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Abstract—In this work, we tackle the challenging problem of
grasping novel objects using a high-DoF anthropomorphic hand-
arm system. Combining fingertip tactile sensing, joint torques and
proprioception, a multimodal agent is trained in simulation to learn
the finger motions and to determine when to lift an object. Binary
contact information and level-based joint torques simplify transfer-
ring the learned model to the real robot. To reduce the exploration
space, we first generate postural synergies by collecting a dataset
covering various grasp types and using principal component analy-
sis. Curriculum learning is further applied to adjust and randomize
the initial object pose based on the training performance. Simu-
lation and real robot experiments with dedicated initial grasping
poses show that our method outperforms two baseline models in the
grasp success rate both for seen and unseen objects. This learning
approach further serves as a fundamental technology for complex
in-hand manipulations based on multi-sensory the system.

Index Terms—Grasping, multifingered hands, reinforcement
learning.

I. INTRODUCTION

VEN though the two-fingered grasping problem has been

widely studied and reaches a satisfying success rate, mul-
tifingered grasping is still far from solved. The fact that the
robotic community is beginning to expect robots to approach
the manipulation capabilities of humans makes it important to
solve this problem. Even with carefully planned trajectories or
a dedicated mechanism design [1], [2], two-fingered grippers
can only be used to execute some simple object interactions
and manipulate some specific object categories. Therefore, to
endow robots with the same dexterity as human hands, which
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can effectively grasp different objects and utilize various tools
like spraying or in-hand rotating a cube [3], anthropomorphic
hands have become a promising solution and have gained much
attention over the past years of research.

When grasping an unknown object in daily life, humans usu-
ally first use visual perception to estimate the object’s physical
properties, i.e., size, weight and center of mass, and surface
smoothness and stiffness, based on prior experience. A rough
grasp pose can be estimated from visual information. During the
process of approaching and contacting with the object, humans
begin to use comprehensive tactile and force feedback to explore
the object further and finally choose a stable posture to grasp it.

Inspired by how humans grasp objects, we develop a robust
robotic grasping strategy by merging multiple sensing modal-
ities with anthropomorphic dexterous hands. The fusion of
different data from tactile fingertips, torque sensors, and robot
proprioception (joint positions) promises a more robust and
intelligent method to teach the robot multifingered grasping.

Therefore, we propose a hand-arm system for multifingered
grasping. We start with a point cloud as input and run the grasp
evaluation network PointNetGPD [4] to generate a candidate
two-fingered grasp, then map this as the pre-grasp pose for the
dexterous hand. To control the dexterous hand to execute the
grasping action, instead of using a fixed grasping trajectory, we
first use hand synergies [5] to make a dimensional reduction.
Then we use the reduced dimension information as target action
space to train a multimodal reinforcement learning (RL) based
agent. With this agent, the dexterous robotic hand can close its
fingers and grasp the object successfully.

Our contribution can be summed up as follows:

® Weintroduce a multifingered grasping agent that fuses mul-

timodal sensor data (fingertip tactile sensing, joint torques,
and hand proprioception) based on the reinforcement learn-
ing algorithm. The agent is easy to transfer from simulation
to the real world platform with the help of binary tactile
information and level-based torque information. Our robot
experiments prove that our agent trained in simulation
works well on the real robot system and outperforms the
baseline methods;

® We collect a dataset about common human hand motions

and map it to the Shadow robot hand successfully. Because
the corresponding motion data of the Shadow hand joints
are too complicated and take up a lot of computing mem-
ory, we calculate postural hand synergies using principal
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component analysis (PCA) to reduce the dimension of
controlling the hand;

® Through comparative experiments in simulation, we find
that the fusion of multimodal sensing increases the per-
formance of the agent, and the policy with the Recurrent
Neural Network structure (GRU in our work) is better
than that with the Multi Layer Perception structure. We
also find that the most suitable dimension reduction value
for PCA is 5. Real robot experiments are performed with
different models. Through the comparison of model with
different modalities and different baselines, we verified the
effectiveness of our proposed algorithm.

