and decentralized computation.
However, the estimate from one UAV would not benefit from the
other UAV’s viewpoint. We call this the baseline method. We
introduce AirPose, where information from other viewpoints is
incorporated in a UAV’s estimate and the computation remains
distributed and decentralized.

B. Baseline Method

We adapt HMR [6] to develop a baseline method for our prob-
lem. One network instance on each UAV outputs SMPL-X [24]
pose and shape estimates of the person in the UAV camera’s
reference frame. The setup is shown in Fig. 3 (left). The input
consists of only a cropped and scaled region (where the person
is present) of the full-size image. Thus, the output needs to be
transformed to the original camera reference frame. The root
translation (root refers to the root joint in the person’s pose) in
the original image frame is given as τ̃ = [x̃, ỹ, z̃], and in the
cropped and scaled camera frame is given as τ̃ c = [x̃c, ỹc, z̃c],
where the vector components correspond to the 3D Euclidean
coordinates. The output of the neural network is divided into
four components: i) τ̃ c ∈ R3, ii) φ̃ ∈ R6, the root rotation, iii)
θ̃ ∈ R126, the articulated pose, and iv) β̃ ∈ R10, the body shape
parameters. The dimensions of these parameters are slightly
different than the original SMPL-X [24] model because we use
the 6D representation for rotations instead of the axis angle
representation. The relationship between τ̃ and τ̃ c is given as

z̃ = z̃cs, (1)
⎡
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fx 0 0

0 fy 0

0 0 1

⎤
⎥⎦

⎡
⎢⎣
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1

⎤
⎥⎦ =

⎡
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0 fy/s by cy
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⎤
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⎡
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1

⎤
⎥⎦ ,

(2)

where fx and fy are focal length parameters of the camera
and (cx, cy) its principal point. bx and by are the normalized
coordinates of the cropped region in the original image (see
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Fig. 2. The bounding-box region is cropped & scaled to the fixed size image
for ResNet50 input. The full-size image is represented by concatenating the
ResNet50 features and the cropping & scaling parameter P.

Fig. 2). s is the scale applied to resize the cropped region to the
size 224 by 224, the input size of the feature extractor. As the
baseline is a monocular method, we train it for one camera and
run its instance independently for each UAV. The loss for our
baseline method is

Lbaseline = wj2dLj2d + wj3dLj3d + wφLφ

+ wθLθ + wβLβ + wV LV ,

where Lj2d = ||P(J (τ̃ , φ̃, θ̃, β̃))

− P(J (τgt, φgt, θgt, βgt))||2,
Lj3d = ||J (θ̃, β̃)− J (θgt, βgt)||2, Lφ = ||φ̃− φgt||2,
LV = ||V(θ̃, β̃)− V(θgt, βgt)||2,
Lθ = ||θ̃ − θgt||2, Lβ = ||β||2,

wj2d = 0.01, wj3d = 1, wφ = 1, wθ = 100,

wβ = 1 and wV = 100. (3)

J and V are the SMPL-X 3d joints and mesh vertices regression
functions. For Lj3d and LV , the default values (zero-filled vec-
tor) are provided for τ̃ and φ̃.P is the camera projection function.
τgt, φgt, θgt, βgt are ground truth values of the corresponding
SMPL-X parameters w.r.t. the camera. We use L2 loss function
because it is shown to be efficient for these parameters in [5],
[24]. The loss weights in this letter are chosen as follows. Since
there are many loss components, the network training is highly
unstable. We first stabilize the training by selecting hyperpa-
rameters from a sparse hyperparameter space. Thereafter, we
narrow down the search space. We observe that even though the
overall training and validation loss keep going down, the model
can overfit to some loss components. In such cases, we stop the
training once the model starts overfitting on any loss component.

C. Proposed Method – AirPose

We first highlight the shortcomings of the baseline method
and then present our insights to solve them.

