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The Biasing of Action Selection Produces Emergent
Human-Robot Interactions in Autonomous Driving

Mauro Da Lio , Member, IEEE, Riccardo Donà , Gastone Pietro Rosati Papini , and Alice Plebe

Abstract—This letter describes a means to produce emergent
collaboration between a human driver and an artificial co-driver
agent. The work exploits the hypothesis that human-human cooper-
ation emerges from a shared understanding of the given context’s
affordances and emulates the same principle: the observation of
one agent’s behavior steers another agent’s decision-making by
favoring the selection of the goals that would produce the observed
activity. Specifically, we describe how to steer the decision-making
of a special self-driving agent via weighting the agent’s action
selection process with input from a dummy human driving activity.
In this way, human input maps onto the safe and affordable actions
recognized by the agent. We demonstrate an emergent and efficient
driving, collaboration, and rejection of unsafe human requests.

Index Terms—Cognitive modeling, human factors and human-
in-the-loop, human-robot collaboration.

I. INTRODUCTION

THE rider-horse metaphor (H-metaphor) was proposed back
in 2003 as a model of desirable interaction between drivers

and intelligent vehicles [1]. Norman [2, pag. 19] outlines the
salient aspects of the interaction as follows:

Think of skilled horseback riders. The rider “reads” the horse,
just as the horse can read its rider. (...) This interaction is (...) of
special interest because it is an example of two sentient systems,
horse and rider, both intelligent, both interpreting the world and
communicating their interpretations to each other.

We argue that autonomous vehicles might benefit from a simi-
lar ability: the user experience would improve if the driver could
give hints to the car and feel as if the car could “understand”
his/her intentions.

While the H-metaphor describes a desirable form of interac-
tion, it does not tell how to realize a system that produces that
interaction. One way to implement interactions between humans
and robots is by programming interplays with rules.
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However, an alternative approach may be to construct the
robot’s sensorimotor system so that the interactions are emer-
gent, as much as possible. This letter follows the latter theory.

A. What this Letter is (and is not) about

The letter is about replicating (functionally) a natural cogni-
tion process that permits an intelligent agent to understand the
intentions of another agent and comply with them if possible.
The process, also known as “mirroring” (albeit this term may
look abused here), has been known for some time, but it is
not completely clear how to make it work with an artificial
agent. This letter studies a mechanism for that (the biasing of the
agent’s action selection). To show this mechanism in operation,
we need a human to carry out actions that the artificial driver
agent interprets. However, the work is not about human factors
and ergonomy (not about how humans feel and react). The focus
is on influencing the agent, which (among others) justifies using
a simplified input device. In addition, the sensorimotor system of
self-driving agents must have particular characteristics, which
the letter describes. Hence, any compatible self-driving agent
could work. For practical reasons, we reuse the self-driving agent
of the Dreams4Cars project. In this work, we describe the novel
interaction mechanics and the enabling elements (Section III),
but not a comprehensive description of the rest of the agent,
which was published in [3] (agent architecture), [4] (offline
learning via mental simulations) and [5] (learning cautious
behaviors).

B. Letter Organization and Contribution

The letter is organized as follows. Section II presents the
related literature. Section III describes the self-driving agent
characteristics that are necessary for the interaction. Section IV
introduces the principles that give birth to emergent interac-
tions. These are grounded in natural cognition theories, such
as the simulation hypothesis and the affordance competition
hypothesis (Section II). Section V presents an evaluation of
the interaction paradigm in driving simulations. We show how
various emulated human driver actions can influence the co-
driver agent behavior. We also show that the co-driver interprets
the human driver hints in terms of what is affordable in the
current situation—producing a logical behavior—and can even
veto some requests if they are considered dangerous. Section VI
deals with generalizations to broader scenarios and discusses a
complementary interaction modality that might be necessary for
some circumstances.
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II. RELATED WORK

In the context of highly automated driving, the H-metaphor [1]
was studied in the EU FP7 HAVEit project, realizing a variable
repartition of authority between a human driver and a co-pilot
system. The implementation uses “H-mode” [6], a “language”
for describing and programming human-system interactions. For
example, [7] describes four automation levels and presents a case
corresponding to driving in a road with traffic alternating car
following and changes to free lanes. Readers may find a review
of “H-mode” and similar approaches in [8].

