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Enhancing Lunar Reconnaissance Orbiter Images
via Multi-Frame Super Resolution for Future

Robotic Space Missions
J. I. Delgado-Centeno , P. J. Sanchez-Cuevas , C. Martinez, and M.A. Olivares-Mendez

Abstract—This paper presents a novel application of a Multi-
frame Super Resolution (MFSR) method for lunar surface imagery
called Lunar HighRes-net (L-HRN). In this work, we adapted
and used NASA’s Lunar Reconnaissance Orbiter (LRO) image
database to train the Deep Learning architecture for image su-
per resolution. Additionally, we also gathered an artificial image
dataset from our virtual Moon to improve the amount of input data
in the neural network training process. The network’s architecture
follows a standard MFSR algorithm that was enhanced for this
specific use case. The proposed MFSR method has been evaluated
using the well-known peak signal-to-noise ratio (PSNR) metric
against other generic super-resolution methods of the state of the
art. This work aims to improve environmental knowledge about the
lunar surface to enhance future autonomous robots capabilities on
the surface of the Moon.

Index Terms—Space robotics and automation: aerial and field
robotics.

I. INTRODUCTION

S PACE applications are currently attracting the interest of
several agencies and companies such as NASA, ESA,

SpaceX and Blue Origin. They are investing a lot of resources
in new missions [1]–[4] and exploitation plans. These missions
present a wide variety of objectives and challenges, such as the
study of the geological composition of celestial bodies and the
study of life’s presence at some point in the history of Mars,
among others. In most cases, they involve robotic systems to
perform in-situ and remote-sensing operations to avoid putting
at risk human life or integrity. Two recent examples are the
Perseverance rover [5] for Mars exploration and the Volatile
Investigating Polar Exploration Rover (VIPER) [6] which will
operate on the lunar surface. Particularly, Perseverance rover [5],
has a crucial role in the NASA’s Mars 2020 mission [2]. It
counts with a wide variety of sensors to monitor and study the
red planet’s environmental conditions, evaluate signs of life and
gather data to prepare human exploration in Mars. The VIPER
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Fig. 1. Super resolution methods applied to NASA’s LRO mission lunar
surface images. (a) Bicubic, (b) ESDR, (c) Lunar HighRes-net (this work), and
(d) Ground Truth. The images are presented in color map to perceive better the
difference between the results of each super resolution method.

rover [6] will explore the South Pole of the Moon and gather
data about water-ice concentration in this region.

Nowadays, autonomous space missions heavily rely on the
perception of the local environment. Moreover, it is well known
that the conditions where rovers navigate are varied and harsh,
and the success of the mission is ligated to have solid prior
planning. Then, it is crucial to have a good understanding of the
issues that a rover can face while performing its mission, such as
the type of obstacles, slopes, and craters in the way of the robot.

In this sense, it is clear that having good models of the surface
becomes necessary to select the landing site and optimally pre-
plan the mission. This is a crucial part while defining a mission
because, although the robot has onboard sensors to avoid dealing
with unexpected situations, the chances of success are doubtful.
Moreover, considering the limited endurance of these rovers due
to extreme environmental conditions, it is vital to minimize this
kind of reactivity actions. Fig 1 shows one specific result of
this work applying image super resolution (SR) to lunar images.
The authors identify this technique as a promising tool that can
improve decision-making in future missions.

Pre-landing information is mostly obtained through remote
sensing missions like NASA’s Lunar Reconnaissance Orbiter
(LRO) [7] and ISRO’s Chandrayaan-2 [8]. The first one is a
mission with the sole purpose of mapping the lunar surface by
using satellite instrumentation, providing an almost complete
lunar map. In contrast, the second one is a lunar exploration
mission consisting of a lunar orbiter, a lander and a rover. In this
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case, the orbiter analyzed the surface area prior to landing the
rest of the mission’s components with a high-resolution camera.

