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Data-Driven Modelling and Control for Robot Needle
Insertion in Deep Anterior Lamellar Keratoplasty
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Abstract—Deep anterior lamellar keratoplasty (DALK) is a tech-
nique for cornea transplantation which is associated with reduced
patient morbidity. DALK has been explored as a potential appli-
cation of robot microsurgery because the small scales, fine control
requirements, and difficulty of visualization make it very challeng-
ing for human surgeons to perform. We address the problem of
modelling the small scale interactions between the surgical tool and
the cornea tissue to improve the accuracy of needle insertion, since
accurate placement within 5% of target depth has been associated
with more reliable clinical outcomes. We develop a data-driven
autoregressive dynamic model of the tool-tissue interaction and
a model predictive controller to guide robot needle insertion. In an
ex vivo model, our controller significantly improves the accuracy of
needle positioning by more than 40% compared to prior methods.

Index Terms—Medical robots and systems, surgical robotics:
planning, model learning for control.

I. INTRODUCTION

D EEP anterior lamellar keratoplasty (DALK) is a cornea
transplantation technique which has been shown to im-

prove patient outcomes compared to prior methods. Whereas the
alternative penetrating keratoplasty (PKP) method transplants
the full thickness of the cornea, DALK is a partial thickness
transplant, replacing only the anterior layers (around 90% of
the total thickness), while leaving the original endothelium
and Descemet’s membrane intact [1]. This has been shown to
significantly reduce the risk of tissue rejection [2].

One approach to DALK is the “big-bubble” technique. As
shown in Fig. 1, a cannulation needle is carefully inserted into
the cornea and its tip is positioned just above the cornea apex. Air
is then injected through the needle to perform pneumodissection.
Ideally, an air bubble is formed which separates the endothelium
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Fig. 1. Top: In deep anterior lamellar keratoplasty (DALK), a cannulation
needle is inserted from the side of the cornea and air is injected to separate the
cornea layers for dissection. Bottom: Needle deflection and corneal deformation
are sources of error that can prevent the needle from reaching the desired target
depth.

and Descemet’s membrane from the anterior cornea layers [3].
In practice, the air bubble frequently fails to form properly.
Borderie et al. [4] found that the bubble failed to achieve pneu-
modissection in around 59% of cases, though the success rate can
vary significantly depending on the surgeon and technique [5].

Successful bubbles can be classified as either type I or type
II. Type I bubbles form within the stroma, while type II bubbles
form deeper, between the stroma and the Descemet’s Membrane.
Depending on the type of bubble formed, the surgeon will have
to modify the graft preparation [6]. Moreover, the type of bubble
impacts the perforation rate and the histological properties of the
graft [6], [7]. Thus, it is highly desirable to control the type of
bubble formation. Yoo et al. [6] found that the relative depth
of the needle within the cornea is an important factor for both
the success rate and type of bubble formation. They found that
type I bubbles were consistently formed when the relative depth
of the needle was between 75% and 85%, while type II bubbles
dominantly formed for depths greater than 90%. Depths between
85% and 90% yielded a mix of bubble types. Thus, when the
needle depth can be controlled to within 5% of intended, it is
possible to reliably achieve bubble formation of a particular
type. Depending on thickness of the cornea, this corresponds to
an accuracy of approximately 30 µm, which is challenging for
human surgeons to achieve due to the small scales and difficulty
of depth perception [8].

The need for small scale manipulation and visualization
make the DALK procedure a promising application for surgical
robotics, and there have been several recent works addressing
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Fig. 2. Four points in time of the same needle insertion. Notice that the rigid predicted path (magenta) diverges from the actual path (green) and that the cornea
surface deforms as the insertion proceeds.

this. Guo et al. [9] and Park et al. [10] use custom robots
to guide the needle insertion, but these devices have limited
range of movement and are limited to steeper needle insertion
angles, which has been associated with worse pneumodissection
outcomes [11]. Draelos et al. [12], [13] develop a surgical robot
system which mounts the needle on a 6-DoF arm, granting
a wider range of movement. The needle insertion is guided
using feedback from an optical coherence tomography (OCT)
sensor, which images the location of the needle with respect
to the cornea surfaces. The system can be operated either in
cooperative mode, wherein the needle is guided by a human
surgeon, or automatic mode, wherein the needle insertion is done
autonomously.

