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Abstract—This work proposes a novel precision motion control
framework of robotized industrial hydraulic excavators via data-
driven model inversion. Rather than employing a single neural
network to approximate the whole excavator dynamics, including
input delays and dead-zones, we construct a physics-inspired data-
driven model with a modular structure. The data-driven model
is then inverted in a modular fashion which benefits the training
speed. The data-driven model and its inversion are trained offline
in a supervised manner using the real operational data since online
learning methods can damage the machine and surroundings. The
entire motion control framework consists of the data-driven model
inversion that compensates for the excavator dynamics and the
proportional control that determines the input of the model inver-
sion to enhance the robustness. The framework is experimentally
validated with a commercial 38-ton class hydraulic excavator for
digging and grading tasks, achieving a precise control performance
(i.e., root-mean-square of the path following error under 2 [cm])
even under severe soil interactions.

Index Terms—Industrial hydraulic excavator, data-driven,
model inversion, input delay, dead-zone, soil interaction.

I. INTRODUCTION

HYDRAULIC actuator systems are widely employed in
various engineering domains due to their high power-to-

weight ratio, reliability, and affordability. In particular, hydraulic
excavators are essential in construction, demolition, mining, and
forestry where large operating forces are required. However,
multiple joints of the excavator must be manipulated simul-
taneously while maximizing the operation efficiency, making
the manipulation a demanding task that must be performed by
skilled operators with many years of experience. In this regard,
the automation of the excavators has drawn a great interest [1]
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to reduce human-associated costs (e.g., fatigue, safety, etc.).
Central to this automation is a precise motion control, but it
still remains a challenging problem in practical settings [2],
particularly with complex soil interactions.

In this paper, we propose a novel precision motion control
framework of robotized industrial hydraulic excavators based on
a data-driven model inversion. The data-driven inversion is chal-
lenging for typical data-driven approaches (e.g., methods using a
recurrent neural network (RNN), a multilayer perceptron (MLP),
etc.), as it is expensive to represent the inverse of time-related
behaviors and to train discontinuous relations. The hydraulic
excavators, however, are under the effect of input delays and
dead-zones, which intensify in the presence of complex hy-
draulic circuits (e.g., a main control valve (MCV) [3]) commonly
found in industrial hydraulic settings. To address these distinct
features, we introduce a physics-inspired data-driven model with
a modular structure composed of the following neural network
modules: 1) an infinite impulse response (IIR) unit, which ac-
commodates the input delays; 2) a piecewise linear (PL) map,
which deals with the state-dependent dead-zones; and 3) MLP
networks, which capture the remaining nonlinear and coupled
dynamics. The environmental impacts (e.g., soil interaction
forces) and the hydraulic states (e.g., hydraulic pressures) are
taken into account by including the measurements in the network
input.

Learning the data-driven model and its inversion online can
endanger the excavator and the environments, thus the learning
is done offline in a supervised manner using the operational
data of the real machine. We then design our control to consist
of the following two layers: 1) the data-driven model inversion
control, constructed as an inversion of the data-driven model
in a modular fashion that significantly enhances the training
speed; and 2) the proportional (P) control, implemented on top
of the data-driven model inversion control to enhance the ro-
bustness. The stability and robustness of the control framework
are theoretically established. Even in the presence of intense
soil interactions, the proposed control framework accomplishes
a remarkable performance (i.e., the path following root-mean-
square error (RMSE) less than 2 [cm]) for digging and grading
operations of a commercial 38-ton class hydraulic excavator
Doosan DX380LC.

Model-based methods have been proposed [3]–[6] for the
control of hydraulic excavators, but they adopted simplifica-
tions in modeling which necessarily compromise the control
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performance. To avoid the difficulties of deriving accurate math-
ematical models, data-driven methods were introduced for the
hydraulic excavator control [7]–[10]. Reinforcement learning
(RL) approaches were presented in [7], [8], where the dynamics
were approximated by a single large MLP. However, the large
number of trainable parameters, which arises from importing
the data history as an input of the MLP to handle the delays,
substantially slows down the learning speed (e.g., 57476 pa-
rameters leading to 10 hours of training with 0.72 million data
for [7] as compared to 9160 parameters and 2 hours with 2.6
million data for our plant model). Further, they were presented
only in slow operation speeds to commercialize (e.g., average
speed of 10 [cm/s] to 20 [cm/s] for a 12-ton class excavator),
limiting the practical usefulness of the control. On the other
hand, an RNN was employed to learn the controller of hydraulic
excavators online in [9], [10]. Their performances, however,
exhibited rather large tracking errors (e.g., RMSE greater than
1 [m]) in digging operations. The works on data-driven methods
did not consider soil interactions [7], [8], [10], and the dead-zone
compensation was simply defined by constant control input
offsets [8], [10], further limiting them from precision motion
control.

