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Unsupervised Anomaly Detection for a Smart
Autonomous Robotic Assistant Surgeon (SARAS)

Using a Deep Residual Autoencoder
Dinesh Jackson Samuel and Fabio Cuzzolin

Abstract—Anomaly detection in Minimally-Invasive Surgery
(MIS) traditionally requires a human expert monitoring the pro-
cedure from a console, whereas automated anomaly detection sys-
tems in this area typically rely on classical supervised learning.
Anomalous surgical events, however, are rare, making it difficult
to capture data to train a model in a supervised fashion. In this
work we propose an unsupervised approach to anomaly detection
for robotic MIS based on deep residual autoencoders. The idea
is to make the autoencoder learn the ‘normal’ distribution of the
data and detect abnormal events deviating from this distribution
by measuring a reconstruction error. The model is trained and
validated upon both the publicly available Cholec80 dataset and
a set of videos captured on procedures using artificial anatomies
(‘phantoms’) as part of the Smart Autonomous Robotic Assistant
Surgeon (SARAS) project. The system achieves recall and precision
equal to 78.4%, 91.5%, respectively, on Cholec80 and of 95.6%,
88.1% on the SARAS phantom dataset. The system was developed
and deployed as part of the SARAS platform for real-time anomaly
detection with a processing time of 25 ms per frame.

Index Terms—Surgical Robotics: laparoscopy, multi-robot
systems, computer vision for medical robotics.

I. INTRODUCTION

IN RECENT years, Minimally-Invasive Surgery (MIS) has
attracted a great deal of interest, as it only requires small inci-

sions (5-30 mm) to provide the endoscope and other instruments
access to the surgical cavity, rather than the vast ones (approx-
imately 300 mm) demanded by traditional surgery. Endoscopic
surgery results therefore in shorter recovery times compared to
‘open’ surgery. Although robotic MIS (R-MIS) technology is
adaptive, precise and accurate, most R-MIS systems are not
designed to replace the main surgeon conducting the proce-
dure but to increase the safety and effectiveness of surgeries.
One such kind of human-machine interactive robotic system,
named ‘da Vinci,’ has been developed by Intuitive Surgical to
perform precise and complex surgeries through small incisions
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[1]. Robotic-assisted surgical techniques have the potential to
overcome human errors, by delivering high precision, reliability,
and accuracy under human supervision. In fact surgical proce-
dures can be very long, exhausting and cumbersome, leading to
fatigue and hand trembling [2].

The typical surgical environment encompasses a patient table,
a main surgeon, two assistant surgeons and two nurses. The
assistant surgeon plays a key role both before and during the
surgery. When using da Vinci, the main surgeon monitors and
controls the robotic arm from the endoscopic console, while
the assistant surgeon directs the da Vinci in handling the tools.
These robots are not autonomous and can be considered as mere
extensions of the main surgeon. Crucially, the assistant surgeon
is active for only 30% of the time and remains idle during the
rest of the surgery. As a result, using a da Vinci does not alleviate
human surgeons’ schedules, not does it lower the average cost of
a surgical procedure. In addition, in a pandemic such as the one
caused by Covid-19, severe shortages of assistant surgeons and
additional safety measures gravely limit the number of surgeries
to be carried out, at a cost of thousands of valuable lives.

A. Anomaly Detection in Endoscopic Surgery

During endoscopic minimally-invasive surgery, a surgical
instrument known as trocar (basically a hollow tube) is inserted
into a hole in the patient’s body as a means of introduction for
cameras and laparoscopic hand instruments. The main surgeons
performs the surgery with the help of the visuals from the
endoscopic camera; hence, a clear field of view is of paramount
importance. Unfortunately, the latter often happens to be oc-
cluded in unexpected fashions, resulting in a limited usability of
the endoscopic feed. Occlusions or any event that deviates from
the normal workflow of the procedure are called anomalies. Dif-
ferent types of anomalies exist, including bleeding, the presence
of smoke due to surgical electro-cauterisation, the blurring of
camera lenses, or the camera being out of the trocar at some
point during the surgery. Fig. 1 shows examples of anomalous
scenes occurring during endoscopic surgery. In an autonomous
surgical environment, in addition, anomalies may result from the
camera being too close to the region of interest, tools completely
occluding the view during the procedure or glares produced by
organs or other tissue.