Planning for automatic needle insertion in Draelos et al.
is based on the assumption that both the cornea and needle
remain rigid [13]. However, they observe that as the needle
is inserted into the cornea, the relationship between the robot
end-effector and the needle tip deviates from this rigid assump-
tion, suggesting that either the needle or some component of the
attachment assembly is deforming. Moreover, the cornea itself
can deform significantly as the needle is inserted, effectively
creating a moving target. Fig. 1 illustrates both of these effects
and Fig. 2 shows examples in OCT data. To address these issues,
the authors’ approach reacts to deformation via feedback control
rather than constructing an accurate plan. Once embedded, the
needle cannot be translated laterally, which makes it difficult
to correct course once the needle has drifted off track. This can
cause the needle to miss its target position by more than 100 µm.

This paper presents an insertion controller which accounts
for the predicted needle and cornea deformation. A data-driven
model is created to predict the motion of both the needle and
the cornea in response to the robot’s motion. A model predictive
controller (MPC) then uses this model to plan an insertion path
consistent with the learned dynamics. We use a cross-simulation
controller selection procedure, similar to cross-validation, to
compare candidate models for MPC without using physical
experiments.

An autoregressive linear model (ARX) is chosen for the
MPC controller based on this scoring procedure. We evaluate
the method on ex vivo corneas and find that it outperforms
the state-of-the-art [13] in terms of both final error in cornea
depth achieved by the needle (3.96± 1.48% vs 7.80± 3.37%
for a target depth of 90%) and in terms of vertical error
(43.29± 15.78 µm vs 75.71± 33.90 µm). Furthermore, the
method achieves less than 5% error in relative depth (the thresh-
old found by Yoo et al. [6] to be associated with reliable control
of bubble type) in 61% of trials, as opposed to 42% for the
baseline.

II. RELATED WORK

Robots have been widely studied in microsurgery applications
to overcome the limits of human perception and dexterity. Tasks
to which surgical robots have been applied include cochlear
implantation [14], vascular anastomosis [15], and variocolec-
tomy [16]. In particular, there has been considerable effort to
develop robotic surgical tools for ophthalmic surgery [17]–
[20], including systems which use magnetic fields to guide
the tool [21], [22]. Many of these systems are designed for
teleoperation by human surgeons, but there has also been work
on automatic motion planning for surgical robotics. In par-
ticular, automatic steering of flexible needles has been done
using sampling-based planners [23] and inverse kinematics [24],
though these techniques require a model of needle-tissue inter-
action. Learning from demonstration (LfD) has also been used
for surgical tasks [25], [26], and Keller et al. [27] uses LfD
and reinforcement learning (RL) for DALK. LfD and RL can
pose safety concerns in a surgical setting and typically require
large amounts of data to be effective, which can be expensive
to obtain.

A significant challenge in surgical robotics is modelling
the interaction of surgical instruments and tissues [28]. Finite
Element Modelling (FEM) has been used to model such in-
teractions [29], but such FEM models are often difficult to
develop and computationally intensive to simulate. They are,
therefore, not well-suited for the real-time demands of surgical
robots. In other robotics domains, data-driven model predictive
control (MPC) has been used to control challenging systems
such as cutting food [30], aggressive driving [31], and robotic
fish [32]. Data-driven MPC is less computationally intensive
than techniques like FEM and more data-efficient than LfD and
RL, making it a more suitable choice for surgical robotics. In
this work, we apply data-driven MPC to the DALK task.