II. RELATED WORK

A. Multifingered Grasping

Due to the high DoF (degrees of freedom, 24 for the Shadow
hand), it is very difficult to control a dexterous hand flexibly.
Even without considering object dynamics, a perfect grasping
action based on grasp synthesis for a high DoF dexterous hand is
still a challenging task [6]. A lot of previous work has discussed
the research on multifingered grasping. Li et al. [7] proposed a
probabilistic model to address robust dexterous grasping under
shape uncertainty, and Fan er al. [8] proposed a finger split-
ting strategy to plan precision grasps for multifingered hands
from parallel grasps. However, both examples require prior
knowledge of the object model. Shao et al. [9] proposed a
deep-learning-based method to generate grasp points for multi-
fingered robots without prior knowledge of the object model,
but it is an open loop grasping method. In comparison, our
algorithm adjusts finger motions in closed loop according to
tactile and torque sensing as vision compensation. Brahmbhatt
et al. [10] presented a novel framework for grasp synthesis
based on the surface shape and contact map of the target object.
They used a human-demonstrated contact map as a constraint
to optimize and refine the grasp candidates from Grasplt! [11].
However, in real robot applications, ideal contact maps are hard
to generate for unknown objects. Kumar et al. [12] used human
hand motion demonstration to initialize and reduce the search
space of their multifingered robot hand. However, this requires
pose estimation for the objects to get an object bounding box.
Ficuciello et al. [13] proposed a synergy-based strategy and
achieved stable grasps, but the grasping performance critically
depends on the quality of hand preshaping. Furthermore, they
proposed a hand-arm grasp system based on this work [14], but
they only demonstrated a single object scenario and have limited
grasp objects. And the training process is in the real world, which
makes the whole grasp pipeline time-consuming. Wu et al. [15]
discretized the finger action space and increased the resolution
of the finger joint movement during the training process. At
each timestep, the robot decides whether or not to close each
finger further in the binary form. However, the robot hand they
used is not an anthropomorphic hand, making the agent easier
to train. In [16], the authors trained an agent to regrasp based on
an initial grasping pose to improve the success rate rather than
to grasp the target directly, which also places strong restrictions
on the prerequisite of the experiment setup. Object pose and
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Fig. 1. An illustration of our proposed multifingered hand-arm grasping
system. The top block presents our simulated training system. In the simulation,
we use multimodal information as observations to train a multifingered grasping
agent. To simplify the control of the hand and to make the hand move like a
human, in the right bottom block, we first collect a Shadow hand pose dataset
using a Cyberglove. We use this dataset to perform a principal component
analysis to reduce the number of inputs needed to control the robot hand. The
bottom left figure illustrates that the grasping agent purely trained in simulation
has proved to work well in the real world by several grasping experiments.

visual feedback are assumed to be unknown in the above work.
In [17] both object pose and contact forces were taken as a part
of the state in the Markov Decision Process (MDP), and they
concluded that contact forces can improve the grasping robust-
ness specifically under pose uncertainty. However, transferring
the contact sensing to a real world environment is needed to
verify their theory on real hardware.

B. Dimensional Reduction for Multifingered Hands

The human hand is a very high-dimensional, complex, and
versatile end-effector system. Such a system, in theory, requires
a vast amount of computational time for its control. However,
the human nervous system can control hands extremely fast. The
result from [5] indicates that human hand control takes place in
a subspace of much lower dimension than the original hand’s
DoF. [18]-[20] further implemented this on a dexterous robot
hand. [13] built a reinforcement learning algorithm to confer
autonomous grasping to anthropomorphic hands. However, the
hand they used for testing is a Schunk dexterous hand with nine
motors that actuate 20 joints. Thus, the action space of this hand
has been mechanically constrained. Instead, we concentrate on
the Shadow Hand, which has 18 motors to control 22 finger
joints and 2 motors for two wrist joints. It is difficult to control
this hand by traditional methods.