Compared to those studies, this work uses a different —
genuinely “artificial cognitive”— approach, which relies on the
re-use of the agent’s motor system to align two agent’s intentions
and produce emergent collective behaviors.

Human-robot interaction modeled on natural human-human
collaboration is a vast and active research field, broadly based
on the mutual inference of intention.

There are two approaches to infer intentions (see also
discussion in [9, Section IV.A]). One utilizes classification:
particular patterns in one agent’s sequence of actions —either
a human or a robot— are interpreted as the prelude to the next
action. It is called action-to-goal in [10]. The opposite approach,
or goal-to-action [10], assumes to deal with intentional agents;
i.e., agents whose actions are explainable as directed to the
achievement of one goal. By first detecting the attainable goals
in a given environment, observers can “imagine” the actions they
would use for each goal and then use the observations to accrue
evidence of which might be the observed agent’s most likely
intention.

The main issue with the action-to-goal approach is that action
patterns depend on the context: the same pattern may mean
different intentions in (even slightly) different contexts, and
the same intention may be enacted with varying patterns in
other contexts. To clarify, let us make an example of a human
driver setting the right indicator light. This action may mean
different things in different environments: in a motorway, it may
mean the driver wants to stop on the emergency lane (if driving
on the rightmost lane with an emergency lane on the right);
in the proximity of an intersection, the same action may mean
the driver wants to turn right; lastly, on one road with ve-
hicles parked on the right side of the lane, the same action
may mean “seeking for a free spot,” which also means that
the car will almost stop in the lane before maneuvering to
the found spot. The classification approach works within given
environments and would require different classifiers for different
environments.

On the other hand, for the goal-to-action approach to work, the
sensorimotor systems of the two agents must be compatible [11];
i.e., the co-driver must be capable of seeing the action possibili-
ties latent in the environment (affordances, [12]) and generating
the corresponding action plans in a way very similar to a human
being, as a horse sees the affordable paths like humans. For a
self-driving agent with only locomotion capabilities, the affor-
dances are navigable corridors, with space-time restrictions from
moving obstacles. We further distinguish between physically
traversable spaces (e.g., the whole road) and legal corridors of

the traffic rules and assign them a different role in a hierarchical
sensorimotor system.

Notably, the inference of intentions between human beings
happens with the reuse of the sensorimotor system [11], [13],
[14]. While observing another person’s activity, the observer’s
motor system is engaged —without actual execution of the
action— in a way similar to what would be necessary to produce
the same action [15]. Hence, the mirroring process estimates
the observed agent’s sensorimotor system states that explain the
observations.

With the above elucidation, let us restate that this work deals
with the goal-to-action approach. Researchers have studied pos-
sible techniques to reproduce this mechanism for human-robot
collaboration. One is the MOSAIC architecture [16], [17], which
runs several predictive models in parallel (one per potential goal)
to test different hypotheses about the intent of the observed
agent. A very similar approach is the HAMMER architec-
ture [18], [19], which tests hypotheses about possible goals
versus observations, accumulating evidence (salience) of which
one is the most likely. To our best knowledge, the first use of a
goal-to-action approach in the automotive domain can be found
in [9] for a driver assistance system. In that work, potential goals
in a driving scenario are resolved into the instantaneous lateral
and longitudinal control that a human driver would produce,
which are then compared to the actual control used by the
driver [9, Fig. 7].