1) Insight 1: Some parts of the person’s body could be
occluded in one camera view, but available in other cameras.
Thus, using the output of each individual network, or even
simply averaging the outputs from multiple networks would not
result in an accurate estimate. A systematic approach to infor-
mation fusion is required to improve the estimate of the person’s
pose by leveraging complementary information from different
views. The fusion problem is exacerbated by limited wireless
communication bandwidth between the UAVs, prohibiting the
realtime exchange of images among them. To perform fusion of

Fig. 3. The network architecture of the baseline and proposed approach
(AirPose). The neural network on each UAV takes in cropped and scaled image
I to give the body parameters relative to itself. Please refer Section III for more
information about the symbols.

information, while remaining within the communication con-
straints, we propose a novel decentralized and distributed neural
network. In our proposed network, the estimated articulated pose
(θ) and body shape (β) from any autoregression stage of one
network, running on one UAV, is fed to the next autoregression
stage of another network, running on another UAV. These body
parameters are independent of the viewpoints from which the
person is being seen. If any body part is occluded in one view,
its estimate is improved by using the information shared by the
other view. There are three autoregression stages in each instance
of the network, hence the total information shared per UAV per
image frame is only 2 · (126 + 10) = 272 float32.

2) Insight 2: In the baseline method, cropping and scaling of
the image result in loss of information, which is crucial for the
correct estimation of the root translation. Passing the full image
will result in a significant computation overhead and thus a high
execution time. Our solution is to provide the network with a
compact representation of the full image. This representation is
the concatenation of P with the extracted feature vector of the
cropped and scaled image, where P = [bx, by, s].

Based on the above two insights, our new network architecture
is conceived as follows. It has a ResNet50 feature extractor
followed by an autoregressor stage. The feature extractor ex-
tracts latent features from the cropped and scaled image similar
to the baseline. These features concatenated with P , contain
the articulated and global pose information of the person. This
compact input is used by the autoregressor, along with the
SMPL-X parameters, initialized as φ̂, θ̂, β̂, τ̂ (fixed values). β̂
is a vector of zeros and φ̂, θ̂ are initialized from the same values
as in [6]. We chose the mean position of the person to be at
[0, 0, 10], normalize it by dividing with value 20 and initialize
τ̂ = [0, 0, 0.5]. The normalizing factor 20 is chosen assuming
a maximum depth of 20 meters. The estimated person position
parameter τ̃ is multiplied by this normalizing factor to get the
actual position. The autoregressor architecture is the same as
in [6]. It consists of three fully connected (FC) layers, with a
dropout layer after the first and the second FC layer. The au-
toregressor eventually outputs the refined SMPL-X parameters
w.r.t. the camera. The training loss function of AirPose is

LAirPose = wj2dLj2d + wj3dLj3d + wφLφ + wτLτ

+ wθLθ + wβLβ + wV LV ,
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where Lj2d =
∑
c

||P(J (cτ̃ , cφ̃, cθ̃, cβ̃)) (4)

− P(J (cτgt,
cφgt, θgt, βgt))||2

Lj3d =
∑
c

||J (cθ̃, cβ̃)− J (θgt, βgt)||2,

Lτ =
∑
c

||cτ̃ − cτgt||2,

Lφ =
∑
c

||cφ̃− cφgt||2, Lθ =
∑
c

||cθ̃

− θgt||2 + ||1θ̃ − 2θ||2,
LV =

∑
c

||V(cφ̃, cθ̃, cβ̃)− V(cφgt, θgt, βgt)||2

+ ||V(1φ̃, 1θ̃, 1β̃)− V(2φ, 2θ, 2β)||2,
Lβ =

∑
c

||cβ||2 + ||1β − 2β||2,

wj2d = 0.002, wj3d = 1, wφ = 1, wτ = 10,

wθ = 50, wβ = 1 and wV = 50.

Each camera has its own SMPL-X parameter estimates, e.g., cθ
is the articulated pose parameter for camera c, c ∈ {1, 2}.