III. GRASP SYNERGIES DATASET

Similar to the human hand, the Shadow hand has five fingers
with 24 joints, including 2 active joints on the wrist, 18 active
joints on the fingers and 4 coupled joints, as shown in Fig. 2(a).
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(b)

(a) Joint mechanics of the Shadow hand. 6., € {WR1, WR2} refers to wrist joints I and 2. And ; € {LF,RF,MF, FF, TH} refers to little finger,

ring finger, middle finger, first finger, and thumb (22 joints). Joints 1 and 2, marked blue in each finger, are coupled (these two joints are controlled by one motor).
(b) C1, C2, and C3 rows show example grasp postures of the Shadow hand controlled by the three first principal components of our dataset.

However, it is quite challenging to train an RL agent in such a
high-dimensional action space. High-dimensional action equals
huge exploration space, which will cause a low learning effi-
ciency and generate weird hand poses without constraints. To
ensure that generated hand poses are more human-like and the
exploration space can also be greatly reduced, we simplify this
problem by creating a motion subspace.

In the research field of human hand grasping, it is popu-
lar to apply the definition of grasp synergies [5] to describe
and simplify human grasps by Principal Component Analysis
(PCA). Therefore, a Shadow hand pose dataset is necessary to
calculate the eigenvectors and eigenvalues representing the most
correlated directions in the joint space.

To this end, we collect a Shadow hand pose dataset, using
the 33 grasp types of humans described in [21], such as large-
diameter grasp and tripod grasp. The first portion of the hand
pose dataset is from our previous work [19]. Three human sub-
jects teleoperate an air-muscle version of the Shadow hand with a
Cyberglove. Eight precision grasp taxonomies are used to grasp
twelve primitive objects and 442 joint samples are recorded. To
improve the collection efficiency and the object diversity of the
dataset, we further collect 3000 samples by controlling the hand
by the Cyberglove in simulation. Furthermore, we extend the
hand pose dataset based on the YCB-Affordance dataset [22].
The YCB-Affordance dataset contains manually annotated hu-
man grasps covering all 33 grasp taxonomies on the 58 objects of
the YCB benchmark set. We use a BiolK [23] solver to calculate
a corresponding Shadow hand mapping via the labeled human
hand keypoints. After removing some unreachable grasps for the
Shadow hand, we finally get more than 200 robot hand postures.

Based on the collected dataset, we consequently perform a
principal component analysis to reduce the joint space dimen-
sions used to control the multifingered hand. The n eigenvectors
corresponding with the largest n eigenvalues are selected to form
a transformation matrix. The optimal number of synergies n

is determined by our comparative experiments in Section V-A.
Fig. 2 illustrates the hand motion corresponding to the first three
components, which are called the first, second, and third grasp
synergies (C1, C2, C3).

IV. MULTIMODAL GRASPING POLICY

A complete grasp could be defined as consisting of four parts
1) the grasping point describing the end-effector position, 2) the
approach vector in which the robot hand approaches the grasping
point, 3) the wrist orientation and 4) an initial finger configu-
ration [25]. To generate such a grasp for the Shadow hand, we
have to focus on controlling the finger and wrist joints during the
RL agent training process. Instead of generating a fixed grasp
candidate each time, we propose a two-stage dynamic grasping
method where the robot continuously adjusts its motions until
a lift-up decision. In the first stage, the hand is trying to do a
closing motion from the initial setup according to a human-like
hand closing trajectory 7" until a contact is detected between any
of the five fingertips and the object. After that, the hand closing
motion is stopped and the robot goes into the second stage. This
stage is a closed-loop control process, during which the hand
obtains a set of observations from proprioception, binary tactile
values of the fingertips, and finger joint torques as elaborated in
Section IV-B. No visual perception or object model is provided
in the simulation environment. The robot adjusts all the joint
angles continuously to grasp the object better until it lifts the
object. Fig. 3 gives an overview of our multimodal reinforcement
learning.