The study of human sensorimotor architectures can be a
guide to creating systems that emulate their behavior. In par-
ticular, the affordance competition hypothesis [20] describes
how potential actions are primed simultaneously in the human
“dorsal stream” and encoded in the “motor cortex” with pat-
terns of neural activation, whose level of activation (salience)
encodes the expected value of each action. Once the panorama
of the possible actions with relevant values is formed, the most
salient one may be selected. The selection process in the hu-
man brain is carried out in the basal ganglia [21]. It handles
noise in the motor system and sensory system by accumulat-
ing evidence of which action is likely to be the most salient
notwithstanding noise [22], [23]. The action selection process
can be biased to pursue longer-term goals, for example, by
selecting actions that create the precondition for the long-term
goal [24].

III. CO-DRIVER AGENT SENSORIMOTOR SYSTEM

As noted, the sensorimotor architecture of the driving agent
must satisfy two requirements. First, it must be compatible
with the human (the “like-me” hypothesis [11]), in the sense
that the agent recognizes the same affordances that a human
would see and creates similar action plans. Second, a mechanism
must permit the human to “steer” the driving agent’s choice by
indicating which affordance they prefer.

This section deals with the driving agent architecture in itself.
The following section deals with steering the agent choice.
Because of the interaction with a human, the driving agent is
also called “co-driver” [9].
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Fig. 1. Action priming. Different affordances are mapped onto active regions
on the motor space (center). These are later combined into a general salience
function (right) that indicates the optimal choices. By weighting the salience it
is possible to steer the agent final choice.

A. Layered Control Architecture and Affordance Competition

The co-driver agent (with no interaction) is described in
detail in a previous work [3]. We recall here only the elements
necessary to enable the interaction mechanism.

The co-driver sensorimotor system is made with a layered
control architecture [25]: a cognitive architecture that follows
the putative organization of the human sensorimotor system into
1) an action priming phase, and 2) a following action selection
phase. The priming step aims to detect the affordances and
“priming” motor plans for all of them simultaneously. The goal
is mapping the perceived affordances onto estimates of their
“salience” (see next) via perception-action associations. The
selection step must choose one affordance, and the choice is
carried out with a centralized mechanism based on affordance
competition [20].

Layered control architectures have very attractive features.
First scalability: if new action possibilities are discovered, the
agent needs only to learn the corresponding priming loop, and
the newly discovered affordances, encoded in a standard salience
scale, become immediately available for competition. Second,
it is possible to steer (or bias) the action choice by artificially
magnifying or reducing the salience of specific affordances [24].
This mechanism can be exploited internally by the agent itself
(e.g., [3, III-C]) or for interaction, which is the purpose of the
present work. Finally, adaptive behaviors emerge from the con-
tinuous reiteration of affordance competition (e.g., [3, III-A]).

B. Action Priming

Priming means the instantiation of the salience of each affor-
dance and its encoding in an appropriate space. The process is
carried out with excitatory and inhibitory loops.

1) Excitatory Loops: Excitatory loops implement associa-
tions between navigable spaces and the corresponding salience.
The navigable space is organized in a hierarchy of affordances, as
explained in Fig. 1. On the top stands the physically traversable
space (a), e.g., the road including the lateral banks. At the second
level stands the legal space, such as, e.g., lanes (b and c). In
Fig. 1 there are three affordances: a, remain in the road, b follow

the lane and c change lane. The first corresponds to physical
integrity, and the latter two are legal requirements. Note that if
the centerline were continuous, c would not exist.

The actions that the agent may produce are trajectories that
originate from the current configuration. Since a vehicle has
two controllable degrees of freedom, the whole space of pos-
sible actions is spanned by the specification of the longitudinal
control j(t) and the lateral control r(t).1 The dynamics of a
vehicle are in part stochastic because of external disturbances:
an action u = {j(t), r(t)} may generate a family of trajectories
γ. The stochastic vehicle response {j(t), r(t)} → γ is speci-
fied by a probabilistic motion model (in our case, probabilistic
motion models were learned with a technique similar to [4]).
We hence begin with a mapping u → γ from a generic action
u = {j(t), r(t)} to the distribution of generated trajectories γ.
For every family of trajectories γ, a scalar functional V (u) can
be defined to represent how good or desirable that action may be.
Different affordances i have a different functionalVi(u) because
of the different spatial domains in which the trajectories γ must
stay.