III. DALK WORKSTATION

Our experimental platform is the DALK workstation (shown
in Fig. 3) previously described in [13]. It includes a manipulation
subsystem, which guides the needle, and a perception subsys-
tem, which tracks the position of the needle and cornea. The
manipulation subsystem consists of an IRB 120 robot arm (ABB
robotics; Shanghai, China), and a custom-designed “DALK
handpiece,” which attaches to the robot’s end-effector and holds
the 27-gauge cannulation needle. The arm and handpiece are
designed so that they can guide the needle into the cornea without
colliding with either the patient’s anatomy or other equipment
in the surgical theater. The perception subsystem consists of a
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Fig. 3. The DALK Workstation uses an IRB 120 robot arm which holds the
needle via the DALK Handpiece. The artificial anterior chamber (AAC) holds
the cornea sample while the OCT scanner provides feedback.

custom optical coherence tomography (OCT) scanner mounted
beneath a stereo microscope. The OCT scanner captures volu-
metric images of the cornea and needle during the DALK pro-
cedure at a rate of ∼1.5 Hz. Fig. 2 shows sample cross-sections
of the OCT volumetric image, capturing the needle at several
points through the insertion.

The perception subsystem extracts features of interest from
the OCT-acquired volumetric image in real-time. The anterior
and posterior cornea surfaces are segmented using Dijkstra’s
algorithm using the method described in [33]. The cornea apex
is then identified by fitting a parabola to the posterior cornea
surface. The needle is tracked by matching a 3D model of
the needle to the OCT voxels using the iterative closest point
algorithm [34]. The positions of both the needle and the posterior
cornea surface are corrected for the index of refraction imposed
by the curved anterior cornea surface. Refer to [13] for more
details.

Draelos et al. [13] also proposed methods for automatic needle
insertion. The insertion is divided into an embedding phase and
an advancement phase. During the embedding phase, the robot
executes an open-loop motion to embed the needle tip in the
peripheral cornea. During the advancement phase, the needle
is steadily advanced centripetally. Ideally, the needle tip moves
steadily deeper as it is advanced, reaching the target depth at
the cornea apex. A target depth of 90% is used since this depth
has been associated with successful pneumodissection [35]. The
advancement phase uses feedback from the perception system
to correct the needle if it drifts off path. Draelos et al. describe
multiple advancement planners; however, we take as a baseline
the line planner, which attempts to follow a straight line path
between the needle tip and the target position under the assump-
tion of no needle or cornea deformation. In this work, we design
a data-driven model predictive controller for the advancement
phase which predicts and plans for the mechanical effects of
needle-cornea interaction.

IV. SOURCES OF ERROR

The DALK procedure requires great precision, with less than
50 µm on average separating a successful pneumodissection
from a failure [35]. There are several sources of error which
affect needle insertion performance. As the needle is inserted
along its axial direction, both the cutting force at the needle tip
required to separate the cornea tissue and the friction along the
needle shaft are difficult to model. When the needle is pitched
or translated along its lateral direction, it will pull against the
cornea tissue, both deforming the cornea and applying torque to
the needle. These forces can cause the needle shaft and holder to
flex independently from the robot end-effector, accentuating the
non-rigid relationship between the end-effector and needle. The
deformation induced in the cornea also complicates planning by
effectively creating a moving target. We have also observed that
even after the robot has stopped moving, the needle and cornea
may continue to move due to residual tension in the needle shaft
and cornea.

Limitations of the perception system can also create error. The
RMS tracking error for the needle tip position and orientation
is typically around 12 µm and 0.5◦ respectively, but failures
of the ICP algorithm can occasionally lead to much larger
errors or cause the needle tracking to fail entirely. Error in
calibration and actuation give the robot a total repeatability of
25.4 µm [13].

As shown in Fig. 2, the opaque needle shaft creates a shadow
which makes segmentation of the posterior cornea surface be-
neath the shaft difficult and prone to error. This is complicated
by the fact that as the needle shaft is inserted, the cornea
tissue is displaced, causing the posterior cornea surface to de-
form downward. This deformation occurs within the needle’s
shadow and makes it difficult to judge the needle’s depth in
real-time.

Finally, there are also anatomical differences between indi-
vidual corneas, due to factors such as the patient’s age, medical
history, and in the case of ex vivo corneas, tissue preservation
time. The cornea thickness varies, and we have observed that
some corneas are more resistant to cutting than others. There
is also variation in the cornea optical properties, and as a result
we have observed that some corneas produce needle tracking
failures and surface segmentation failures more frequently than
others.