3) Insight 3: Most monocular methods are trained on data
that does not contain overhead and oblique views of persons. In
aerial MoCap, such viewpoints are predominant. On the other
hand, there also exist few multiview image dataset on which our
baseline method could be trained, let alone those with overhead
viewpoints. To address both these dataset related challenges,
we train our networks (both baseline and AirPose) using large
sets of synthetic images in realistic virtual environments and
fine-tune using a small set of real images from UAVs. During the
finetuning, the weights of ResNet50 feature extractors are frozen
and only the regressor is trained. We use OpenPose [25] to get
the 2D keypoints on the images and use them for the supervision
during the fine-tuning. To make the 2D keypoints more reliable,
we also get them from another detector, AlphaPose [26]. If the
OpenPose estimate deviates from the AlphaPose estimates by
more than a threshold value (of 100 pixels), it is discarded. Using
only the 2D keypoints for supervision might result in unnatural
body poses. Thus, we use a variational autoencoder network
VPoser [24], a learned prior distribution of human body poses
using a large dataset of human poses. We use its encoder network
(E) to project the estimated poses from our network into the latent
space and restrict it to be close to the mean of the VPoser’s
distribution. The fine-tuning loss for the baseline approach is
given as

LfBaseline = wj2dLj2d + wβLβ + wvposerLvposer,

where Lj2d =
∑
j

wj((P(J (τ̃ , φ̃, θ̃, β̃))− Jj)
2), (5)

Lβ = ||β||2,
Lvposer = ||E(θ)||2, wj2d = 0.01, wβ = 5

and wvposer = 1.

Jjs are the 2D coordinates estimated by OpenPose for keypoint
j. wjs are the confidence scores of the corresponding keypoint
estimates from OpenPose. E(θ) is the sample from the latent

space distribution obtained after passing θ to the VPoser encoder.
The fine tuning loss for AirPose is

L = wj2dLj2d + wβLβ + wvposerLvposer

+ wθLθ, (6)

where Lj2d =
∑
j,c

cwj((P(J (cτ̃ , cφ̃, cθ̃, cβ̃))− Jj)
2),

Lθ = ||1θ − 2θ||2

Lβ =
∑
c

(||cβ||2) + ||1β − 2β||2, Lvposer = ||E(θ)||2

wj2d = 0.01, wβ = 5, wvposer = 0.1

and wθ = 100. (7)

D. Proposed Approach – AirPose+

Finally, we propose a post-processing optimization method,
AirPose+, where we utilize the temporal information to further
refine the human pose and shape and camera pose estimates
given by AirPose. This is done by minimizing the loss function
given in (8). We optimize the parameters θ, β, cφ, cτ for the
whole capture sequence. We also put a constraint over these
parameters to be close in adjacent frames. We use the latent
representation of VPoser v to represent articulated pose. The
SMPL-X pose parameter θ can be obtained by passing v through
the VPoser decoder D i.e. θ = D(v).

L =
∑
t

(wj2dLj2d+wvposerLvposer+wtempLtemp)

+ wβLβ , (8)

where Lj2d =
∑
j,c

cwj(ρ(P(J (cτ̃ , cφ̃,D(v), β̃))− Jj)),

Lvposer = ||v||2,
Ltemp = ||tθ̃ − t−1θ̃||2 +

∑
c

||tφ̃− t−1φ̃||2

+ ||tτ̃ − t−1τ̃ ||2,
Lβ = ||β̃||2, wj2d=1, wvposer=0.05, wtemp = 1

and wβ = 2000.

ρ is the Geman-Mcclure robust penalty function. All the indi-
vidual loss terms (except Lβ) in (8) are function of t. However,
t is not used in their notation to improve the readability. Unlike
AirPose, in AirPose+, articulated pose v is not different for
each camera and β is constant for each camera throughout the
sequence. We calculate

∑
j,c

cwj for each frame t and ignore it
if its value is below a threshold.

IV. TRAINING AND EVALUATION

An ideal dataset for training our network requires synchro-
nized video sequences of many persons with a variety of poses
and with ground truth SMPL-X parameters. It is difficult to
collect such data because of reasons like limited battery life
of UAVs, weather-related uncertainties, flying permission from
authorities, availability of licensed pilots etc. Thus, we generate
realistic-looking synthetic image data in realistic virtual envi-
ronments. We also collect a smaller amount of real data with
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Fig. 4. Ablation Study (Section V-A) qualitative results. First row: ‘Baseline’. Row 2: ‘Baseline+Multi-view’. Row 3: ‘Baseline+Fullcam’. Row 4: ‘AirPose’.
1st and 4th columns are cropped images showing the overlaid estimated mesh w.r.t. the camera. The 2nd and 3rd columns show the front and the top views of
the 3D scene, where the two estimates (one from each view) are transformed to the global coordinate frame. Red mesh: estimate from the first camera. Blue mesh:
estimate from the second camera. Green mesh: ground truth SMPL-X mesh.