For a single hydraulic actuator, a data-driven force control was
proposed in [11], where the controller was configured as an MLP.
The force controller network was fed with a large dimensional
history of the actuator position and force, which again put a
strain on the training, and the dead-zone compensation was not
considered in the control learning. The dead-zone compensa-
tion was studied in [12], [13] with a trainable tailored map,
but they could not represent the state-dependent nature of the
dead-zones. In [14], a soil interaction model of the excavator
was suggested without an examination of the hydraulics and
various soil properties for the industrial applications. In contrast
to these previous results, our proposed framework can address
the complex hydraulic excavator dynamics including the input
delays and the state-dependent dead-zones without especially
increasing the network size due to the modular structure, while
fully considering the interaction with the soil. We also believe
that our proposed framework would be advantageous for other
hydraulically-actuated robotic systems with multiple actuators
and complex environmental interactions.

The rest of the paper is organized as follows. Section II de-
scribes the autonomous hydraulic excavator adopted for the ex-
perimental validation. Section III introduces the modular design
for the proposed data-driven model inversion. The entire offline
process that derives data-driven model inversion is depicted in
Section IV. Experimental results are presented in Section V, and
then Section VI concludes the paper.

II. SYSTEM DESCRIPTION

This work employs Doosan DX380LC, an industrial hy-
draulic excavator, to validate our data-driven control strategy.
The excavator is customized using sensors to measure states and
environmental impacts, as shown in Fig. 1. Inertial measurement
unit (IMU) sensors are attached to the boom, arm, and bucket
links to estimate the joint configuration. Swing angle is also
measurable, but we only consider the motion within the sagittal
plane as visualized in Fig. 2 because the swing action is not
involved in the excavation. Apart from the joint configuration,
hydraulic pressure sensors are located in pumps and cylinders to

Fig. 1. Doosan DX380LC, a commercial 38-ton class industrial hydraulic
excavator. The excavator is customized with IMUs, pressure sensors, and a
Velodyne Puck VLP-16 LiDAR. The IMUs are attached to each link, and the
pressure sensors are located in all pumps and cylinders.

Fig. 2. Joint configuration of the excavator. The bucket tip position is observed
in the frame {B} attached to the base of the excavator.

consider the hydraulic behavior. The pumps and the cylinders are
connected through the MCV as detailed in [3], which consists
of spool valves that distribute the pump flow rate to generate the
cylinder velocity (i.e., the joint angular rate). The spool posi-
tions are controlled by electronic proportional pressure reducing
(EPPR) valves commanded by the joystick signal. The joystick
signal also affects the pump control provided by the manufac-
turer, which implies that the joystick signal must be regarded as
the control input of our industrial excavator. Meanwhile, the soil
interactions are evaluated using the momentum-based wrench
estimator [15] since we cannot attach a force/torque sensor to the
bucket joint due to reliability and cost concerns. A LiDAR sensor
scans the point cloud data (PCD) of the terrain for the reference
trajectory planning. The communication is via controller area
network (CAN), where the sensing and control frequency is set
to 100 [Hz].

III. DESIGNING DATA-DRIVEN MODEL INVERSION

This section introduces the concept of the data-driven model
inversion illustrated in Fig. 3. First, we propose a data-driven,
physics-inspired, and easy-to-control model with a modular
structure that provides an approximate of the excavator dy-
namics. The data-driven model can cope with the distinct fea-
tures of the excavator dynamics, including the input delays,
the state-dependent dead-zones, and the soil interactions. Then,
the inversion control of the data-driven model is configured to
compensate for the excavator dynamics.
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Fig. 3. Framework of the data-driven model inversion and its offline learning schema. First, the excavator plant model (right) is proposed to approximate the
excavator dynamics. Then, the inversion control (left) of the excavator plant model, constructed in a modular manner, compensates for the excavator dynamics
including the input delays, the state-dependent dead-zones, and the soil interactions.