V. DATA-DRIVEN MODELLING OF NEEDLE-TISSUE

INTERACTION

We train a data-driven model to predict the cornea-needle
interaction, based on the features extracted by the perception
system and the commanded robot arm movements. Formally,
we consider a discrete-time sequence of features and control
inputs, where xt and ut denote the features and control inputs
at time t respectively and xl:h and ul:h denote the sequence of
features and control inputs respectively between times l and h
inclusive. The learning task is to predict xt+1:t+H given x1:t

and u1:t+H−1, for a prediction horizon H .
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Fig. 4. Selected state features include the 2D needle position (nx, ny), 2D
apex position (ax, ay), needle pitch np, and needle depth d.

A. Dynamic Model

We select the dynamic model and features of the system state
based on their relevance to planning (see Fig. 4) and model
selection experiments in Section V-B. The needle state is
represented by the 2D needle tip position in the OCT coordinate
frame, denoted (nx, ny), and the needle pitch np. Since the
needle predominantly moves within a plane and the OCT
volume is re-sampled such that the z-axis is perpendicular to
the needle shaft, it suffices to consider only two dimensions. We
also include the 2D apex position in the OCT coordinate frame,
denoted (ax, ay). Modelling apex movement allows the planner
to account for cornea deformation as it guides the needle to its
target position just above the cornea apex. Finally, we consider
the needle depth ratio d. As shown in Fig. 4, the depth ratio
is computed by finding the index-corrected ray normal to the
anterior cornea surface which intersects the needle tip and
then intersecting the ray with the posterior cornea surface.
Modelling the depth ratio allows the planner to ensure that the
needle is embedded in the cornea with sufficient depth and to
accommodate variations in corneal thickness. The perception
system also provides a segmentation of the cornea surface, but
experiments below indicate that including cornea shape features
reduces performance due to overfitting.

Control inputs are also modeled in the OCT coordinate
frame. Prior to insertion, the system is calibrated using the
method described in [13] to obtain a rigid transform between
the robot end-effector and the needle tip. At each time step,
forward kinematics calculates the rigid needle tip position,
denoted (rx, ry), and the rigid needle pitch, denoted rp. As
previously noted, the rigid needle tip position will differ from
the actual needle tip position due to the mechanical interaction
of the needle and the cornea. We then choose our control
inputs to be [ux]t = [rx]t+1 − [rx]t, [uy]t = [ry]t+1 − [ry]t,
[up]t = [rp]t+1 − [rp]t. Since movement is largely limited to
the plane it suffices to consider only 2 dimensions. We define
the control inputs in the OCT coordinate frame rather than the
robot workspace and use the system calibration to convert to
Cartesian robot movements. This approach makes the model
invariant to variability in needle mounting.

Let N denote the number of insertions in the training set and
let x(i)

t = [nx ny np ax ay d]
T and u

(i)
t = [ux uy up]

T denote
the features and controls respectively at the t-th timestep of the
i-th insertion. Let Ti denote the i-th insertion length. We model
the cornea-needle interaction using a linear autoregressive model
with an exogenous variable (ARX), which models the dynamics

as a linear function of a fixed-size window of the feature and
control history. ARX has a long history of use in time-series
prediction and control problems [36] and is straightforward to
use in MPC. In contrast to nonlinear models such as neural
networks, trajectory optimization with an ARX model can be
formulated as a quadratic program (QP), which can be optimized
quickly and reliably. Specifically, ARX predicts x̂t+1 = AkΘt,
where

Θt = [xt xt−1 . . .xt−k+1 ut ut−1 . . .ut−k+1 1]
T ,

Ak is the learned parameter matrix, and k is a hyperparameter
controlling the size of the history window, which is also known
as the order of the model. Let Θ(i)

t denote the feature vector at
the t-th time step of the i-th insertion. Ak is learned by using
linear least-squares regression to minimize the objective

N∑
i=1

Ti−1∑
t=1

∥∥∥AkΘ
(i)
t − x

(i)
t+1

∥∥∥2
2

,

where ‖ · ‖2 denotes the L2-norm. Since this ARX model con-
siders features of the needle, depth, and apex, we refer it as the
ARXk-NDA model. In order to make predictions within the first
k time steps of an insertion, we also train separate ARX models
with orders 1 ≤ h ≤ k. We normalize the OCT coordinate frame
by applying a translation so that the initial cornea apex position
is at the origin. This makes the model invariant to translations
of the cornea with respect to the OCT scanner.