The whole multifingered grasping process is modeled as a
finite-horizon discounted MDP. At each timestep ¢, the agent
perceives an observation o; € O from the environment, executes
an action a; € A and obtains areward r; € R; details on actions
are presented in Section IV-C and on the reward function in
Section IV-D. The agent executes an action according to a
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An overview of our multimodal reinforcement learning structure. At each timestep, four different types of input information are captured from the

environment and concatenated as one vector, representing the agent’s current state. This state vector is then stacked with several history states as the input and goes
into the policy net. Three types of actions come from the policy net: the lifting decision p, the wrist rotation increment A#,,, and the PCA value increment Ae
that controls finger joints 09’]2 separately. The observation history buffer keeps track of several previous state transitions. All trials go into the trajectory buffer as

training data to update the policy.

Fig. 4.

Objects used to train the RL agent. This includes 11 objects from the YCB object dataset, 14 objects from the ShapeNet object dataset, 5 primitive shapes

(4 boxes and 1 cylinder), and 31 (only 24 shown) objects from the EGAD dataset [24].

stochastic policy m(at|O;), which is a distribution over actions
conditioned on several recent observations. The goal is to find a
policy 7 that maximizes the expected sum of discounted rewards
over a finite trajectory 7'. The action value function is defined
as:

T
7" = argmax E (1) Z'ytrt (1)

t=0
where v € (0, 1) is the discount factor, 7 is the trajectory distri-
bution under policy 7.

We apply PPO [26], an on-policy gradient algorithm to solve
the specified policy optimization problem. Default network pa-
rameters are used in our work. To improve the efficiency of the
trajectory sampling process, we run 20 simulation environments
in parallel, generating 2 million state transitions in 8 hours.

A. Simulation Environment

As seen in Fig. 1, the simulation and real robot setup are
kept the same. This setup consists of a UR10e robot arm and a
Shadow dexterous hand (left hand version).

In the simulation, we use 61 objects for training and testing, in-
cluding 11 objects from the YCB object set [27], 19 objects from
ShapeNet [28], and 31 objects from the EGAD datasets [24], as

listed in Fig. 4. Since the object pose is known in simulation,
we set the initial grasp pose by adding an offset along the z-axis
and a slight disturbance of the x- and y-axis.

B. Observations

Inspired by human hands using multiple modalities to grasp
objects, we also introduce tactile sensing, torques and joint
angles in the observation space of the Shadow hand agent. To
transfer the training model directly from the simulation to a real
platform without any further training, observations of the agent
should be as similar to a real robot as possible. As accurate
contact force values and joint torque values are notoriously hard
to get in simulation environments and these continuous values
are difficult to map to a real robot, we use the binary contact in-
formation of the fingertip denoted as ¢ € {0, 1} and level-based
joint torque denoted as 7 € {0, ..., 5} in the model to minimize
the gap between simulation and real scene. The details of the
mapping from raw values to the abstracted values are described
in Section V-C. The whole observation at ¢t = ¢}, is defined as
or = (ag—1, 0, T,0), where aj_1 is the previous target action, 7
are the joint torques, and 6§ = {6y, ,, } are finger joint and wrist
joint angles of the hand as shown in Fig. 2(a). We find that the
historical observations of several previous timesteps are very
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meaningful during the training process. This may be because
these observations sequences can characterize the surface shape
of the object, which helps the agent’s exploring process. Finally,
the input observation values at timestep ¢ can be expressed as
stacked vector Oy = (04— (p—1); - - -, 0¢—1,0¢); h is the timestep
length used in the network (h = 3 in our work).

C. Actions

The action generated from the policy comprises two con-
tinuous parts. 1) principal component value increments Ae,
representing the increments of the first n principal components
(n < 101in our model). 2) wrist joint angle increments A#,,, and
a discrete part 3) lifting decision p, which decides whether or
not to lift the hand for a pick-up attempt. The combined action
output from the policy is represented as a; = {Ae, Ay, p}.

In our method we do action planning and optimization in
the subspace after applying PCA dimension reduction to the 22
finger joints. As is illustrated in Fig. 3, the output action Ae
from policy net is an increment based on the current principal
components ¢ = P(6), in which P is the function mapping
from joint space to the subspace of planning. Target joint angles
of the current timestep can be denoted as:

0y = P~ (Ae + P(0y)) @

Given that the initial palm pose may not always be a proper
grasping pose when the objects move because of external inter-
ference, we also consider wrist motion. The robot can adjust its
wrist joint angles to a better palm pose like humans do while
grasping objects. The Shadow hand has two wrist joints; Af,, is
a 2-dimensional vector representing the rotation angles around
the two wrist axes.