Traditional methods for detecting anomalies in endoscopic
data combine traditional image-based feature extraction with
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Fig. 1. Types of anomalies possibly occurring during cholecystectomy.

supervised learning [3]–[6] and mostly focus on bleeding. Such
models are trained using both available anomalous and non-
anomalous data. Liu and Yuan, for instance, employ colour-
based feature extraction and a support vector machine (SVM)
classifier to detect bleeding from images acquired through Wire-
less Capsule Endoscopy (WCE) [7]. Ghosh et al. have proposed a
YIQ (Y-Luminance, IQ-Chrominance) color scheme for feature
extraction from WCE videos. To differentiate bleeding from
non-bleeding frames, statistical measures of the pixel values
such mean, skewness, median, and minima are computed. Fi-
nally, a standard SVM is employed for classification. Similar
approaches can be found in [8] and [9]. Research on smoke
detection has been rather limited in endoscopy, whereas it has
attracted more interest in non-medical applications such as forest
fire and surveillance smoke detectors. Nevertheless, Leibetseder
et al. have proposed a saturation analysis for extracting features
from endoscopic video frames and used an 8-layer AlexNet for
classification [10].

All such methods, however, go nowhere near as far as to
meet the needs of real-time anomaly detection in R-MIS. The
fundamental reason is that anomalous events of any kind, rather
than the most anticipated ones such as bleeding and smoke, can
happen in autonomous robotic surgery, making any approach
based on supervised learning unsuitable. To compound the issue,
to the best of our knowledge there currently is no accepted bench-
mark in anomaly detection in endoscopy, either supervised or
unsupervised. Authors use different training/testing splits (e.g.
a random selection of bleeding vs non-bleeding frames) and no
dataset specifically designed for this task has been proposed yet.

B. Rationale for Unsupervised Deep Anomaly Detection

Real-time video anomaly detection in R-MIS is challenging
due to the varied nature of the anomalies, the sparse occurrence
of anomalous events, and the imbalance between the amount of
data available under normal and abnormal conditions. Labelled
data for anomalous events is typically unavailable and even
hard to define in robotic-assisted surgery. A possible solution
is provided by unsupervised learning, in particular in a deep
learning formulation, which does not rely on any annotation.
In particular, a class of deep neural networks known as deep

autoencoders (DAE) has recently been proposed that is suitable
for this task. An autoencoder consists of an encoder and a
decoder. The encoder takes the input images/frames and reduces
their dimensionality by mapping them to a latent space. The
resulting ‘bottleneck’ features from this latent space are used by
the decoder to minimise the error between original and recon-
structed frames. As argued in [11], when applied to videos the
learned autoencoder reconstructs regular motion with low error
but incurs higher reconstruction error for irregular motions. The
intermediate layers, whose size is smaller than both the input and
the output layers, are designed for learning compact semantics
as well as reducing noise. In fact, dimensionality reduction has
been shown in the past to improve the result of other forms of
unsupervised learning such as clustering [12]. Following this
rationale, Jefferson et al. have proposed an anomaly detection
system for videos which uses autoencoders and predictive con-
volutional LSTMs. Their model generates video frames from
a sequence of input ones and predicts abnormal video frames
using the reconstruction error principle [13].

Some efforts in the context of unsupervised video anomaly
detection have been made in the wider computer vision field.
E.g., Cho et al. have proposed an implicit autoencoder with a
SlowFast network structure for anomaly detection in surveil-
lance videos [14]. Recently, a robust unsupervised anomaly
detection approach has been proposed by Wang et al. which
employs a ConvGRU-based prediction network for capturing
the spatiotemporal dependencies characterising normal data to
predict anomalous frames [15].