However, there can be complications due to the lack of reso-
lution in the gathered data used with this purpose because it can
potentially omit relevant details that would be vital for the mis-
sion’s design. For example, NASA’s LRO [7] have a resolution
of up to 0.5 meters per pixel in the images obtained through the
Narrow-Angle Camera (NAC). Furthermore, database statistics
show that only a 40 % of the images are this accurate. The rest of
the database presents half or worse (1-5 m/px) resolution, which
could lead to the issues previously mentioned. Unfortunately,
nowadays, the only alternative to improve this data seems to be
the launch of new space missions with better instrumentation
and sensors, which is costly and challenging to accomplish.

Image enhancement research on the field of remote sensing
applied to space bodies has not been widely explored, but in
its equivalent used on Earth imagery, there have been some
improvements in recent years. In [10], [11] and [12] different
methods of Single Image Super-Resolution (SISR) has been
proved and applied to already existing databases. This SISR
process enhances the quality of an image using either tradi-
tional Computer Vision (CV) algorithms or Deep Learning (DL)
architecture, such as Convolutional Neural Networks (CNN)
or Generative Adversarial Networks (GAN). Depending on
the type of input image (RGB, Grayscale, Multispectral), the
network varies, but the algorithms follow similar architectures.
The improvement in the data quality can be obtained without
any new mission and in a much faster manner. It is, therefore,
a profitable and useful technique to be used in space robotics
applications. As an alternative to SISR, another method can be
used to achieve SR using multiple frames from the same image.
This method is called Multi-Frame Super Resolution (MFSR),
and it fuses the information available in each low resolution
frame of a scene to generate a super resolution image. In [18], an
example of this method applied to remote sensing is presented.
A deep neural network is trained to perform the low-to-high
resolution mapping from several remote sensing captures of the
same image.

This work1 aims to solve the lack of image quality problem
by using the DL architecture Lunar HighRes-net. This network
is based on the MFSR architecture of HighRes-net [13] and it
has been applied to the data collected through NASA’s LRO
mission. The selection of this methodology was based on the
study of its equivalent on Earth [10]–[12] that shows that this
type of solutions provides a viable alternative to the launch on
new and costly missions. Due to the importance of precision,
while performing path planning for the missions, a multi-frame
fusion method is employed instead of a single image one. The
use of single captures of a particular region can lead to missing
details as environmental conditions are decisive when gathering
the information. The position of the sun, for example, can lead to
shadow a region with rocks or smaller craters that won’t appear
in the image, potentially causing problems when navigating
these areas during the mission. However, the use of multi-frame

1A video with a summary of our work was published in: https://youtu.be/
3SA7qDRDJxU

captures of a specific area of the surface will provide more details
that will be taken into account while performing SR, as the
images won’t be captured under the same conditions.

The rest of the paper is structured as follows: Section II
presents the different databases created for this work, including
the source and the method used to obtain image datasets suited
for the neural network training. Section III describes Lunar
HighRes-net, the network architecture employed for the lunar
surface MFSR. In Section IV, the results of this work are
shown, both images and the metric used for the evaluation of the
performance of the network. Lastly, in Section V the conclusions
of this work are stated, and future lines of work are presented.

II. MOON’S SURFACE IMAGES

A. NASA’s Lunar Reconnaissance Orbiter

NASA’s LRO [7] mission started in 2009 with the objective
of mapping the Moon to properly plan future space missions,
providing information about craters, landing sites and regions
of interest. Two stereo Narrow-Angle Cameras (NAC) and a
Wide Angle Camera (WAC) performed remote sensing, cap-
turing images of every sector of the Moon and providing three-
dimensional information of the lunar surface thanks to the stereo
image pair. After several years of orbiting the Moon, the mission
was able to almost complete (98.2%) the map of the whole
lunar surface. The regions that remain unmapped are mostly
permanently shadowed areas within deep craters.

B. SpaceR’s Virtual Moon

In the computer vision field, synthetic datasets have been
becoming popular in the last few years. Artificial image datasets
present an alternative to complete image collections for the train-
ing of neural networks. In both [23] [24], examples of the use of
Unreal engine for the creation of virtual worlds and training
scenarios are presented. In fields such as space, real images
are hard to obtain, as the instrumentation used for this purpose
is not easily accessible, and artificial datasets allow to have
well-rounded databases. In [25], a virtual environment with lunar
rocks was developed. This dataset presents an image collection
suited for lunar surface image segmentation. Another example
of these types of space synthetic data collection is introduced
in [26], where a photorealistic simulator was created to train
deep learning solutions for in orbit spacecraft pose estimation.