The robot’s decision to lift its arm for a pick-up or not is
also determined by policy output p. The robot arm keeps the
original pose if p = 0 else lifts to a fixed height above the object.
During lifting all hand joints stay invariant and the episode
terminates after the lifting attempt. The log action probability
can be denoted as:

log (a:|Oy) = log m(p|Or)

+ (1 —p) [(log T(A€|Oy) + log w(A,,|Oy)]
(3

To ensure state-space exploration, the PPO learning algo-
rithm used for our agent internally represents the policy as
a set of Gaussian functions, whose mean p and variance o
are updated during learning. The stochastic action output from
the policy net F(O;) at timestep t is therefore a tuple of
two Gaussian samples (namely the change of principal com-
ponent values for the fingers, Ae,, ~ N (11.(0y), 0.(0;)), and
the update of hand wrist angles A0, ~ N (1g(Oy), 79(0y)))
and one discrete value taken from a Bernoulli distribution,
p ~ Bern(sigmoid(5,(0y))).

D. Reward

To apply RL to a specific robotic task, a carefully designed
reward function is usually very useful. In our multifingered
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grasping task, a training episode is terminated after the lift-
ing attempt and then a binary reward 7, € {0, 1} representing
whether the robot picked up the object successfully is returned.
Our concrete reward function is defined as:

t= tﬁnal

b
R = 4
{0.03Tc t e [lytﬁnal — ].} )

The hand closing reward r. is to guide the agent towards
closing the hand. We assume that the combination of positive
increments in several key joints: J* = {FF3, MF3, RF3, LF3,
TH5} will lead to a finger closing hand motion. Therefore
we denote a mask matrix M = [mq, ma...my,], m; € {0,1}
representing joint .J; in J* or not.

- X )

i€joints

(&)

E. Curriculum Learning

The initial horizontal position and rotation angle of the grasp
object are both randomized in a variable range related to the
learning process p, known as curriculum learning [29]. The
aim is to choose environmental parameters that are neither too
challenging nor too trivial for the agents. During the experiment,
we found that the initial pose of the object is essential for the hand
to generate an effective grasp. As the training process goes on, we
increase the task difficulty by adding a randomized disturbance
to the initial pose. The new position pos.,+ and yaw orientation
rotsiqrt Of the object at the beginning of each episode changes
according to the grasping success rate 7, original position pos,,
and rot,:

6[)03 S [*5;074»617]

POSstart = POSo + 5pos (6)
5r0t S [_507"’_50]

rotsiart = T0t, + 5r0t

in which ¢, = 1.2(rs +0.2) and J, = 0.17, are the variation
range of orientation and position, respectively. 0,05 and 0, are
both sampled from uniform distribution: U(—4, §).

V. EXPERIMENT

We evaluate our grasping agent based on multimodal rein-
forcement learning both in simulation and on the real robot
hardware. In the simulation, we train our agent with different
parameters to choose the best performing model regarding grasp
success rate and time to converge during training. For the real
robotic experiments, the best-performing agent in the simulation
is used to execute the multifingered grasping and is compared
with the baseline.

A. Simulation Results

We test our algorithm with different parameters for compari-
son: 1) Comparing the network performance with different input
modalities: using joint angle information only, using joint angle
as well as tactile information, and use all the information: joint
angle, tactile and joint torques; 2) Comparing networks that
use Gated Recurrent Unit (GRU) and Multi-Layer Perception
(MLP); 3) Comparing different PCA dimension reduction
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Fig. 5. Network evaluation with different parameters while training our RL agent. The curves are labeled according to the network architecture (recursive GRU

or feed-forward MLP), the number of input modalities, and the PCA dimension number. (left) Training result for different input modalities. M1 means the input
has only joint angles. M2 means the input modalities are joint angles and fingertip tactile sensing, M3 means the inputs have one more modality: joint torques.
(middle) Training result on GRU and MLP network architectures. (right) Training result on different dimension reduction values for the Shadow hand. The reduced

dimension values tested here are 3, 5, 8 and 10.