A. Excavator Plant Model

Assuming that the time-related behavior (i.e., the spool dy-
namics and the hydraulic delays) can be approximated by a linear
time-invariant (LTI) system, the resulting network, namely the
excavator plant model shown in the right-hand side of Fig. 3,
predicts the joint angular rate by

ηf,t = fΓt
(ut) (1)

Z{ηh,t} = P (z)Z{ηf,t} (2)

ω̂t = hΓt
(ηh,t) (3)

where t ∈ Z is the time step identified by the subscript of a time
signal �t := �(t),Z{�t} :=

∑∞
t=0 �t/z

t is the z-transform, and
P (z) is the delaying system, a stable z-domain nh × nf LTI
transfer function matrix which captures the multiple and differ-
ent delays of the hydraulic excavator. The nonlinear nature of
the hydraulic circuit is accommodated in pre-delay map fΓt

:
[−1, 1]3 → Rnf and post-delay map hΓt

: Rnh → R3 with a
simplified expression of a Γt-dependent map �Γt

(·) := �(Γt, ·).
There are two intermediate variables, the pre-delay state ηf,t ∈
Rnf and the post-delay state ηh,t ∈ Rnh , to integrate the LTI
system and the nonlinear maps. The control input (i.e., joystick
signal) is denoted by ut ∈ [−1, 1]3, the joint angular rate and its
prediction are denoted by ωt, ω̂t ∈ R3, and the excavator state
is denoted by

Γt := (θt, P
cyl
t , P pump

t , F ext
t ) ∈ R13

where θt := (θboomt , θarmt , θbuckett ) ∈ R3 is the joint angle,
P cyl
t ∈ R6 is the pressure of head- and rod-side chambers of

the cylinders, P pump
t ∈ R2 is the pressure of two pumps that

supply the hydraulic fluid, and F ext
t ∈ R2 is the horizontal and

vertical external force acting on the bucket tip which captures

the soil interactions. Refer to Section IV-A for neural network
module architectures and offline learning methods for the pro-
posed excavator plant model. We would like to comment that
a state-dependent delaying system is available for (2), but the
LTI transfer function matrix P (z) works satisfactorily in our
application with and without large soil interactions.

B. Excavator Plant Model Inversion Control

From the command joint angular rate ωcmd
t ∈ R3, the exca-

vator plant model inversion control shown in the left-hand side
of Fig. 3 computes the joystick signal as

ζh,t = gh,Γt
(ωcmd

t ) (4)

Z{ζf,t} = CP (z)Z{ζh,t} (5)

ut = gf,Γt
(ζf,t) (6)

where CP (z) is the delay-tracking system, a stable z-domain
nf × nh LTI transfer function, gh,Γt

: R3 → Rnh is the pre-
control map, and gf,Γt

: Rnf → [−1, 1]3 is the post-control
map. The pre-control state ζh,t ∈ Rnh and the post-control
state ζf,t ∈ Rnf are intermediate variables. The reference (e.g.,
nr = 0 for the step-reference andnr = 1 for the ramp-reference)
tracking condition of the delay-tracking systemCP (z) is written
as

lim
z→1

(z − 1) (P (z)CP (z)− Inh
)Z{tnr} = 0nh×nh

(7)

from the final value theorem, where Ia ∈ Ra×a is an identity
matrix and 0a×b ∈ Ra×b is a zero matrix. Two nonlinear maps
gh, gf satisfy the pseudo-inverse relation s.t. �Γt

◦ g�,Γt
is an

identity function on the domain of g�,Γt
given Γt. Note that the

exact inverse of the pre- and post-delay maps (i.e., g�,Γt
◦ �Γt

is also an identity function) may be out of existence because



LEE et al.: PRECISION MOTION CONTROL OF ROBOTIZED INDUSTRIAL HYDRAULIC EXCAVATORS VIA DATA-DRIVEN MODEL INVERSION 1915

of many-to-one relations such as the dead-zones. The inversion
method for each module is illustrated in Section IV-B. The fol-
lowing Proposition 1 provides the properties of our data-driven
inversion control (4), (5), and (6).

Proposition 1: Consider the excavator plant model (1), (2),
and (3) under the data-driven inversion control (4), (5), and
(6). Assume that a) errors of the model prediction δω,t :=
ω̂t − ωt ∈ R3 and the errors of the pseudo-inverse rela-
tions δh,t := (hΓt

◦ gh,Γt
)(ωcmd

t )− ωcmd
t ∈ R3, δf,t := (fΓt

◦
gf,Γt

)(ζf,t)− ζf,t ∈ Rnf are bounded; b) the post-delay map
hΓt

is a Lipschitz continuous function; and c) the pre-control
map gh,Γt

is a bounded function. Then if the joint angular rate
ωt0 and its command ωref

t0
at the initial time step t0 ∈ Z are

bounded, the difference between the joint angular rate and its
command νω,t := ωt − ωcmd

t ∈ R3 is bounded ∀t ≥ t0.
Proof: The triangle inequality provides two inequalities s.t.