In order to improve the amount of data that would be used to
train the SR neural network, we created an extra collection of
images generated from a virtual model of the Moon designed
using the graphic engine Unreal Engine 4 [19]. As the software
provides several tools for the alteration of the environment,
the surface of the Virtual Moon can be modified as needed.
They allow the possibility of adding and removing details to the
scene whenever it is needed, which allows obtaining a complete
and well-balanced details-wise dataset. Also, in Unreal Engine
4 aerial images can be taken from the virtual lunar surface
with different resolutions emulating a space remote sensing
mission. Therefore, it can be used as ground truth to evaluate how
the MFSR approach works. Some examples of both SpaceR’s

https://youtu.be/3SA7qDRDJxU
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Fig. 2. Examples of the images used to generate the datasets of this work.
(a) SpaceR’s Virtual Moon, (b) NASA’s LRO.

Virtual Moon and NASA’s LRO images are shown in Fig. 2.
Additionally, a diagram of the database creation process done for
this work can be seen in Fig. 3. For the creation of the synthetic
image dataset, a script was developed to emulate the flight of
a satellite taking captures of the Virtual Moon’s surface. After
obtaining 100 images, the illumination conditions were changed
and the script was launched again. This process was repeated
four times and every gathered image was then downgraded and
sliced to obtain the required patches and LR-HR sets for the
training of the neural network.

C. Esa’s Proba-V

The datasets used in this work follow the structure of the one
used in [13], where an MFSR was developed to enhance the
satellite images of the Earth of ESA’s PROBA-V database [14].
PROBA-V was obtained by taking captures of the Earth’s surface
with an orbiting satellite. To every region of interest present in
the dataset correspond at least 9 low resolution and one high
resolution images. During this mission, a satellite captured low
resolution (300 m/px) and high resolution (100 m/px) images
from the surface of the Earth. Thus, each region captured in the
database has one high and several low resolution images of the
area due to the capture frequency set for the on-board sensors.
Those images are also accompanied by metadata which provides

Fig. 3. Database creation diagram. The process can be described as: 1. Image
acquisition (from LRO database and direct captures from the Virtual Moon), 2.
color intensity variation to emulate different lighting conditions and 3. different
downgrade methods applied for the resizing to obtain LR image sets for each
scene.

much more details of every region, as the atmospheric and
environmental conditions in which the low resolution images
are taken are different.

The images from ESA’s PROBA-V missions were taken from
74 different regions of the Earth at different points in time by the
satellites of the said mission. The database is comprised of 1450
scenes, which are split into 1160 scenes for training and 290
scenes for testing. Each scene is represented by one grayscale
HR image, with a 100 meters per pixel resolution and 9 to 20
grayscale LR images, with a resolution of 300 meters per pixel.
The size of the images is 384 × 384 pixels for the HR ones and
128 × 128 pixels for the rest. Also, each image has associated a
clearance map that indicates the area of the image that should not
be processed by the neural network, as it is covered by clouds.

D. Datasets Adaptation

In this work, we prepared an equivalent to ESA’s PROBA-V
dataset using NASA’s LRO and Virtual Moon images 2 for
MFSR. In the case of the Virtual Moon, the illumination settings
of the environment where modified to obtain 5 captures of the
same scene with different illumination. In the case of LRO’s
images, the intensity of the pixel was modified to simulate the
illumination change. Then, the same procedure was followed for
both types of images. First, the original images were sliced in
patches of 384x384 pixels, the considered ground truth. Then,
the high resolution images were downscaled to generate low
resolution (128 × 128 pixels) versions of them. By applying
different interpolation methods, such as bicubic, bilinear and
nearest neighbour, among others, every region of the lunar sur-
face captured selected for the training of the network would have
a ground truth and 20 low resolution images. This downgrade
process allowed to perform MFSR on both lunar surface dataset.