B. Training and Model Selection

Using a dataset of 38 insertions from Draelos et al. [13],
we combined 19 randomly selected insertions with 5 additional
insertions taken from preliminary ex vivo experiments as a train-
ing set, and used the remaining 19 from Draelos et al. [13] for
validation. Altogether, this yields 771 time steps in the training
set and 545 time steps in the validation set. We compare the
prediction accuracy of several models on the validation set at
varying prediction horizons. In Fig. 5(a), we evaluate the impact
of model order on the prediction accuracy of the ARXk-NDA
model. We observe that at k = 1, the model prediction accuracy
is significantly worse, while among 2 ≤ k ≤ 5 the impact of
model order is minor, only becoming apparent at the longest
horizons. In Fig. 5(b) we compare ARXk-NDA to several other
model classes, using k = 4 as a representative example. We
compare against the rigid model and two other data-driven
models. The multi-layer perceptron (MLP) model operates over
the same feature space as the ARXk-NDA models, and uses
hyperparameters automatically selected by AutoMPC [37]. The
ARX4-NDAS model expands the feature space to include points
sampled along the top and bottom cornea sufaces. For each
surface, 10 points are sampled at even intervals in the x-axis.
We find that the ARX4-NDA model significantly outperforms
each of these alternatives at most prediction horizons. A key
property of the ARX model is that it considers a window of
history, whereas the rigid and MLP models only use the most
recent observation. The superior prediction accuracy of ARX
suggests that historical observations and controls are very useful
for predicting the needle-tissue interaction. On the other hand,
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Fig. 5. Comparison of several models in needle tip (nx, ny) prediction
accuracy. Heatmaps in (c,d) evaluate model accuracy at varying prediction
horizons H and prediction starting timesteps.

Fig. 6. The needle advancement MPC begins by constructing a straight-line
reference trajectory between the needle tip and goal, then optimizes a trajectory
to track it, while predicting needle and apex motion.

the ARX4-NDAS model suffers from overfitting due to its larger
feature space.

Figs. 5(c) and (d) evaluate the rigid and ARX4-NDA models
respectively at varying prediction horizons and varying starting
points in the insertion. We observe that the performance of
the rigid model varies with the insertion starting point, with
particularly high error occurring when prediction begins from
the first few time steps. Though similar trends do hold for the
ARX model, it does consistently outperform the rigid model at
more than 90% of all starting points and prediction horizons.

VI. NEEDLE ADVANCEMENT MPC

Using the data-driven model of cornea-needle interaction, we
design a model predictive controller (MPC) to control the needle
advancement phase. At a high level, the controller begins by
constructing as a reference trajectory a straight line path between
the needle tip and the goal position (see Fig. 6). The controller
then optimizes for a trajectory consistent with the data-driven

dynamics model which closely tracks the reference trajectory.
The optimized trajectory is penalized for deviations from the
reference trajectory at both intermediary states and the terminal
state.

A. MPC Optimization

During the advancement phase, the controller is triggered
whenever a new OCT volume is acquired and processed, which
normally occurs every∼0.65 s. At this time, we observe the state
(nx, ny, np, ax, ay, d). The needle starting point is adjusted to
account for the expected time for planning, which is denoted
tlag. This is computed as sx = nx + tlagvx, sy = ny + tlagvy,
and sp = np + tlagvp, where vx, vy, and vp denote the current
commanded needle tip velocities in x, y, and pitch respectively.
The initial state for planning is xinit = [sx sy sp ax ay d]

T . The
goal needle tip position is computed by adding a constant offset
to the current apex position, gx = ax + xoff and gy = ay + yoff.
The goal needle pitch is horizontal gp = 0 and the goal depth is
set to gd = 90%. Finally, in order to limit cornea deformation,
the goal apex is the same as the current apex position. Thus, the
goal state is xgoal = [gx gy gp ax ay gd]

T .
A reference trajectory is constructed for all state dimensions.