C. Contributions

In this letter we propose a deep autoencoder-based approach
to real-time video anomaly detection, which learns spatial in-
formation from the input video frames and strives to reconstruct
the input video frames with low error. The approach is validated
using two datasets: the publicly available Cholec80 dataset,
adapted for anomaly detection, and a SARAS dataset of videos
capturing radical prostatectomy (RARP) procedures conducted
on artificial anatomies (phantoms), achieving extremely promis-
ing results. In summary:
� We propose the first deep unsupervised system for video

anomaly detection in endoscopic surgery.
� We contribute the first benchmarks for unsupervised sur-

gical anomaly video detection, based on the existing
Cholec80 dataset and our own SARAS dataset.

� Our results show that our approach is able to detect all
typical surgical video anomalies with high accuracy.

� The system has been implemented and deployed in SARAS
for video anomaly detection in real-time.

We plan to release our annotation upon acceptance to share
the new benchmarks with the community.

II. DEEP RESIDUAL AUTOENCODERS

Unsupervised learning approaches have recently gained mo-
mentum in computer vision, thanks for their not relying on ex-
pensive and time-consuming labeled datasets. Here we propose
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Fig. 2. Architecture of a deep residual autoencoder.

in particular to tackle anomaly detection in an unsupervised
approach based on deep residual autoencoders.

The latter are a form of generative deep neural network, in-
spired by the discovery by neuroscience of shortcut connections
in the brains of various animals, in turn emulated by residual con-
volutional neural networks [16], [17]. The term residual learning
relates to variables that consist of residual vectors between
two segments of a long sequence. Residual vectors have been
shown to be effective in learning shallow feature representations
for image recognition tasks [15], [16]. Based on these facts,
residual convolutional neural networks have been proposed for
improving the accuracy of deep learning networks [18], [19].

The architecture consists of a continuous, stacked sequence of
deep residual blocks (DRB), connected in a sequence with short-
cut connections in a residual CNN. Each deep block consists of
three convolution layers (see Fig. 2). The three sequentially-
connected convolution layers collectively map an input x to

an output F (x). The latter is then added to the input x of
the DRB via a shortcut connection. Overall, the output of the
deep residual block can be expressed as H(x) = F (x) + x. The
condition F (x) = 0 indicates the disappearance of the network
gradient weights, in which case H(x) = x tends to an identity
mapping that decreases the network’s depth while guaranteeing
classification accuracy [20]. Biological findings in the brain
show the pivotal role of similar hidden shortcut connections
for synchronised motor movement, recovery from injuries, and
reward learning. This mechanism has thus been injected into
deep learning, namely residual CNNs and U-Net [21], [22].

III. METHODOLOGY

The proposed methodology for anomaly detection is thus
based on an unsupervised learning approach using a deep resid-
ual autoencoder. The shallow layers of the encoder are connected
to the decoder’s deep layers using shortcuts to encourage the for-
mation of identity mappings (see Fig. 2 again). The autoencoder
learns from a dataset of ‘normal’ videos and uses the learned
parameters to identify abnormal behavior by thresholding the
reconstruction error. When compared with the concatenated
shortcuts in U-Net [22], these residual connections have the
property of minimising the number of model parameters and
of enhancing learning by propagating gradients between layers
more efficiently.

A. Architecture

A typical deep residual autoencoder has n inputs and m
target outputs. The encoder part consists of a sequence of Deep
Residual Blocks which aim to compress the input image to
a latent representation. This is followed in the decoder by a
sequence of the same number of DRBs designed to reconstruct
an input image by taking it back to its original dimension (Fig. 2).
The architecture thus has a symmetrical structure in which layers
laying on opposite sides of the bottleneck mirror each other.

Each deep residual block comprises three convolutional lay-
ers, followed by a rectified linear unit (ReLU) activation function
and batch normalisation (BN) for re-scaling to improve training.
Average pooling is applied after the convolutional layers to ex-
tract rich, smooth spatial features while preserving localisation
information. Because of this, the output of each residual block
differs in terms of the size of the resulting feature map, making
it difficult for the gradients to propagate through consecutive
blocks at training time. To address this problem two types of
residual connections, known as ‘short’ and ‘long’ connections
are used in the model. A short residual connection is used locally
within the convolutional layers of each DRB, where feature
maps have identical dimensions across layers. Long residual
connections are also established between pairs of DRBs in
corresponding encoder and decoder layers. These cut across the
bottleneck to tackle the issue with vanishing gradients at a global,
network level.