2Both of the datasets utilized in this work are published and available to
the public in: https://wwwfr.uni.lu/snt/research/spacer/datasets_tools, in their
respective sections LRO datasets and VirtualMoon.



7724 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 6, NO. 4, OCTOBER 2021

Fig. 4. Lunar HighRes-net MFSR diagram adapted from [13]. A set of multiple images of the same scenes are used as input of the network. These images are
fused recursively in pairs in the embedding layer of the network. Finally, upsampling is performed and the SR image is generated.

Following the structure from ESA’s PROBA-V, the 147 sets
of images gathered from the Virtual Moon and the 60 sets from
NASA’s LRO are comprised by one HR grayscale image with a
size of 384 × 384 pixels and 20 artificially downgraded LR
grayscale images with a size of 128 × 128 pixels. The sets
are divided into 135 for training and 12 for testing for the
Virtual Moon database, and 54 for training and 6 for testing
for LRO’s database. The artificial downgrade was done over
the HR images to be able to compare the results of the neural
network when enhancing the resolution of the images x3. This
downgrade was done rescaling the images using traditional CV
interpolations and varying the color intensity of the images by
1%. This process emulates capturing images from the surface
of the Moon at different points in time and with a variety of
boundary conditions.

III. MFSR METHOD

A. Lunar HighRes-Net

Image super resolution methods [15] enhance the resolution
of a single or multiple images using either traditional CV al-
gorithms or DL techniques. In other words, it increases the
perceptual quality and the number of details and features that
appear in one captured scene. Even though the most widespread
technique is SISR, in some cases, MFSR presents a good alter-
native to enhancing images with a lesser amount of details in
the scene, like for instance, space images such as lunar surface
pictures. The main assumption of MFSR is that a set of several
views collectively contain more details than any single image
of the same scene. The work presented in this paper focuses on
the utilization of MFSR with lunar surface satellite imagery, as
the enhancement of the images will provide higher perceptual
quality and resolution. The current satellite images of the lunar
surface or, in general, any celestial body often present a lack
of precision in details about the surface characteristics, and
therefore it can lead to imprecise planning of the space mission.

The neural network presented in this paper, Lunar HighRes-
net follows the same architecture of [13]. It introduces Highres-
net, a model to apply MFSR to remote sensing images of Earth
inside a single spectral band (grayscale). In general, the network
follows an encoder-decoder architecture that can be trained by
using multiple images from the same scene. The input sets

consist of a ground truth image with several lower resolution
versions of it. This type of architectures works by fusing the
information available in the low resolution images of a scene.
The embedding layer of the network consists of a convolutional
layer followed by two PReLU activations. The embedded states
are fused recursively in pairs, reducing by a half its number
each time. The final fused state contains the information of
every view, and it is encoded into a HR state. Finally, this
state is decoded into the resulting SR image. HighRes-net is
paired with another network called Shift-net that would perform
sub-pixel translations in order to align the ground truth and the
super-resolution generated image. This operation ends up max-
imizing their similarities thanks to the sub-pixels shifts, thereby
improving the quality of the results of the image enhancement.
Fig. 4 shows the Lunar HighRes-Net architecture diagram of the
process using the proposed network for MFSR.

The architecture of HighRes-net [13] included a clearance
map to train the network to prevent clouds for interfering with
the process. Thus, the network’s recursive fusion layers would
consider the clouds as a region with no information, while ob-
taining features and details from any of the others low-resolution
captures of the same scene. In this work, we have modified this
network architecture to avoid having this clearance map in the
process and maximize how the dataset is exploited. Apart from
this variation, Lunar HighRes-net follows the same pipeline.
The input and output images of the network are 128 × 128
and 384 × 384 pixels respectively. Thus, the network perform a
three times resolution scaling over the low resolution image set
to produce the SR image. The datasets employed in the training
and testing task have followed the same structure as the one
used ESA’s PROBA-V database originally, as it was stated in
Section II.