The length of the reference trajectory is determined by the
horizontal distance between the start position sx and the goal
position gx as well as the desired x-axis speed vref

x . We have
m = �|sx−gx|/vref

x �. The state reference trajectory is computed by
linearly interpolating betweenxinit andxgoal. That is, the i-th step
of the reference trajectory is given by xref

i = i
mxgoal +

m−i
m xinit

for 0 ≤ i ≤ m. The reference control trajectory is constructed
as the sequence of controls needed to achieve the reference state
trajectory assuming the rigid dynamics model. That is, for the
x-axis, we have [uref

x ]i = [nref
x ]i+1 − [nref

x ]i for 0 ≤ i < m and
uref
y and uref

p are defined similarly.
Next, we optimize for a state and control trajectory which

tracks the reference trajectory and is consistent with the data-
driven dynamics model. This is done by constructing and solving
a quadratic program (QP). Although the reference trajectory ism
steps long, in order to account for movement of the needle after
the robot has stopped moving, we solve for a longer m+ l + 1
state trajectory with the final l steps having zero control input.
The quadratic program is given by

min
x0:m+l,u0:m−1

(
m∑
i=1

x̄T
i Qx̄i + ūT

i Rūi

)
+ x̃T

mF x̃m

+ x̃T
m+lGx̃m+l

s.t. x0 = xinit

xi = Ah [xi−1 . . .xi−k ui−1 . . .ui−k 1]T

where x̄i = xi − xref
i ūi = ui − uref

i

x̃i = [[nx]i − [gx]i [ny]i − [gy]i [d]i − gd]
T

h = min(i, k).

Q,R, F, andG denote tune-able cost matrices. The QP is solved
using the OSQP [38] solver.
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To achieve good real-world performance, there are several
additional practical considerations. To avoid large out-of-plane
angular changes near the apex, replanning is stopped once the
needle-apex horizontal distance is less than 0.5 mm and the last
active plan is followed until completion. The controller must also
be able to gracefully handle failures of perception, for which we
use a simple outlier rejection scheme. When the observed needle
position differs from the needle position predicted by the rigid
model by more than a certain threshold, we assume a perception
failure. In this case, the rigid model prediction is used to replace
the observed needle position, and the observed needle depth is
replaced by the observation at the previous time step. Outlier
rejection does not apply to the apex observations which are less
susceptible to perception failures.

B. Cross-Simulation Controller Selection

The designer of a data-driven MPC must make a number of
key choices, such as feature selection, model class selection,
cost matrix tuning, and regularization. Each of these can have
a significant impact on system performance, so the designer
must weigh each option carefully. The gold standard would be
to evaluate each design option with a sufficiently large sample
size of physical experiments in order to achieve a reliable com-
parison. However in many applications, this approach would
be prohibitively expensive and time-consuming for comparing
more than handful of candidate designs. Instead, designers often
use simulators as a proxy for physical experiments. This ap-
proach often suffers from the so-called sim-to-real gap, where
inaccuracies in the simulation create bias in the estimation of
MPC performance, a problem which can be especially signifi-
cant in hard to model systems such as those involving deformable
objects. Moreover, in a novel application, developing a high-
quality simulator may be itself a more challenging problem than
designing a data-driven MPC. We faced both of these challenges
in the DALK task. Physical experiments are not only time and
labor-intensive, but consume a limited supply of cornea tissue
samples, and the interaction of the needle with deformable tissue
is very hard to model in simulation.

Instead we propose cross-simulation controller selection. We
randomly re-sample the training set for the planning model in
order to obtain a simulation model training set, which is used
to train an ARX simulation model. We then simulate the needle
advancement MPC using the planning model in the controller
and the simulation model in place of a simulator. This process is
repeated, each time with a new simulation model created through
random re-sampling. This technique allows us to assess how
robust the MPC is to model uncertainty caused by the limited
size of the training set, and we find it to be empirically a good
predictor of real-world performance.