In our implementation (but other implementations are possi-
ble), the functionals Vi(u) have two factors: 1) for the quality of
the lateral control, the probability of remaining in the specified
spatial domain i (i ∈ a, b, c) for a sufficient time (alternatively
the time resting in the domain i given a threshold probability),
2) for the quality of the longitudinal control, the travel time,
subject to speed limits and comfort criteria such as the speed in
curves [26].

Since the agent is primarily concerned with selecting the
current control {j(0) = j0, r(0) = r0} —in adaptive behavior
future controls can be modified later—, a definition of salience
as a means to express how good the choice of {j0, r0} may be
in relation to affordance i, can be given as follows:

si (r0, j0) = sup
u

(Vi(u)|r(0) = r0, j(0) = j0) . (1)

This means that the salience of the instantaneous choice
{j0, r0} for affordance i is the value Vi(ũ) of the optimal action
ũ among all actions beginning with {j(0) = j0, r(0) = r0}. In
Fig. 1 the boxes in the central column represent the contour plots
of the salience si(r0, j0).2

A global salience function s(r0, j0) can then be obtained
via aggregation of the individual ones, as in Fig. 1, right. One
possible aggregating function is a weighted max operator:

s(r0, j0) = max(wisi(r0, j0), i ∈ affordances), (2)

where weights wi may serve to steer action selection and to
prioritize the affordances. For example, wa � wb,c prioritizes
the choice of either b or c over a (i.e., the agent will use road
banks as a last resource).

2) Inhibitory Loops: Inhibitory loops implement associa-
tions between prohibited space-time locations and correspond-
ing points of the motor space where the salience must be reduced

1In our implementation j(t) is the longitudinal jerk and r(t) is the steering
rate. However, any equivalent set of input could work.

2It is not difficult to recognize the similarity with reinforcement learning,
where si(r0, j0) is the Q function estimating the future reward for choosing
action {j0, r0} (we have one Q function per affordance).
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Fig. 2. Action inhibition. Future space-time locations are mapped onto exclu-
sion regions in the motor space.

(partial inhibition) or zeroed (total inhibition). An example is
shown in Fig. 2. For moving obstacles, the future prohibited
space-time locations are separately computed from a precom-
puted prediction of the objects’ trajectories. The prohibited place
of fixed obstacles is straightforward.

For every spatial affordable region, e.g., a in Fig. 1, the
prohibited locations at times Ti are embedded into (1), e.g., by
excluding trajectories γ intersecting the location. Every location
maps onto an exclusion subregion of the motor space (Fig. 2,
right). An early example of this computation was given in [27].

C. Action Selection

The instantaneous control {j0, r0} is chosen (with robust
algorithm [3, Section II-D]) as the argument of the highest
salience in the global salience map (Fig. 1, right). Once {j0, r0}
is given, it is possible to step backward in the priming loop
and find which affordance causes the maximum and generate
{j(t), r(t)}.

IV. PRINCIPLE OF INTERACTION

There are two ways for biasing the action selection process.
One intervenes in the global salience function. For example,
different regions of the motor space can be weighted as follows:

s′(r0, j0) = s(r0, j0)w(r0, j0), (3)

where s′(r0, j0) is a modifyed salience obtained form s(r0, j0)
with weightsw(r0, j0). The second option intervenes at the level
of the individual affordances, by varying the weights wi in (2).

A. Longitudinal Bias

The longitudinal bias exploits the first mechanism. In (3) the
weights w(r0, j0) are redefined as follows.

s′(r0, j0) = s(r0, j0)(g − b)kj0, (4)

i.e.,w(r0, j0) = (g − b)kj0, where g and b are the gas and brake
strokes normalised to full stroke (i.e., reduced in the range 0-1)
and k is a convenient gain. In this way, when the human driver
presses the gas pedal, she favours the choice of faster affordance
(weight proportional to the longitudinal control j0). The opposite
happens if she presses the brake.