numbers. We use the below pattern for naming the models.
MX, where X; € {1,2,3} means different numbers of input
modalities. PCA X5 where X5 € {3, 5,8, 10} means the dimen-
sion reduced from the original Shadow hand joint space. All
models are trained with three timesteps of history observations
as input. The experiment results in Fig. 5 show the grasp success
rate of the above three experiments, respectively. Each curve is
plotted using five individual runs trained using the same hyper-
parameters. All models are trained for 1500 episodes. The first
experiment (Fig. 5 left) illustrates the grasping performance of
different input modalities. The learning curves are similar in the
first 500 episodes, after which the learning curve with only joint
angles as input (M 1) begins to drop, then increases back to 80%
and drops again. This is because the task difficulty is changing all
the time through curriculum learning (Section I'V-E). The agent
with two modalities as input (M2) exhibits similar instability
from episode 1000 for the same reason. As a comparison,
the multimodal agent (M3) shows the best robustness to the
increasing task difficulty. The second experiment (Fig. 5 middle)
demonstrates that GRU outperforms the MLP architecture. The
memory mechanism of GRU can understand the historic
interaction information better, thus improving the grasping
performance. For the last experiment (Fig. 5 right), we test the
performance using different PCA dimension reduction values.
A latent space with a higher dimension means a bigger action
space to explore and more dexterous hand motions to learn.
The best performance is from the agent with latent dimension
space X = 5. The model GRU-M3PCA3 learns faster but the
curve stops growing after episode 500 and converges at a lower
success rate of 80%. This signifies that the latent space is too
small to learn dexterous hand motions to grasp all the objects
correctly. When we increase the dimension value to 8 and 10,
the agents learn more slowly and have a lower success rate than
other models, which indicates that the action space is too large
and makes learning how to grasp a challenge for the agent.

An interesting find is that the robot tends to use the little finger
and the thumb to form a grasp. We guess the reason is that using
these two fingers can make the hand cover more object surfaces
due to the mechanical design of the hand, which approximates
the human hand but is not perfect.

Xy

wrist

Initial grasp generation Grasp mapping Mapped grasp pose

Fig. 6. Grasp mapping method used in this work. (left) The initial grasp
generation using PointNetGPD. (middle) Mapping from two-fingered grasp to
Shadow hand. (right) Initial grasp pose in the real robot system.

B. Initial Grasp Generation for Real Robot Experiments

Since we do not know the exact object poses in the real
world experiments, we use our previous work [4] to serve as
an initial grasp pose generator. PointNetGPD is a two-fingered
grasp evaluation network that takes the partial point cloud near
the grasp object as input and outputs grasp quality of the grasp
candidate. After motion planning and collision checking using
Movelt [30], the kinematically feasible grasps are chosen as our
initial grasp proposals. As these grasps are initially intended for
a two-fingered gripper, a proper mapping from a two-fingered
gripper to a five-fingered hand is needed, as illustrated in Fig. 6.

The grasp mapping proceeds as follows:

1) We move all fingers of the Shadow hand to a predefined
pose where all the fingers make a “C” shape as shown in
Fig. 6 (middle);

The grasp location is defined as the middle point between
the fingertips of thumb and little finger;

The approach direction of the grasp (x-axis) is the palm
norm inverse direction;

The y-axis of the grasp is chosen by the connection of the
fingertips of thumb and little finger;

Then the z-axis can be defined as the cross product of the
x- and y-axis.

2)
3)
4)

5)

C. Sensor Mapping

We need to process the raw data from the tactile and torque
sensors to the abstracted sensor data that are used as RL
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Fig. 7.

Objects used in the real robot experiments. Objects with IDs from 1 to 9 are in the training dataset, and objects with IDs from 10 to 14 are unseen by the

multifingered grasping agent. Objects 7, 8, and 9 are 3D printed models from EGAD.