More in detail, let l denote an encoding layer and L the cor-
responding decoding layer of the network. The input and output
of the encoding layer l are denoted by Xl and Yl, respectively,
and by XL and YL for the corresponding decoding layer L. The
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residual connection between corresponding layers mitigates the
loss of information when backpropagating losses during training
[23]. The relationship among the relevant quantities is illustrated
in Eq. (1):

YL = Xl + fL(XL,WL) = Xl + fL(gL(fl(Xl,Wl)),WL),
(1)

where the activation functions for the encoding layer l
and the corresponding decoding layer L are denoted by
fl(Xl,Wl) and fL(XL,WL), respectively. Consequently,
XL = gL(fl(Xl,Wl)) represents the recursive mapping be-
tween the shallow encoder layer input Xl and the deep decoder
layer input XL. In Fig. 2 K denotes the size of the convolution
kernels. Deep autoencoders can efficiently learn an encoding
from input data through dimensionality reduction via bottleneck
features [24].

B. Reconstruction Error-Based Detection

As explained above, in our approach anomaly detection is
reconstruction error-based. The hypothesis is that, after the
learning process, the autoencoder can reconstruct input frames
never seen before, under the assumption that the latter resemble
‘regular’ frames observed during training. Conversely, an au-
toencoder would struggle to reconstruct anomalous frames not
matching the learnt feature maps. Therefore, abnormal frames
would have a high reconstruction cost when compared to normal
frames. Our error measure is based on the relative difference
between normal and abnormal structures, rather than its absolute
value. To evaluate the performance of the system, we use a
robust regressive loss function known as root mean squared
error (RMSE). The RMSE loss function heavily penalises re-
constructed values which stray far from ‘normal’ values, and is
defined as:

RMSE =

√∑M
i=1

∑N
j=1 (R [i, j]− F [i, j])2

M ×N
, (2)

where R[i, j] and F [i, j] are the pixel values of the reference
image coordinates and the reconstructed image, respectively.

IV. EXPERIMENTAL RESULTS

Our residual autoencoder architecture was trained on a
Quadro RTX 6000 8-GPU server with 24 GB VRAM per card.
Performance was evaluated using both anomalous and non-
anomalous (normal) frames generated by the SARAS demon-
stration platform and an existing dataset in the surgery domain,
Cholec80, adapted for anomaly detection. In our tests, each
frame in the input video was passed to the autoencoder in order
to measure the reconstruction error.

A. Datasets

The Cholec80 dataset contains 80 videos of cholecystectomy
procedures, performed by 13 different surgeons [25]. The videos
are captured at 25 frames per second (fps) with a resolution
of 854 × 480 pixels, and contain both anomalous and non-
anomalous frames. As it was designed for phase recognition

and tool detection rather than anomaly detection, in Cholec80
each frame is labelled with the phase of the procedure and
the presence of tools (at 1 fps). The model was also tested
upon a dataset acquired through the SARAS SOLO-SURGERY
system [26]. Prostatectomy was performed on a 3D-printed
‘phantom’ prostate by both a da Vinci and a pair of SARAS
robotic arms. Our SARAS dataset contains 18 video clips
captured at 25 fps and 720 × 480 resolution, portraying only
non-anomalous data (as anomalies are difficult to simulate in
a phantom environment). SARAS videos also come with extra
annotation in the form of 23 relevant classes of surgeon actions,
as in the real-world SARAS-ESAD surgical dataset used for
a recent MIDL 2020 challenge on surgeon action detection
[27]. Note that, although the SARAS dataset does not contains
any surgical anomalies, it is affected by a number of techni-
cal ones such as blocked views or loss of focus, which can
actually mimic anomalies one would expect in a real-world
setting.

B. Training and Testing

Selection. In our tests the data for training the model is
carefully chosen to avoid the presence of any anomalous frames.
This does amount to a sort of ‘implicit’ supervision signal,
making the distinction between supervised and unsupervised
approaches less distinct. In each dataset we selected a subset
of frames for training and a separate, disjoint set of frames for
testing. For Cholec80 we identified 65 ‘normal’ video clips for
training. For testing, 3 video clips containing anomalies were
selected using domain-specific knowledge from surgeons, as
this is crucial for this kind of work. In total 5584 frames were
selected for testing and manually labelled. The model for the
SARAS phantom dataset was trained upon a suitable selection
of frames from the 18 video clips and tested on a total of 4799
frames. Again, domain knowledge was used in the selection
process.