B. Validation Metric - PSNR

For the evaluation of this work, the metric Peak Signal-to-
Noise Ratio (PSNR) was used. It is the most used metric for SR
evaluation. It defines the ratio between the maximum power of a
signal and the noise that affects the fidelity of its representation.
When applied to images, it can be easily defined via the Mean
Squared Error (MSE). It can be described also as an objective
metric to measure the quality of the reconstruction of a lossy
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transformation. Given a monochrome image I and its noisy
approximation N , the PSNR can be stated as:

MSE =
1

mn

m−1∑

i=0

n−1∑

j=0

[I(i, j)−N(i, j)]2 (1)

PSNR = 20 · log10(MAXI)− 10 · log10(MSE) (2)

where i and j are pixel’s coordinates and MAX the maximum
intensity pixel value of the image I .

This metric has been widely used in the state of the art for SR
for a long time. In most cases, the average dB values of PSNR
obtained by the latest research works are in the range 30-40 dB.

IV. RESULTS

In this section, we validate the usage of the Lunar HighRes-net
neural network for obtaining SR images of the lunar surface.
To evaluate the performance of the network, the widely used
metric Peak Signal-to-Noise Ratio is used, following most of
the SR works in the literature. Additionally, three different
training input for the network are presented in the section to
perform a comparison among them. Lastly, the results produced
by the network are introduced along with a comparison to other
commonly used image SR methods.

A. Training and Transfer Learning

The training of the network to achieve SR on lunar surface
images was divided into two main steps. First, a base training
was done with ESA’s PROBA-V as input. Then, while having
the weights of this base training, a transfer learning approach
was used to prepare the network to work with lunar images.
Three different trainings were done to test the performance of
the network using different inputs. The different trainings done
over the network are:

1) PROBA-V: ESA’s database was the only one used as
an input for the training. The result trained network is
equivalent to the original HighRes-net.

2) PROBA-V + Virtual Moon: This case includes the pre-
vious training, while performing transfer learning and
training the network with additional image datasets from
the Virtual Moon database.

3) PROBA-V + Virtual Moon + LRO: Finally, this case
includes transfer learning from the previous one as well
with another training with the extra input from the adapted
NASA’s LRO database.

The core training of the network with PROBA-V’s database
was done over 400 epochs, with a batch size of 8. This size
was selected to be able to perform the training on a Nvidia’s
RTX 2080 graphic card. Default hyperparameters for the ADAM
optimizer and the same learning rates showed in [13]. For the
training after the transfer learning with both Virtual Moon and
LRO’s databases, 100 epochs were selected, keeping the batch
size and hyperparameters equal to the first part of the training.

The average values of PSNR, in dB, obtained through the
training with the three different inputs were analyzed to look
for the best results for both Virtual Moon and LRO databases,

TABLE I
AVERAGE PSNR TRAINING RESULTS WITH DIFFERENT INPUT DATASETS

(IN DB)

TABLE II
PSNR VALUES COMPARISON BETWEEN DIFFERENT SR METHODS (IN DB)

concluding that the combination of the three presented datasets
was key to a multipurpose solution for both image collections.

Lunar HighRes-net trained with images from the three
databases presented in this work have been proven to provide the
best results, as it can be seen in Table I. The addition of LRO’s
images to the training does not increase the SR performance of
the network with Virtual Moon’s images. However, it can be
seen how the image enhancement of LRO does improve when
including every type of dataset. It can also be seen how the Lunar
HighRes-net network perform better with lunar surface images
and a complete training than the base HighRes-net.

B. MFSR Results

For the experiments, the test image set defined previously in
the databases was used. They consist of the comparison between
the high resolution ground truth and the super resolution image
generated using the presented network. Lunar HighRes-net has
been evaluated using the images from both the Virtual Moon and
NASA’s LRO defined in Section II with the PSNR metric. These
results have been compared with other SR techniques to validate
that Lunar HighRes-net is a valid approach to lunar surface
image enhancement, and it achieves state of the art scores. The
results of enhancing the input dataset resolution x3 with the
different solutions are presented in the Table II. We used the
well-known open-source computer vision library OpenCV as it
has built-in methods that use networks for image SR that were
evaluated in lunar imagery for reference. For the comparison,
image scaling with bicubic interpolation was used to have a
reference of a SR traditional computer vision method. Addition-
ally, three machine learning methods were used: EDSR [20],
ESPCN [21] and FSRCNN [22]. These networks have been
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Fig. 5. Full image comparison between the different SR methods used in this paper. (a) Bicubic, (b) ESPCN, (c) FSRCNN, (d) EDSR, (e) Lunar HighRes-net,
(f) Ground truth. The size of the figure makes it possible to better appreciate the difference between methods.