Fig. 5. Comparison of the person 2 3D position trajectory, estimated by baseline and AirPose methods on UAV 1 (hovering, left) and 2 (circling, right).

two persons and two DJI UAVs (7000 frames per person per
UAV). We fine-tune our network using the real data with one
person and evaluate it on the other person.

1) Synthetic Data for Training: We generated the synthetic
data (∼ 30000 frames per UAV) by putting realistic human
scans [27] in Unreal Engine (UE) and render them from multiple
viewpoints of 2 UAVs. We use AirSim plugin [28] for UE
to move the scans and the cameras around such that the data
generation process is automated. The scans are put in an outdoor
UE environment (purchased from UE Marketplace) and moved
between -2.75 m to 2.75 m along the X and the Z-axis (the Y-axis
points outward from the ground plane in UE). The cameras are
moved independently and randomly around the origin such that
they are facing the origin and the distance from the origin is
∼10 m. The pitch of the cameras varies from 0◦ to 45◦. The
SMPL-X fittings to scans are provided by [27]. The fittings are
done using the gender-specific SMPL-X model.

2) Real Data for Fine-tuning: We collected 2 real data se-
quences. Each sequence uses two DJI Mavic UAVs, flying
manually around a different person. The raw data are sets of
video sequences from the UAVs. During the acquisition, we
keep one of the UAVs hovering in place and the other one
is manually flown around the person, who performs various
motions, covering a wide range of poses at a safe distance
from the UAVs. The intrinsic calibration of the UAV cameras
was done immediately before the take-off, using the chessboard
calibration method. The frames were extracted and manually
time-synchronized. We sampled the corresponding frames from
the two UAVs and found that they had a constant time difference,
which implies that the two devices had the same frame rate and
it remained constant throughout the acquisition time. ArUco
markers were in the scene but never used for any of our methods.

3) Hardware-in-the-Loop Evaluation and Synchronization
Strategy for Online Execution: In order to run our approach
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on-line we took a hardware-in-the-loop approach, where com-
munication and synchronisation were performed in real-time on
our actual UAV hardware (which has intel I7 CPU and Nvidia
Jetson TX2 on-board) [23]. We implemented a ROS [29] based
synchronization framework that selects matching camera frames
based on their shutter timestamp. Clocks were synchronized
using NTP [30]. Communication via 5 GHz WiFi with 50 Mbps
was handled by ROS. On the Jetson TX2 modules, AirPose
neural network achieved inference speeds of 50 ms per frame
(224x224x3 bytes 20 fps). This was dominated by the first step
of the network (i.e. ResNet50 and the first regressor stage, ∼43
ms) while the other two steps are almost immediate (∼2.5 ms).
However, in a real world setting high-resolution images and
communication must be accounted for. We allocated 2 ∗ 25 ms
for the communication of the 544 B large encoding, as well as
140 ms for acquisition and downsampling of the 4K camera
images after benchmarking these operations individually on our
UAVs. To accommodate sufficient time for image acquisition,
inference, and multiple iterations of data communication, we
allocated a fixed length time window of 240 ms to process one
frame, which results in a fixed overall framerate of 4.17 fps.
If processing could not complete by the end of the window,
the frame was discarded. Taking dropped frames into account
AirPose achieved an average framerate of around 3 fps. The
camera itself was capturing 4 K frames at 40 fps. It must be
noted that the bottleneck in this ad-hoc approach is not the
AirPose neural network, but acquisition and preprocessing as
well as communication overhead. If lower resolution camera
images were to be used in conjunction with optimized buffers
to acquire, process and communicate data in parallel, it is easily
conceivable that AirPose could reach 20fps realtime-throughput
at a latency of less than 150 ms. Real image datasets from [23],
[31] are not directly usable in our approach due to significant
differences with respect to the appearance of the images on
which the network is originally trained (i.e. synthetic data). To
overcome this problem, we collected a custom video dataset
with two DJI drones for evaluation (similar to the data for
fine tuning) and converted them into rosbags. We manually
synchronized the first common frame between the two video
sequences. Subsequently, we replayed the rosbags as if they were
taken by the UAV cameras and used the hardware-in-the-loop
setting and synchronization architecture as explained above.