We use the cross-simulation technique to compare several
candidate controllers, which mainly differ in the choice of
planning model. For each controller, we run 100 trials, each
with a different simulation model and initial configuration. Each
simulation model is of the same class as the planning model,
but uses a randomly bootstrapped training set. Each initial
configuration is sampled randomly from real-world data. For
each trial, we evaluate the final depth error |d− gd| and the final

TABLE I
RESULTS OF CROSS-SIMULATION CONTROLLER SELECTION. 100 TRIALS ARE

RUN PER CONTROLLER. WE REPORT FINAL ERROR IN RELATIVE DEPTH AND

VERTICAL POSITION (SMALLER IS BETTER), WITH ±95% CI

error in vertical position |ny − gy|. We present the summary
statistics in Table I.

First, we evaluate the impact of ARX model order on con-
troller performance. We consider orders 3 ≤ k ≤ 5 and denote
the corresponding controllers ARX3-NDA-MPC, ARX4-NDA-
MPC, and ARX5-NDA-MPC. For brevity, we will drop the
-MPC suffix when this does not create ambiguity. We find that
of these three controllers, ARX4-NDA achieves the lowest error
both in final depth and final vertical position, which leads us
to choose k = 4 as the model order. We note that this occurs
in spite of the fact that the ARX3-NDA model had slightly
better prediction accuracy, suggesting that prediction accuracy
alone is not sufficient to evaluate the suitability of a model for
control. Qualitatively, we observe that every controller produces
some outliers with much higher depth and vertical error, creating
relatively high standard deviations. Typically, this is caused
by sudden deformations of the needle or apex in the last few
steps of the simulation. When the model fails to predict these
deformations, the needle cannot correct, so errors remain high.

In the interest of avoiding overfitting and unnecessary com-
plexity in trajectory optimization, we next consider performing
feature selection amongst ARX models. We propose several con-
trollers which use hybrid models, where ARX is used to predict
only some state dimensions, while the rigid model is used to
predict others. For example, the ARX4-DA-RN-MPC controller
uses the rigid model to predict the needle tip, but uses ARX
for the apex and depth dimensions. The ARX4-ND-RA-MPC
controller is similar, but uses the rigid model to predict the
apex. Since the rigid model cannot be used to predict the needle
depth, we cannot use the hybrid model to assess the impact
of modelling the depth dimension. Instead, the ARX4-NA-MPC
controller entirely removes the depth feature from the model, as
well as the associated cost terms in the MPC formulation. For
these comparisons, we always take the simulation model to be
the ARX4-NDA, rather than choosing the same class as planning
model. We find that while the ARX4-NA slightly outperforms
ARX4-NDA in terms of vertical accuracy at 36.43± 5.2 µm
vs 40.4± 8.1 µm, none of the three outperform ARX4-NDA in
terms of depth error, which is the most clinically relevant factor.
Thus, we choose to proceed with ARX4-NDA-MPC in the ex
vivo experiments.

VII. EX VIVO EXPERIMENTS

We evaluate our controller on human cadaver corneas in
an ex vivo setting, simulating intraocular conditions using an
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TABLE II
RESULTS OF N = 46 INSERTIONS (22 MPC, 24 BASELINE) ON 6 EX VIVO

CORNEAS. WE REPORT # OF PERFORATIONS, FINAL ERROR IN RELATIVE

DEPTH (AUTO-GRADED), AND VERTICAL POSITION (SMALLER IS BETTER),
WITH ±95% CI. P-VALUES ARE FROM A TWO-SAMPLE T-TEST

Fig. 7. Example plan produced by MPC in testing.

artificial anterior chamber (Katena Products; Denville, NJ). This
model has been well-validated in literature [8], [39], and we
used only cornea samples with short preservation times suitable
for transplantation, so the effects of post-mortem deterioration
should be minimal. We used 6 corneas and performed 8 needle
insertions per cornea, for a total of 48 trials. The baseline
controller is the automatic line planner used in [13]. For each
cornea, we randomly assigned half of the trials to the MPC and
half to the baseline. Two of the MPC trials were excluded due to
needle tracking failures in the final steps of the insertion which
prevented accurate measurement of the final depth. We choose
the target depth to be 90% and measure the actual final depth
based on the needle and cornea segmentations given by the
perception system (referred to as auto-graded depth). Table II
summarizes the results.