/
ST | (\

Fig. 8.

inputs. For the tactile sensor, in the simulator, we detect whether
there is a contact between fingertip and object to determine the
mapping values. On the real robot, we press each fingertip sensor
manually and record the raw reading to get the upper sensor
range of each finger. The lower range of the tactile sensors is
calculated by keeping the hand still, reading the sensor raw
value ten times, and getting an average. Then we mark a tactile
observation as 1 if the sensor reading is higher than a threshold
value of 0.3% of the total range, otherwise as 0. For torques,
in the simulator we directly map the measured joint torques to
the discrete levels. However, in the real robot, as the Shadow
hand does not provide torque reading out of the box, we use
the measured tendon force of each motor instead. We also
found that the tendon reading 7; will drift after some time.
Therefore, we take the tendon reading when the hand is empty
at the beginning of each grasp attempt and set it as the initial
tendon value 7; o for each joint. For mapping the torque data, we
use empirical thresholds € {—200, —100, 0, 100,200} for the
real robot and {—20, —10,0, 10,20} for the simulator to map
the reading 7; — 7; o to the interval [0, 5] expected by the RL
agent.

D. Real Robot Verification

For the real robot experiments, we selected 14 objects
including some objects used during training (object number 1
to 9) and novel objects (object number 10 to 14), as can be
seen in Fig. 7. A Kinect2 depth camera is used to get the object
point cloud required for initial grasp pose generation in the
actual robot experiments. For each object, we conduct ten grasp
trials for each of the below four different agents. The first two
agents are our baselinel and baseline2, respectively, which use
a hard-coded sequence to close the fingers for all the grasp trials.
In baselinel, we set a torque limit for each joint and control the

Grasp examples for each object. The agent used in these grasps is GRU-M3PCAS.

hand in position mode. All active joints are controlled to track
the given trajectory until reaching the target positions or the
tendon force limit. In baseline2, besides joint position and joint
torque sensing, we add one more modality: tactile sensing. The
first finger, middle finger, and ring finger will stop closing if
the tactile sensor on the fingertip is triggered, which helps to
prevent from over pushing the object beyond a proper grasping
position. The third agent uses the GRU-M2PCAS model. The
fourth agent uses the GRU-M3PCAS5 model.