V. EXPERIMENTS AND RESULTS

A. Results on the Synthetic Data

We perform an ablation study and compare the following 4
methods using the synthetic data.

1) Baseline: The baseline method as described in Section
III-A.

2) Baseline + Multi-view: Here we expand the input size of
the baseline regressor to take the θ and β values from another
view. However, here the regressor does not take the image
cropping and scaling information P and estimates the SMPL-X
parameters w.r.t. the cropped image.

3) Baseline + Fullcam: Here, in addition to the baseline
inputs, we take the cropping and scaling information, P , and
estimate the pose of the person w.r.t. the original camera. It
is equivalent to AirPose without communication between the
two UAVs.

Fig. 6. Comparison of the estimated Z coordinate of the tracked person’s
trajectory by AirPose and the vanilla SPIN.

TABLE I
ABLATION STUDY OF AIRPOSE ON THE SYNTHETIC DATASET

The proposed method as described in Section III-B.
4) Error Comparison Metrics: We compare the global po-

sition and articulated pose estimates of the person from the
four methods. Since, the person pose is estimated by each UAV
relative to itself, for computing error we convert the estimates
in the global frame using the ground truth extrinsics of the
UAVs. We calculate the error of each estimate w.r.t. the person’s
ground truth (GT) in the global frame. To evaluate the global
position estimate, we calculate the mean position error (MPE)
as MPE = 1

2 N

∑N
n=1

∑
c ||cτ̃o − τogt||. It is the mean (over all

the images from both UAVs) of the Euclidean distances between
the GT and the estimated person positions in the global frame
(denoted by the superscript o).

For the evaluation of the articulated pose estimate of the per-
son, we calculate the mean of the joint position errors (MPJPE)
as MPJPE = 1

22(2 N)

∑N
n=1

∑
j

∑
c ||cτ̃o − τogt||, over all the

images from both UAV cameras. τ is a function of j but it is not
denoted here to improve the readability. The joint error is the
Euclidean distance between the estimated joint position and its
corresponding GT when the root translation for both the estimate
and GT are aligned. The number of joints in our case is 22.

2) Results and Discussion: Table 1 shows the MPE and
MPJPE values for the four different methods. AirPose, out-
performs all ablated methods on both the metrics. The MPE
of ‘Baseline’ and ‘Baseline + Multi-view’ is similar and much
higher than the other two methods. This highlights the problem
of using cropped images without the full image information. The
input image does not contain information about the position of
the person in the full image, and the camera center is incorrectly
assumed to be the center of the bounding box. Since the person
is viewed from above, there are less self-occlusions present in
the dataset. Due to this, all the methods have similar MPJPE.
Nevertheless, AirPose, combining information from both the
views, has the least MPJPE. In summary, the ablation shows
that our insights and the proposed solutions (in Section III)
are critical: information about the position of the person in the
2D image improves position estimates in 3D, and exploiting
information from the other view substantially improves articu-
lated pose estimates. Our proposed method utilizes both of these
factors and thus results in a significant improvement of both the
MPE and MPJPE.

Fig. 4 provides a qualitative analysis of the ablation study.
Note that, from the camera view, the results of the different
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Fig. 7. Real data. Baseline, AirPose and AirPose+ results on 4 real data samples. Each sample contains a 2x3 grid of images with the estimated mesh overlaid.
Each row corresponds to one camera view and each column shows projected results from the baseline (blue), AirPose (pink) and AirPose+ (cyan). The first two
samples show person 1 and the remainder show person 2.