‖νω,t‖ ≤ ‖δω,t‖+ ‖ω̂t − ωcmd
t ‖

≤ ‖δω,t‖+ ‖δh,t‖+ ‖hΓt
(ηh,t)− hΓt

(ζh,t)‖
where ‖δω,t‖ and ‖δh,t‖ are bounded from the first assumption.
For the second inequality, see the definition of the post-delay
map (3) and the pseudo-inverse error δh,t = hΓt

(ζh,t)− ωcmd
t .

From the Lipschitz continuity of hΓt
, there ∃L ∈ R≥ s.t.

‖hΓt
(ηh,t)− hΓt

(ζh,t)‖ ≤ L‖ηh,t − ζh,t‖
where L is referred to as a Lipschitz constant. The delaying
system P (z) and its tracking control CP (z) is rearranged as

Z{ηh,t − ζh,t}
= (P (z)CP (z)− Inh

)Z{ζh,t}+ P (z)Z{δf,t}
where P (z)CP (z)− Inh

is a stable linear system satisfying
the reference tracking condition (7). From the bounded-input
bounded-output (BIBO) property, the error converges as

‖ηh,t − ζh,t‖ ≤ β (‖ηh,t0 − ζh,t0‖, t− t0)

+ γ1
(
supt0≤τ≤t‖ζh,τ‖

)
+ γ2

(
supt0≤τ≤t‖δf,τ‖

)

where γ� : [0, a) → [0,∞) is a class K function (i.e., γ� is
strictly increasing with γ�(0) = 0), and β : [0, a)× [0,∞) →
[0,∞) is a class KL function (i.e., β(r, s) for each fixed s
belongs to class K and β(r, s) for each fixed r is decreasing
with lims→∞ β(r, s) = 0). The pre-control state ζh,τ and the
pseudo-inverse error δf,τ are bounded due to the last and the
first assumptions, respectively. Bounded properties of the initial
conditions lead ‖ηh,t0 − ζh,t0‖ to be bounded, which implies
that νω,t is also bounded. �

On top of the excavator plant model inversion control, the
joint angle P control added to the feedforward reference angular
rate enhances the robustness of the entire framework with the
command joint angular rate:

ωcmd
t := ωref

t −Keθ,t ∈ R3 (8)

where ωref
t ∈ R3 is the reference joint angular rate, θreft ∈ R

is the reference joint angle, eθ,t := θt − θreft ∈ R3 is the joint
angle error, and K ∈ R3×3 is the P gain which is a positive-
definite matrix. Theorem 1 then concludes the entire control
framework. Note that the command joint angular rate (8) can be
determined independently of the data-driven inversion control.

For instance, a velocity field control or a proportional-integral
(PI) control can replace the P control in (8).

Theorem 1: Consider the excavator plant model (1), (2), and
(3) under the data-driven inversion control (4), (5), and (6) with
the P control (8). Following the assumptions of Proposition 1,
the joint angle error eθ,t is ultimately bounded.

Proof: Let us first consider the following Lyapunov function:

V :=
1

2
eTθ,teθ,t

for the error convergence in continuous-time domain. The time
derivative of the Lyapunov function yields

V̇ = eTθ,tėθ,t = −eTθ,tKeθ,t + eTθ,tνω,t

with ėθ,t +Keθ,t = νω,t where ėθ,t = eω,t := ωt − ωref
t ∈ R3

is the joint angular rate error. From the inequality V̇ ≤
−λmin(K)‖eθ,t‖2 + ‖eθ,t‖‖νω,t‖ with the minimum eigen-
value operator λmin(·), the joint angle error is ultimately
bounded by a closed ball of radius ‖νω,t‖/λmin(K) where
‖νω,t‖ is bounded by Proposition 1. �

In Proposition 1, the first assumption stems from reliable
learning performances, and the second assumption is based on
the continuous and bounded dynamic behavior of the excavator.
The last assumption can be enforced by choosing a bounded
output activation, such as a hyperbolic tangent, an arc-tangent,
or a logistic function, for the pre-control map gh. Theorem 1
theoretically establishes the robustness of the entire control
system, which is not provided in other data-driven controls of
hydraulic excavators (e.g., [7]–[10]).

IV. LEARNING DATA-DRIVEN MODEL INVERSION

As schematized in Fig. 3, constructing the data-driven model
inversion consists of two steps. The first step is to learn the
excavator plant model, made up of the delaying systemP (z) and
the pre- and post-delay maps f, h; and the second step is to obtain
the inversion of each component to constitute the excavator plant
model inversion control. The learning steps are detailed in the
following Section IV-A and IV-B.