We find that the MPC significantly (p < 0.05) outperforms the
baseline in terms of final depth error, and also outperforms the
baseline in terms of final vertical error, though this result is not
statistically significant due to the large variance in the baseline.
This variance is caused by a number of factors, including per-
ception noise, unpredictable needle and tissue deformation, and
differences in cornea geometry and mechanical properties. We
also note that under the baseline planner, the needle perforated
the posterior cornea surface in 2 of 24 insertions, which would
result in a clinical failure. No perforations were observed in the
MPC insertions. Fig. 7 shows an example plan generated by the
MPC in one of the ex vivo experiments. Qualitatively, we observe
that the needle tracks the planned path well, and that the MPC
correctly anticipated that the needle would take a lower path
than the rigid model would have predicted.

To better understand the factors influencing performance in
the ex vivo experiments, we perform post hoc analyses. First, we
calculate the plan tracking error for both MPC and baseline. For
a starting time t and a planning horizon Hplan, the plan tracking
error is the minimum distance between planned path computed

Fig. 8. Analysis of the ex vivo experiments. 8(a) compares the plan tracking
accuracy in the needle tip (nx, ny) dimension of the MPC vs the baseline
planner; 8(b) evaluates model prediction accuracy in the needle tip (nx, ny)
dimension on the ex vivo data.

at time t and the actual position [(nx, ny)]t+Hplan . The plan
tracking error is averaged over all insertions and starting points.
In essence, this metric measures how accurately the needle
reaches the positions intended by the planner. Fig. 8(a) compares
the plan tracking errors of the MPC and baseline over varying
planning horizons. We observe that while the MPC tracking error
is higher than the baseline at the one-step planning horizon, the
MPC exhibits lower tracking error for all longer horizons. This
indicates that the MPC is superior to the baseline in producing
realistic plans that can be followed by the needle. In the baseline
trials, we frequently observe that the needle deflects significantly
early in the insertions, but this deflection decreases as the needle
is inserted deeper. As a result, the plan tracking accuracy of the
baseline actually improves as the horizon increases from 10 to 15
time steps. Although the cause of this phenomenon is not known,
it may be that as the needle is inserted, the tension created by
needle deflection increases until some other part of the system
begins to give, allowing the needle to return closer to its rigid
position.

We also analyze model prediction accuracy on a testing set
taken from the ex vivo experiments (Fig. 8(b)), comparing the
ARX and rigid models. Both models perform worse on the
testing set compared to the validation, but ARX still outperforms
the rigid model at all prediction horizons. The difference in
model accuracy between the validation and testing set may be
partially explained by domain shift, since the MPC drives the
system to a different distribution of states than the planners used
in the training and validation sets.

Finally, we note that while the results presented here based
on the auto-graded depth are significant, we also manually
graded the depths to correct for perception errors and did not
find a significant difference between the MPC and the baseline
in terms of depth error (MPC 5.40± 1.96% vs Baseline
5.45± 3.11%). This indicates that the performance of the
planner is constrained by limitations of the perception system.
Improving the perception accuracy is outside the scope of this
work, but an important area of future research.

VIII. DISCUSSION & CONCLUSION

In this paper, we demonstrate that data-driven techniques can
accurately model the interaction between cannulation needle and
cornea in the DALK procedure. We also demonstrate that the
technique of cross-simulation controller selection can evaluate
controller performance with offline data, and the results are
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predictive of real-world performance. The data-driven model
predictive controller (MPC) developed using this approach en-
ables the surgical robot to achieve superior accuracy in needle
placement compared to the baseline. These improvements have
the potential to signficantly improve the reliability and consis-
tency of the DALK procedure. In future work, we hope to directly
evaluate the impact data-driven MPC on the pneumodissection
success rate, particularly when combined with an improved
perception system.
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