To perform a fair comparison of the experiments to demon-
strate the difference between agents when the grasp pose is
the same, we first mark the target object in a fixed position
on the table. Then we use a point cloud and PointNetGPD to
generate ten initial grasp poses that are limited to top-down
grasps. After this, we perform the finger motion with the above
four different agents. The grasp success rates in Table I indicate
that the RL method can outperform the baseline method in most
objects, which establishes that the agent trained using RL has
learned a robust grasping strategy. The RL agent trained using
three modalities performs better than the RL agent using two
modalities. We also see that the success rates for objects 4
and 5 are quite low. This is because these objects are smaller
on the top, which needs more precise grasping actions. From
the experiments we find out that the average episode length
in simulation and real experiments is 5.8 and 6.2 for model
GRU-M3PCAS. The action frequencies of the models are 1.8 Hz
and 1.6 Hz in simulation and the real world. Besides the random
grasp experiments, we also conduct a grasp experiment where
we fix our object pose and initial grasp pose for all three agent
conditions to show the difference between agents when the
grasp pose is the same. Grasp examples on the real robot using
GRU-M3PCAS are shown in Fig. 8. The result is presented in
the form of a supplemented video to demonstrate the motion
difference clearly.
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Object ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Baseline 1 80% 70% 40%  40%  20% 20%  50%  50% 80% 60% 60% 100% 50% 70%
Baseline 2 70% 80% 40%  40%  30% 20% 40%  60% 80% 70% 60% 100% 60% 80%
GRU-M2PCAS 60% 90% 80% 60% 50% 80% 60% 70% 90% 100% 90% 100% 90% 80%
GRU-M3PCA5 100% 100% 80% 50% 40% 80% 70% 70% 100% 100% 100% 100% 100%  70%
Bold values indicate best performance.
VI. CONCLUSION AND FUTURE WORK [11] M. Ciocarlie, C. Goldfeder, and P. Allen, “Dimensionality reduction for
. . . hand-independent dexterous robotic grasping,” in Proc. IEEE/RSJ Int.
This paper proposes a novel hand-arm multifingered grasping Conf. Intell. Robots Syst., 2007, pp. 3270-3275.
system to solve the autonomous multifingered grasping problem. [12] V.Kumar, T. Hermans, D. Fox, S. Birchfield, and J. Tremblay, “Contextual
. reinforcement learning of visuo-tactile multi-fingered grasping policies,”
We first build a hand pose dataset to teac_h the dex'[eljous ShadF)W in Proc. NeurIPS Workshop Robot Learn. Control Interact. Real World,
hand how humans commonly move their hand during grasping 2019.
by mapping human motions to the Shadow hand. A PCA-based  [13] E Ficuciello, D. Zaccara, and B. Siciliano, “Synergy-based policy im-
hand svnerev is then trained to reduce the dimension used to provement with path integrals for anthropomorphic hands,” in Proc.
ynergy : ne IEEE/RSJ Int. Conf. Intell. Robots Syst., 2016, pp. 1940-1945.
control the hand, which accelerates the training speed of a grasp-  [14] F. Ficuciello, A. Migliozzi, G. Laudante, P. Falco, and B. Siciliano,
ing agent. Then we build a simulation environment to train the “Vision-based grasp learning of an anthropomorphic hand-arm system
RL agent. Detailed simulation trials with different parameters in a synergy-based control framework,” Sci. Robot., vol. 4, no. 26, 2019.
g ' X p o [15] B. Wu, I. Akinola, J. Varley, and P. Allen, “Mat: Multi-fingered adaptive
demonstrate that our agent works best with three modalities as tactile grasping via deep reinforcement learning,” in Proc. 3rd Conf. Robot
input and a GRU network architecture. Real robot experiments 6 LeaCrl’Z.’b 2019. S G S, Sukh 0S, Sehaal. “Sel
show that the trained RL agent can be applied in the real world [16] Y. Chebotar, K. Hausman, Z. Su, G. S. Sukhatme, and S. Schaal, “Self-
. . B ot . supervised regrasping using spatio-temporal tactile features and reinforce-
even if the model is trained purely in simulation. Our method ment learning,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2016,
outperforms the baseline method. pp- 1960-1966. y o
Training the robot to do object in-hand manipulation tasks |1/1 H:Merzi¢, M. Bogdanovic, D. Kappler, L. Righetti, and J. Bohg, "Lever-
g X X d . p Lo aging contact forces for learning to grasp,” in Proc. IEEE Int. Conf. Robot.
such as tool use is our on-going work. Domain randomization Automat., 2019, pp. 3615-3621.
plays an important role to bridge the gap between simulation ~ [18] M. T. Ciocarlic and P. K. Allen, “Hand posture subspaces for
and the real world. The dynamic parameters such as friction, g:x%e;?ggégol;%gg grasping,” Int. J. Robot. Res., vol. 28, mo. 7,
object mass, and even moment inertia will be randomized in a  [19] A.Bernardino, M. Henriques, N. Hendrich, and J. Zhang, “Precision grasp
reasonable range. We also plan to accelerate the simulation time ;Xnergies for ggi&;erou%r;bg;ic hands,” in Proc. IEEE Int. Conf. Robot.
. . . . . . . . iomimetics, , pp. 62-67.
with a differentiable physical snnulzlltgr.. Besides, a(?dmg VISION 1501 7 Deng, B. Fang, B. He, and J. Zhang, “An adaptive planning framework
to the agent to let the agent find the initial grasp by itself is also for dexterous robotic grasping with grasp type detection,” Robot. Auton.
an exciting research direction. SySl., vol. 140, 2021, Art. no. 103727.
[21] T.Feix,J. Romero, H. B. Schmiedmayer, A. M. Dollar, and D. Kragic, “The
GRASP taxonomy of human grasp types,” IEEE Trans. Human-Mach.
Syst., vol. 46, no. 1, pp. 6677, Feb. 2016.
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