For the offline learning process, we assemble the measure-
ments of Doosan DX380LC to capture complex nonlinear dy-
namics and soil interactions. The data is collected from au-
tonomous digging/grading operations (with various depths and
bucket speeds) and sinusoidal joystick signals (at frequencies
0.25 [Hz] to 0.5 [Hz] and amplitudes 0.3 to 0.5) near the initial
and final configurations of the operations. The reference path of
the autonomous operation is obtained by length-scaling the nom-
inal bucket configuration extracted from the pattern of human
experts [15]. The reference joint angle is computed by inverse
kinematics, and the trajectory is time-scaled by the bang-bang
approach on joint angular rate considering the hardware limits
(e.g., the workspace of the excavator, a rough range of the joint
angular rate, and the maximum excavation volume). For the
control during the data collection, we employ the manufacturer-
provided control and the proposed control trained with a small
amount of data. In this work, the main focus is digging/grading
tasks, but we believe that the proposed framework can be easily
extended to the entire workspace by collecting sufficient data.

We use the data of 2.6 million time steps at a frequency of
100 [Hz] (i.e., 7.2 hours of data) to train the controller. The
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data is randomly split into training, validation, and test sets
at a ratio of 80:15:5. Using the data sets, the offline learning
is performed on a computer with an AMD Ryzen 5 3600X
3.8 [GHz] CPU, a 16 [GB] RAM, and an NVIDIA GeForce
GTX 1660 Ti GPU. Note that the proposed controller requires
at least 1.2 million time steps (i.e., 3.3 hours) of data to obtain
good enough performance under the nominal operating condi-
tion. However, we include data as extensively as possible on
various operating conditions (e.g., soil properties and weather
conditions) to address the diverse circumstances of the machines
commercialized by the manufacturer.

A. Learning Excavator Plant Model

The first step, a supervised learning of the excavator plant
model, exploits the following loss function:

Lplant := ‖ω̂t − ωt‖2

where P (z), f , and h are all trainable. The preexisting neural
network architectures, however, cannot effectively address the
unique properties of the excavator dynamics. For this reason,
we propose new neural network modules: an IIR unit for the
delaying system P (z) and a monotonically non-decreasing PL
map for the pre-delay map f .

Infinite Impulse Response Unit: The delaying system P (z) is
a multi-input multi-output (MIMO) transfer function configured
as a matrix of single-input single-output (SISO) transfer func-
tions. To construct a neural network for the transfer function
learning, let us first consider a z-domain SISO LTI transfer
function written as

H(z) :=
b0 + b1z

−1 + · · ·+ bnb
z−nb

a0 + a1z−1 + · · ·+ ana
z−na

where b0, b1, . . . , bnb
∈ R and a0, a1, . . . , ana

∈ R are constant
coefficients with a0 �= 0. The transfer function is equivalent to a
recursive filter in t-domain, described in terms of the difference
equation yt = (

∑nb

i=0 bixt−i −
∑na

i=1 aiyt−i)/a0 where xt ∈ R
is the input signal and yt ∈ R is the output signal. The difference
equation then can be rearranged to

yt =

nb∑
i=1

b̄i(xt−i − xt)−
na∑
i=1

āi(yt−i −DCHxt) +DCHxt

where b̄i := bi/a0 ∈ R ∀i ∈ {1, 2, . . . , nb} and āi := ai/a0 ∈
R ∀i ∈ {1, 2, . . . , na} are normalized coefficients and DCH :=
H(1) ∈ R is the low-frequency (DC) gain. Now the IIR unit can
be written as an nh × nf matrix s.t.

P (z) :=
[
Pjk(z)

]
j∈{1,2,...,nh} and k∈{1,2,...,nf }

where Pjk(z) ∀j, k is a SISO transfer function whose or-
ders of the numerator and the denominator are denoted by
njk
b , njk

a ∈ Z≥ and normalized coefficients are denoted by b̄jki ∈
R ∀i ∈ {1, 2, . . . , njk

b } and ājki ∈ R ∀i ∈ {1, 2, . . . , njk
a }. The

IIR unit belongs to the recurrent neural network family with
the given network size nh, nf , n

jk
b , njk

a and trainable variables
b̄jki , ājki ∀i, j, k. The DC gain can also be trainable, but here,
we choose DCP := P (1) as a nh × nf matrix with ones on the
main diagonal and zeros on the off-diagonal so that rankP (1) =

min(nh, nf ). Any nh × nf transfer function matrix whose DC
gain rank is min(nh, nf ) can be transformed into the IIR unit
with row and column matrix operations.