Fig. 8. Estimated position of person 1 by the baseline method, AirPose and AirPose+ relative to UAV1 (left) and UAV2 (right).

Fig. 9. Estimated trajectory of UAV 2 w.r.t. UAV1 for the capture sequence with person 1 (left) and 2 (right). AirPose: brown (x), green (y) and blue (z). AirPose+:
light green (x), pink (y) and magenta (z).

methods do not appear to differ significantly; human pose esti-
mates projected into the camera can be misleading. In contrast,
the 3D views clearly illustrate the errors in pose and shape.

B. Results on the Real Data

1) AirPose: After training on the synthetic data, we fine-tune
the ‘Baseline’ and the proposed method, AirPose, on the real
image data sequence of person 1 (and test on person 2) using a
hardware-in-the-loop setup as described in Section IV. Since we
do not have the camera extrinsic parameters (the global position
of the DJI UAV is not accessible), we cannot transform the
estimated SMPL-X parameters into a global reference frame
to calculate any quantitative metric for comparison, as we did in
the synthetic case. However, for both baseline and AirPose, we
show the plots of the X, Y and Z coordinates of the estimated
position w.r.t. the UAV cameras in Fig. 5 of person 2 and

Fig. 8 of person 1. The results in these plots demonstrate that
the position estimate of the ‘Baseline’ method is significantly
noisier than that of AirPose. In particular, the estimate in the
Z direction (i.e. depth estimate from the camera) for UAV 2
has unrealistic variations when using the ‘Baseline’ method. In
contrast, AirPose estimates a much more realistic depth and a
smoother, more realistic trajectory of the person. In Fig. 6, we
compare the depth estimate of our method with vanilla SPIN.
The vanilla SPIN depth estimate is significantly noisier, similar
to the baseline method, because in both cases the estimation is
done on the cropped and scaled image.

2) AirPose+: We further show the results of AirPose and
AirPose+ on the real data (see also the attached video). Fig. 7
shows the estimated mesh overlaid on the images. We can see
AirPose+ improves the AirPose estimation of the articulated
pose. Fig. 9 shows the estimated position of UAV 2 w.r.t. UAV
1, which was kept hovering in place. We use the estimated
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SMPL-X pose in each UAV frame to calculate the position of
UAV 2 w.r.t. UAV 1. This position estimate is extremely sensitive
to even minor estimation errors in any of the two views. A small
error in the SMPL-X rotation estimate leads to a significant
error in UAV 2’s position. For person 1, we can see that the
UAV 2 trajectory estimated by AirPose is a bit noisy. AirPose+,
however, improves this estimate further, as seen in Fig. 9 (left).

The sequence with person 2 contains several complex twisting
poses in which the upper body rotates w.r.t. the lower body. For
such poses, AirPose fails to estimate the correct root rotation
of the person. This results in the estimated UAV 2 position by
AirPose being very noisy, as seen in Fig. 9 (right). However,
the position estimate of UAV 2 is significantly improved in this
case by AirPose+. Nevertheless, it still has a few sudden jumps.
In addition to the twisting poses, errors in keypoint detection
are also responsible for errors in the person 2’s sequence. Such
errors are common with 2D detectors, e.g., left/right swap of 2D
keypoints.

VI. CONCLUSION

We have presented a new approach for human 3D pose
and shape estimation using multiple UAVs. Our novel network
architecture is decentralized, distributed, light-weight and re-
quires little inter-UAV communication, making it suitable for
on-board deployment on UAVs. We demonstrated that our ap-
proach successfully fuses information from multiple viewpoints,
significantly improving pose estimates of both the person and
the UAVs relative to the person, when compared to baseline
methods. We introduced a powerful procedure to train such a
network using large computer-generated datasets of synthetic
images in virtual environments, and to fine-tune on a small set
of real images. Through a systematic evaluation on synthetic
data, we show that AirPose is significantly more accurate than
the state-of-the-art method adapted for this problem. On real
image data, captured by two UAVs, we show substantial qual-
itative improvement over the state-of-the-art method. Thus,
AirPose overcomes significant problems currently limiting the
deployment of aerial MoCap systems in areas such as search and
rescue and aerial cinematography.
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