B. Lateral Bias

The lateral bias exploits the second mechanism. If we consider
the case with both one lane on the right (R) and one on the left

Fig. 3. Schematic representation of the interaction scheme between the human
and the artificial driving agent. By acting on dummy actuators, the human driver
can bias the decision-making of the “co-driver”.

(L), (2) may be rewritten as follows.

s(r0, j0) = max(wisi(r0, j0), i ∈ {L,C,R, a}), (5)

where (C) is the current lane and a is the drivable road. To
influence the choice of the left or right affordable lanes, the
weights wR and wL (as used by the co-driver in the autonomous
mode) are replaced by modified weights w′

R and w′
L, defined as:

w′
R = wR max(0.1, (1 + α)),

w′
L = wR max(0.1, (1− α)), (6)

where α is the normalized steering wheel rotation (for a conven-
tional rotation that encodes the maximum effect). The maximum
lateral bias doubles one weight and reduces at 10% the other.

C. Implementation

In our implementation, the human driver produces the biases
α, g and b through inert steering wheel and pedal actions (Fig. 3).
The steering wheel rotation changes the weights of the left and
right lane affordances as in (6) and, simultaneously, the actions
on the pedals modify the salience according to (4).

Notably, the biasing mechanism works safely. For example, a
human’s request for faster travel is interpreted in the context of
affordable actions —just like the horse maps the rider’s wishes
into the world. It only favors the choice of faster affordance if
it exists (if it does not exist, nothing happens). Similarly, if the
human acts on the steering wheel, he/she favors the choice of an
affordable lane in that direction if it exists (if it does not exist,
nothing happens).

V. DEMONSTRATIONS

The following trials were carried out in the open-source
driving simulation environment OpenDS,3 which is available
online in the Dreams4Cars Zenodo community [28]. To run the
tests on a desktop PC, and make them more accessible, the pedals
and the steering wheel have been emulated with keyboard arrows
(gaming control devices are also supported).

The examples demonstrate emergent interactions, showing
that 1) the human driver can influence the co-driver agent’s
decision-making, obtaining a lane change whenever possible
and safe; 2) the co-driver can dismiss the human’s suggestions
if they are useless or dangerous.

3https://opends.dfki.de/

https://opends.dfki.de/
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Fig. 4. (A) Bird’s-eye view of an example scenario with two affordances:
a “car-following” and b “overtaking”. (B) In the control space, active regions
(green) and inhibited regions (yellow or red) encode the value of lateral and
longitudinal control [3, Section II.C.5].

Fig. 5. Example 1. Human bias (red) and co-driver agent actions (black). The
leftward bias maps onto an existing alternative action (Fig. 4, B) that is adopted
by the co-driver agent.

A. Example 1: Overtaking by Acting on the Steering Wheel

This example shows how a human can promote an overtake
maneuver by signaling the intention with the steering wheel.
The scenario is described by Fig. 4, A: a two-lane straight road
where overtaking is possible and safe. The leading vehicle (red
car) travels at 45 km/h, and the speed limit is 50 km/h. In this
condition, the co-driver agent opts for car following because the
added value of overtaking would not compensate for the cost of
maneuvering to another lane. The situation is described in Fig. 4,
B, where the value of action a slightly prevails over action b even
if the latter would be a little faster (see [3, Section III-C] for an
in-depth discussion on this point).

Note that even if the co-driver agent chooses action a it
is aware that another affordable action b exists. The latter is
instantiated in the motor space: it remains covert but ready to
be used. A little lateral bias as the one presented in equations
(5)–(6), may hence be sufficient to switch action selection from
safe action a to safe action b. In this process, human activity
(slightly steering leftwards) is interpreted and projected onto
the leftwards actions that the co-driver agent recognizes in the
environment.