Piecewise Linear Map: The post-control map gf must deal
with jump discontinuities or large slopes to compensate the dead-
zones. However, the compensation map is not well trainable with
a vanilla MLP because (ωt, ut) pairs have one-to-many relations
in the dead-zone intervals. For this reason, the pre-delay map
f learning is conducted with a monotonically non-decreasing
n-segment PL map PL(X,Y ) : [X0, Xn] → [Y0, Yn] s.t.

PL(X,Y )(x)

:=

⎧⎪⎨
⎪⎩
((Yi − Yi−1)x+XiYi−1 −Xi−1Yi)

/
(Xi −Xi−1)

if x ∈ [Xi−1, Xi) ∀i ∈ {1, 2, . . . , n}
Yn if x = Xn

where Xi, Yi ∈ R ∀i ∈ {0, 1, . . . , n} are breakpoints of the
map and X := {Xi}ni=0, Y := {Yi}ni=0 are the non-decreasing
sequences of the breakpoints. The PL map is continuous
at x = Xi with PL(X,Y )(Xi) = Yi if Xi−1 < Xi, while the
map can represent the jump discontinuity at x = Xi if
Xi−1 = Xi. To apply distinct PL maps to the boom, arm,
and bucket joystick signals, a tuple of multiple PL maps
is expressed as (y1, y2, . . . , ym) := PL(X,Y)(x1, x2, . . . , xm)

where Xk
i , Y

k
i ∈ R ∀i ∈ {0, 1, . . . , nk} are the breakpoints of

the nk-segment k-th PL map ∀k ∈ {1, 2, . . . ,m}. Lists of the
breakpoints are denoted by X := {Xk := {Xk

i }n
k

i=0}mk=1 and
Y := {Y k := {Y k

i }nk

i=0}mk=1. Here, we choose the boundary
breakpoints as Xk

0 = Y k
0 = −1 and Xk

nk = Y k
nk = 1 ∀k, so that

PL(X,Y) : [−1, 1]m → [−1, 1]m. Note that the pseudo-inverse
of the PL map is defined as PL+

(X,Y) = PL(Y,X) owing to its
monotonicity. The non-decreasing sequences of an interval [a, b]
can be trained with the custom activation function σ[a,b] : Rn →
[a, b]n+1 written as σ[a,b](c) = d s.t.

di := a+ (b− a)

∑i
j=1 exp(cj)∑n
j=1 exp(cj)

∀i ∈ {1, 2, . . . , n}

where c := (c1, c2, . . . , cn) ∈ Rn is the activation input and
d := (a, d1, . . . , dn) ∈ [a, b]n+1 is the partition of the inter-
val with a ≤ d1 ≤ d2 ≤ · · · ≤ dn = b. The activation function
can also be extended to a two-dimensional input (e.g., σ[a,b] :

Rn(×2m) → [a, b](n+1)×2m for m distinct n-segment PL maps)
by applying the function to every column of the input.

Employing the proposed neural network modules, the de-
laying system P (z) is configured as a 3× 3 IIR unit whose
order is chosen by njk

b = njk
a = 3 if j = k and njk

b = njk
a = 0

if j �= k ∀j, k (i.e., 3-rd order transfer functions on the diagonal
and zeros on the off-diagonal). This is based on the assumption
that the pre- and post-delay maps f, h can adjust the input
coupling. Fig. 4 shows the characteristics of the delaying system
trained with the pre- and post-delay maps. Here, we would like
to mention that the trained controller without the IIR unit causes
fatal oscillations in the real machine.

The pre-delay map f is replaced with PL maps as fΓt
:=

PLΦf,t
: [−1, 1]3 → [−1, 1]3. Breakpoints of the PL map are

assumed to depend on Γt by an auxiliary network Φf,t :=



LEE et al.: PRECISION MOTION CONTROL OF ROBOTIZED INDUSTRIAL HYDRAULIC EXCAVATORS VIA DATA-DRIVEN MODEL INVERSION 1917

Fig. 4. Visualization of the pre-delay map fΓt (left) and the delaying system
P (z) (right). The PL map landscape visualizes the state-dependent pre-delay
map for the bucket joystick signal during a trial of grading operation. The IIR
step response shows the input delays of the boom, arm, and bucket, with settling
times to within 5% are (0.41, 0.33, 0.26) [s].