proved to provide high detailed SR image solutions for many
applications, such as botanic and zoological imagery. Due to the
wide variety of SR applications where these architectures can
be utilized, they were selected for the comparison in this work.
These implementations were used on the lunar surface imagery,
and the results were evaluated comparing the SR version of the
scene with the ground truth also with the PSNR metric. Fig. 5
presents an example of the results obtained with the different
SR algorithms.

The quality of the generated SR images compared with the
ground truth of the test dataset is evaluated with the PSNR
metric in Table II. The results obtained after performing SR
on lunar images from both LRO and the Virtual Moon datasets
with the different methods are displayed. Bicubic interpolation
is one of the most basic traditional computer vision algorithms
of resolution enhancement, and it is compared as reference
with the rest of the methods. FSRCNN [22], ESPCN [21] and
EDSR [20] are selected as generic methods of deep learning SR
for comparison. Finally, the Lunar HighRes-net column shows
the results of this work, after the training with the combined
remote sensing datasets previously mentioned. The results of
Table II show that Lunar HighRes-net provides the best results
according to the PSNR when compared to the other methods.
Furthermore, a perceptual quality increase can be seen in the
output of the network. Some examples of the output of the
network can be seen in Fig 6 along with one of the input images
and the ground truth. High level features present in these images,
such as rocks or craters, show the easiest to notice resolution
enhancement achieved with Lunar HighRes-net. Even though

Fig. 6. Results from using Lunar HighRes-net on different images of
the databases created for this work. (a), (b), (c) LRO images, (d) Virtual
Moon image. The following link provides a folder with real size images:
https://wwwfr.uni.lu/snt/research/spacer/datasets_tools, in the corresponding
section of Lunar High-ResNet results.
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some of the SR images from the Virtual Moon display a high
PSNR due to the presence of small shadowed regions in the
scene, it can also be seen that the results of the x3 enhancement
achieve similar results to other SR network architectures in the
field of image improvement. As it was mentioned the average
values obtained in the process are similar to the state of the art
in image SR.

V. CONCLUSION

In this work, we presented Lunar HighRes-net, a deep-
learning based Multi-Frame Super Resolution method to en-
hance images of the Moon’s surface. We also introduced and
shared two databases that have been created for the training of the
presented network, one adapted from NASA’s Lunar Reconnais-
sance Orbiter mission imagery and a second one obtained from
a virtual Moon developed in Unreal Engine 4. These databases
are composed of image sets both artificial and real of lunar
surface images. Each set contains one high resolution image
(384 × 384 pixels) and 20 corresponding low resolution images
(128 × 128 pixels) of the same scene. A transfer learning ap-
proach was performed from ESA’s PROBA-V database training.
Training results evidence that the addition of the new datasets
created for this work to the training process of the network
improve the performance of the network. The results obtained
with Lunar HighRes-net achieves state of the art performance
(35-40 dB) according to the results evaluated with the well-
known Peak Signal-to-Noise Ratio for both image datasets. It
also presents a significant quality improvement over other well
known deep learning super-resolution approaches. Future work
in this research line will focus on fine-tuning performed over the
network Lunar HighRes-net. Additionally, new deep-learning
architectures based on Generative Adversarial Networks (GAN)
will be explored for space images super-resolution. These type
of networks achieve better results in some cases of the state
of the art of super-resolution when compared with convolu-
tional architectures. Lastly, it will be studied the estimation of
3-dimensional information from super-resolution stereo image
pairs. This will allow to increase the precision of the elevation
maps of the lunar surface and therefore aid in preparing new
space robotic missions on the Moon.
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