Fig. 5 shows the biases produced by the human driver and
the resulting interaction: the lateral bias, in the “Lateral” sub

Fig. 6. Example 1. Trajectory of the co-driver car and steering wheel angle.

chart, is the normalized steering angle α of equation (6); the
longitudinal bias is (g − b) of (4).

When the human driver repeatedly presses the left arrow on
the keyboard (corresponding to a leftward rotation of the steering
wheel), at circa 310 m, the lateral driver bias (α) gradually
increases, as shown by the red dotted line. At approximately
350 m, the bias becomes strong enough to switch the action
selection to b, which is shown in the chart with the black line
indicating that the co-driver intention becomes a left lane change.
Following the beginning of the lane change, at circa 360 m, the
human stops tapping the left arrow (equivalent to keeping the
steering wheel in the rotated position). At circa 390 m, the lane
change is completed (green dashed line). Then, even if the human
keeps the leftward bias, the co-driver agent switches to keeping
the (current) lane because there is no other lane to the left. At
about 420 m, the human releases the left arrow (equivalent to
releasing the steering wheel). Later, at about 590 m, after passing
the slow car, the co-driver autonomously returns to the right lane
(because in the autonomous mode,wR is slightly greater thanwL

to prefer the right lane if free). The bottom chart of Fig. 5 shows
the longitudinal state of the co-driver: “car-follow” means that
the choice of the longitudinal control is limited by inhibitions of
the preceding vehicle, such as the situation a in Fig. 4, B whereas
“free-flow” means free choice of longitudinal control, e.g., the
situation b.

For the sake of clarity, Fig. 6 shows the trajectory and the
steering wheel angle δ (magnified by a factor of 10).

Note that the co-driver agent reacts dynamically: it con-
tinuously updates action priming and action selection (in our
implementation, every 50 ms). Thus, if human drivers change
their minds, they can specify a new biasing pattern steering
the co-driver decision-making within one loop (50 ms). For
example, suppose they suddenly feel uncomfortable and want
to stop. In that case, they may tap the back arrow (or touch
the brake pedal), negatively increasing the longitudinal bias,
effectively signaling to choose actions that reduce the speed
(stop). Aborting the overtaking maneuver could also be obtained
by tapping the right arrow at any time.

B. Example 2: Overtaking by Pressing the Gas Pedal

The next example complements the above, considering the
same scenario but using the longitudinal bias. In this case, the
bias (g) is produced by pressing the gas pedal (i.e., repeatedly
pressing the up arrow in the OpenDS version), which gradually
increases the weight of the bias function given in (4).
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Fig. 7. Example 2. Human bias (red) and co-driver agent actions (black). The
forward bias maps onto an existing alternative action (Fig. 4, B) that is adopted
by the co-driver agent.

Fig. 8. Alternative scenario. The co-driver (yellow car) has two possible goals:
either follow the car on the left a or that on the right b. There is no long-term
velocity convenience in changing lane.

Fig. 7 presents the results. After the human presses the gas
pedal at around 390 m, the longitudinal bias increases, as shown
by the red dotted line in the bottom chart of Fig. 7. At approxi-
mately 420 m, the longitudinal bias is strong enough to switch
the co-driver selection to b, as shown by the co-driver intention
on the top chart. The lane change is completed shortly after. The
maneuver lasts a shorter time than in Section V-A because the
human driver —with the pressure of the gas pedal— explicitly
requests acceleration; whereas, in the previous example, the
human driver was asking for a lane change (which permits a
faster speed after the obstacle is cleared). After the overtaking
maneuver, the co-driver agent returns autonomously to the right
lane, which is logical given that the right lane is free. However,
as in Example 1, the human driver can oppose the return to the
right with actions that keep the salience of the left lane high.