φf (Γt) ∈ [−1, 1]9×6 which consists of a hidden layer of 64
ReLU nodes and an output layer of 8× 6 nodes with the custom
output activation function σ[−1,1] : R8×6 → [−1, 1]9×6, for the
three distinct 8-segment PL maps. The trained PL map is visu-
alized in Fig. 4. Notice that the PL map enables the dead-zone
compensation, shown in Fig. 5 as jumps of joystick signals.
The pre-delay map can be further customized with constraints
or other designs (e.g., applying a constraint to pass through the
origin, training boundary breakpoints, or combining the PL map
with an additional MLP), but this is not necessary in our case.

To address the remaining nonlinear properties and couplings,
the post-delay map h is expressed as an MLP, with a single
hidden layer of 256 nodes with a ReLU activation and a linear
output layer. Training the excavator plant model (1), (2), and (3)
takes only around 2 hours to converge using the Adam optimizer.
Fig. 5 visualizes two examples of the prediction, while the
prediction RMSE of the test data set is (0.51, 0.66, 1.16) [deg/s]
for each boom, arm, and bucket joint angular rate, which is small
enough to justify the presented neural network architecture.

B. Learning Excavator Plant Model Inversion Control

The second step configures the modular inversion of the data-
driven excavator plant model. The delay-tracking systemCP (z),
the inversion of the delaying system P (z), is a 3× 3 MIMO LTI
transfer function. Although we can train CP (z) with another
IIR unit, we analytically compose the delay-tracking system
since obtaining the tracking control for the diagonal transfer
function matrix is relatively simple. A stable and exact inverse
of the delaying system (i.e., P−1(z)) does not exist because
the trained delaying system has unstable zeros characterized by
inverse responses as shown in Fig. 4. Thus, the delay-tracking
system is constructed to meet the reference tracking condition
(7) ∀nr ∈ {0, 1} where the poles are empirically optimized to
0.82 with multiplicity 2. We choose the delay-tracking system
with the minimum numerator order, which is a proper transfer
function matrix. The post-control map gf , the pseudo-inverse
of the pre-delay map f , does not require any offline learning
process as the post-control map can be easily computed as
gf,Γt

:= PL+
Φf,t

.
On the other hand, the pre-control map gh (i.e., the pseudo-

inverse of the post-delay map h) cannot be analytically obtained
since the post-delay map is an MLP. For the offline learning of the

pre-control map, a distal learning approach [16] is introduced.
The loss function is defined as

Linv
h := ‖ω̌t − ωt‖2

where ω̌t := (hΓt
◦ gh,Γt

)(ωt) ∈ R3 to realize the pseudo-
inverse relation. The MLP network of the pre-control map gh has
a hidden layer of 256 nodes with a ReLU activation and an output
layer with a hyperbolic tangent activation. The pre-control map
can also be customized with additional PL maps to tolerate
large slopes or jump discontinuities. After some trials, however,
we found that an MLP is enough for the pre-control map gh,
implying that the dead-zones are all captured in the pre-delay
map f while training the plant model. The pre-control map
training takes less than 5 minutes, owing to the modular inversion
method. Reconstruction of the joystick signal is compared to the
recorded signal in Fig. 5.

V. EXPERIMENT

The proposed control framework is verified with the com-
mercial 38-ton class excavator Doosan DX380LC in digging
and grading tasks. The reference trajectories for both operations
are generated using the same planning algorithm as described
in Section IV. The control frequency is 100 [Hz], though the
inversion control can be easily implemented with higher fre-
quencies. The P gain is chosen as K = 1.5I3 to determine the
model inversion input. We implemented PI feedback as well, yet,
found that only P control suffices as the control error is already
fairly small without the I feedback.

The bucket tip position pt := (px,t, pz,t) ∈ R2 is calculated
to evaluate the control performance, where px,t, pz,t ∈ R are
the horizontal and vertical tip positions as shown in Fig. 2. The
path following error is denoted by epathp,t := mint0≤τ≤tf ‖pt −
prefτ ‖ ∈ R, which indicates the error of the excavated ground
geometry. The trajectory error, or the bucket tip position error,
is written as etrajp,t := ‖pt − preft ‖ ∈ R. Here, we calculate the
RMSE from one second after the initial time. This is to as-
sess the performance/precision of our proposed control in the
steady-state as typically done in control literature. Note from
Figs. 6, 7, and the supplementary video that, at the initial time,
we have a non-zero initial error due to our using of the (less
accurate) manufacturer-provided PI control until then. See to
it also that our proposed control well-behaves (e.g., with no
sudden dipping) during this transition. This initial performance
can further be improved by turning on our proposed data-driven
controller before the initial operation or by re-planning the path
using the measured configuration as the initial condition (i.e., en-
suring the controller in its steady-state). The control performance
is compared to the manufacturer-provided PI control, which
determines the joystick signal by a (ωt, ut) pair look-up table
with a joint angle PI feedback and an angular rate feedforward.
The manufacturer manually fine-tuned the control gain and the
look-up table using the air digging data (i.e., data without soil
interactions).

Digging: The digging operation is the removal of soil from
the current terrain to achieve the target ground shape. Due to
the excavation capacity limit, multiple digging operations may
be required to reach the final target ground geometry. Fig. 6
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Fig. 5. Prediction of the joint angular rate (top) and reconstruction of the joystick signal (bottom) for the digging (left) and grading (right) data within the test
set. The predicted joint angular rate ω̂t is computed using the excavator plant model given the same joystick signal ut. The reconstructed joystick signal ǔt is the
output of the model inversion taking the measured joint angular rate ωt as the inversion input. About the discrepancies between the recorded/reconstructed joystick
signals, we would like to note that: 1) there is no exact inverse of the dead-zones, that is, different joystick signals in the dead-zones can lead to the same excavator
response; and 2) perfect tracking control of the non-minimum phase delays does not exist.

Fig. 6. Bucket tip position (top-left), external force (bottom-left), and performance evaluation (right) during the digging operations. Repeated experiments are
visualized as thin lines where the reference trajectories are planned for every repetition considering the current/target terrain and the hardware limit. The bold lines
are the averages of the trials, and the shaded bucket plots are the average bucket configuration for every 2 [s]. Histograms of the path following and trajectory
RMSEs are also provided for the performance comparison.

visualizes bucket trajectories, soil interactions, and error distri-
butions of repeated experiments on various excavation depths
and volumes. The experimental results of the manufacturer-
provided PI control have a path following RMSE of 5.79 [cm]
and a trajectory RMSE of 25.0 [cm]. The PI control results have
an RMS reference bucket tip velocity of 66.2 [cm/s] and an
RMS external force of 4.31× 104 [N]. The proposed control
framework outperforms the manufacturer-provided PI control,
where a path following RMSE is 1.99 [cm] and a trajectory
RMSE is 5.21 [cm] with an RMS reference bucket tip velocity
of 66.3 [cm/s] and an RMS external force of 6.41× 104 [N].
The operation speed and the external force are large enough for
industrial applications.

Grading: The grading operation is to level the ground surface
after the digging operations, where its experimental results are
shown in Fig. 7. The manufacturer-provided PI control has a path
following RMSE of5.28 [cm], trajectory RMSE of15.1 [cm], an
RMS reference bucket tip velocity of 87.2 [cm/s], and an RMS
external force of 2.69× 104 [N]. The excavator plant model
inversion control with the P control attains a path following
RMSE of 1.83 [cm] and a trajectory RMSE of 3.17 [cm] with
an RMS reference bucket tip velocity of 87.3 [cm/s] and an
RMS external force of 2.23× 104 [N]. The errors are evenly
small both with and without intense soil interactions since the
inversion captures and compensates for the effect of the external
force.
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Fig. 7. Experimental results of the repeated grading operations which is to level the ground surface after the digging operations shown in Fig. 6.

VI. CONCLUSION

This work presents a precision motion control of robotized
industrial hydraulic excavators via data-driven model inversion.
Considering distinct features that hinder the learning-based con-
trol methods (i.e., input delays and dead-zones), we propose
a data-driven model with a physics-inspired modular structure
to approximate the excavator dynamics. We then derive the
inversion of the plant model in a modular manner which con-
siderably promotes the learning speed. To prevent injuries of
the machine and surroundings, the model and its inversion are
trained offline in a supervised fashion using the measurements
of the Doosan DX380LC, a 38-ton class industrial hydraulic
excavator. Our proposed control framework is composed of
the data-driven model inversion control, which compensates
for the excavator dynamics, and a P control that computes the
model inversion input and enhances the robustness. The stabil-
ity and robustness of the control framework are theoretically
proven, and experimental results are presented in comparison
with the manufacturer-provided PI control. The proposed control
framework significantly outperforms the PI control and shows a
precise control performance (i.e., path following RMSE under
2 [cm]) even in the presence of intense soil interactions.

Some possible future research directions include: 1) general-
ization of the excavator plant model using the state-dependent
delaying system; 2) incorporation of the expert-emulating plan-
ning [15]; 3) implementation of the over-the-air programming
to effectively collect the measurements and update the control;
4) rigorous comparison with other control strategies (e.g., [17]);
and 5) application of our framework to other systems with delays
and dead-zones.
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