C. Example 3: Steering Wheel Pulse with Blocked Left Lane

In this case, the left lane is occupied by a second car, as shown
in Fig. 8, A. Both cars travel at 45 km/h. If not blocked, the co-
driver could travel at the the speed limit, i.e., at 50 km/h. There
are two possible behaviors that are instantiated in the motor
space with two salience functions, humps and local maxima
(blue dots): a and b. Unlike Fig. 4, B is not faster than a —the two
have the same longitudinal control. Furthermore the salience of
a is greater than b because the latter discounts the cost of the lane
change. Without human directives the co-driver hence follows
car a.

Fig. 9. Example 3. Human bias (red) and co-driver agent actions (black). The
leftward bias maps onto an existing alternative action (Fig. 8 b) producing a lane
change without overtaking.

Fig. 10. Example 4. Human bias (red) and co-driver agent actions (black).
The forward bias does not maps onto any existing alternative action (Fig. 8) and
is ineffective.

Fig. 9 reports what happens when the human driver steers
to the left, at around 400 m. Although choosing the left lane
does not carry any tangible speed improvement, it can be safely
carried out, and the co-driver correctly understands the human’s
directive and moves to the left lane. As shown in the bottom
chart, the agent remains in the car-following state.

D. Example 4: Gas Pedal Pulse with Blocked Lanes (Rejected)

This case uses the same scenario above (Fig. 8) but, instead
of turning the steering wheel, the human driver presses the gas
pedal.

In this example, whatever the weight, the longitudinal bias
acts uniformly on the local maxima b and a. The co-driver agent
does not change its intention because the human faster speed
request cannot be satisfied. Fig. 10 shows that even after pressing
the gas pedal to full stroke (the red dotted line raises to 1 between
400 m and 580 m in the bottom chart), there is no effect on the
co-driver agent behavior. However, if the vehicle on the left lane
were slightly faster, there would be an effect.

E. Example 5: Vetoed Overtake Request

The last example presents the principle of the lower-level
veto [3, Section II.E-1]. Fig. 11, (a) shows the scenario: the
co-driver agent follows car a while the left lane is entirely
blocked by an overtaking car. In the control space (b), the local
maximum corresponding to goal b no longer exists: the salience
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Fig. 11. Alternative Example 2. The co-driver can only follow car a. Lane
change b is blocked by an overtaking car.

Fig. 12. Example 5. Human bias (red) and co-driver agent actions (black). The
leftward bias does not maps onto any existing alternative action (Fig. 8) and is
rejected.

hump for b is completely zeroed by the inhibition of the second
car.

In the example, the human driver attempts to force a lane
change by completely turning the steering wheel to the left, as
shown in the top chart of Fig. 12. This input raises the weight
of the left bias (Fig. 4) to 100 % (red dotted line), effectively
doubling the salience of any local maxima in the left lane.
However, this has no effect because no affordable action exists
in that lane. Hence, the co-driver vetoes the human’s indication
and remains on the right in the car-following condition. If the
human had pressed the gas pedal, the same result would have
been obtained.

Note that if at any moment the car on the left shows courtesy
and slows down, then the inhibition in the control space will be
updated. As soon as b is cleared, the co-driver will accept the
lane change request and comply with the human (i.e., no lane
change occurs until the car on the left gives way).

VI. GENERALIZATIONS AND LIMITATIONS

The previous examples dealt with the same two-lanes road.
However, the agent’s sensorimotor organization (Section III)
can accommodate a variable number of affordances, as they
are primed in parallel. For example, if there were a bifurcation
(i.e., two diverging roads), there would one affordance of type
a in Fig. 1 per road. Similarly, if there were other lanes, there
would be further affordances of type c susceptible to biases, with
corresponding, non-coincident activations in the motor space.
For example, if there were a further lane c at the left of b in

Fig. 8, (a) there would be a further activated region c in Fig. 8,
(b) A longitudinal bias could hence cause the selection of c and a
double lane change would occur. If the lane marking between b
and c were solid, c would not be a legal affordance and would not
be primed into the motor space, preventing the crossing of the
solid line. On the other hand, if double lane change maneuvers
were considered dangerous in the highway code and prohibited,
action priming could be restricted to the adjacent lanes. This
does not mean that the agent cannot drive on multilane roads but
that it can only change one lane at a time.

With the inhibition mechanism of Fig. 2 the direction of
the traffic may be arbitrary: first, future space-time regions are
determined from path prediction, and then they are used for
inhibition of the corresponding motor space regions regardless
of their order. This also works in intersections.

In the supplementary material, we provide three videos that
demonstrate more general situations such as the above. Video 1
shows an intersection scenario with two-way traffic. It compares
the behavior of the unbiased co-driver and the co-driver under
the human request of traveling faster. It shows that the co-driver
accepts to cross, using a partially inhibited affordance with fewer
safety margins. Video 2 shows how the human driver can tell the
co-driver to stop in a free parking spot using a combination of
backward and rightward biases. Finally, Video 3 shows driving in
a winding two-way road under the human request of traveling as
fast as possible on the left lane (maximum forward and leftward
bias). The co-driver returns to the right lane when meeting
vehicles in the opposite direction. At some point, the co-driver
aborts an overtake maneuver initiated under the strong human
bias.

A. Limitations of this Work

The goal of this letter is to demonstrate mirroring via biasing.
The study implicitly assumes that the interaction is between
two peer agents, mainly that the affordances instantiated by
the co-driver are safe (hence the co-driver can reject unsafe
requests). This may be true for SAE automation levels 4 and
3 as long as the operative condition meets the operational
design domain. However, the human driver might wish (or
need) to take some tighter control in various circumstances. One
primary reason for allowing a tighter control modality stems
from the ethical principle that states that artificial intelligence
should never hinder the human will. Another practical reason
for allowing tighter control may be related to the fact that even
a fully automated level 4 system might miss unconventional
affordances that could be useful in some circumstances. For
example, if the road were blocked, a level 4 car might stop
forever. However, a human driver could be aware that gravel
on the side of asphalt is “drivable” (an affordance that a level
4 vehicle might miss) and might carefully drive offroad to pass
the blockage.

The switch to tight control could be triggered when the
human biases exceed given thresholds. The implementation
of unrecognized affordances can be obtained with a modified
action-priming mechanism: the agent assumes that the human
might see affordances it does not know, and the whole motor
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space is instantiated with a uniform value so that the agent will
copy the human actions. The agent can keep partial inhibitions
for the obstacles to resist actions leading to a certain collision.

A different case is when an imperfect co-driver is unsure about
the safety of some of the affordable actions. For example, a
level 2 system might be confident about the safety of in-lane
maneuvers but not about lane change. The implementation of
interactions when the agent is unsure of specific affordances
may be obtained with a modified action selection mechanics: the
uncertain affordances (e.g., the lane change) may be chosen only
if they are simultaneously biased so that an implicit confirmation
is obtained. We must remark that the above considerations are
research directions for future work (not studied in this letter).

VII. CONCLUSION

We have shown how emergent smart interactions between
humans and intelligent vehicles of the type postulated by the
“H-metaphor” can be obtained by biasing the decision-making
of the co-driver agent. For this, the co-driver agent must have a
sensorimotor architecture modeled on the affordance competi-
tion hypothesis. Human activity is used to set weights that in-
fluence the co-driver action selection to navigate the affordance
landscape. The human driver input is a dummy driving control
that exploits the traditional human control devices available on
passenger cars, i.e., the steering wheel and pedals. The work
presented here is a study that nicely shows the working principle,
including the rejection of unsafe commands.

Future work is planned in a driving simulator to collect
the human’s opinion regarding the interaction with the agent
(how the agent can be influenced and how humans perceive the
agent response). Additional work will concern the definition of
learning-based biasing functions (e.g., (4)-(6)).
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