Protocol. For training, video frames were resized to 128×
128 pixels to be passed as input to the deep residual encoder-
decoder pipeline. While a larger batch size and learning rate
may affect the model’s generalisation power due to sharp swings
in the training function, a smaller batch size helps the model
converge faster to a better global optima. Hence, in our experi-
ments we set an optimal batch size of 512 frames and a learning
rate of 0.001. An Adam optimizer was used. As a loss function
we adopted L2 Mean Square Error (MSE), which measures the
average square error between input and reconstructed images.
The model was validated using a small fold containing 583
normal and 442 anomalous frames in order to find the best
number of epochs for model training. The accuracy on the
validation fold was computed for different values of the number
of epochs to select the best such value, resulting in 40 epochs
for Cholec80 with an anomaly detection accuracy of 85.2% and
in 30 epochs on the SARAS dataset with an accuracy of 94.6%.
In our tests we found that it was not necessary to introduce all
types of anomalies in the validation fold, as even a small fraction
of anomalous frames is enough to make the model learn the data
distribution and find the best hyperparameters.
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Fig. 3. Reconstruction error distribution over SARAS’s test fold.

C. Anomaly Detection

Once the optimal epoch number is identified, the model is
tested on the selected test fold, which contains both anomalous
and non-anomalous frames.

Error distribution. Fig. 3 shows the distribution of the re-
construction error over the test fold for the SARAS dataset,
as produced by the trained autoencoder. The graph shows a
clear separation between the error associated with the two types
of frames, supporting the validity of our reconstruction-based
approach.

Choice of threshold(s). To quantitatively discriminate
anomalies and prompt the system to take precautionary actions,
such as suction in case of bleeding or smoke or calling for manual
intervention for other types of anomalies, we employ a threshold
approach. The optimal threshold is found using the n− th per-
centile of the error distribution from normal frames. For instance,
n = 95 means that the threshold is such that 95% of the normal
samples have a reconstruction error lower than the threshold. For
SARAS this yields 57.4, so frames whose reconstruction error
is above 57.4 are considered as anomalous. To find the optimal
value of n we ran an empirical analysis by plotting the accuracy
as a function of n and selecting the optimal n∗.

For the Cholec80 dataset we selected both a lower threshold θi
and an upper threshold θj , so that an anomaly would be flagged
whenever the reconstruction error for the test frame was below θi
or above θj . The reason for using a lower and an upper threshold
is the effect of smoke, which tends to lower the value of the
reconstruction error due to saturation of the pixel intensities in
the frame. The upper threshold was determined using the n− th
percentile approach, while the lower one was set to the lowest
reconstruction error for a normal frame.

Fig. 4 shows the interactive visualisation dashboard we de-
ployed for live data experimentation, with both the reconstruc-
tion error graph generated by the trained autoencoder and the
reconstructed images for some sample anomalous frames. The
X-axis represents the frame number, while theY -axis represents
the reconstruction error value.

Performance measures. After having an expert manually
label a significant fraction of the video frames in the two
datasets as either normal or anomalous, as already explained,
our anomaly detection approach was evaluated by means of the
usual precision and recall measures:

Recall =
TP

TP + FN
, Precision =

TP

TP + FP
, (3)

Fig. 4. A, B, C and D plot the reconstruction error over time and a pair of
reconstructed/actual anomalous frames for four videos in the Cholec80 dataset.
The X-axis represents the frames and Y-axis represents the reconstruction error.
Anomalies with different causes are considered. E and F do the same for
two videos of the SARAS dataset, one containing an anomaly (blocked view,
corresponding to spikes in the reconstruction error) and one not containing any.
In each block the frame portrayed on the left is the last in the sequence plotted
in the graph.

TABLE I
RECALL, PRECISION, F1-SCORE OVER THE CHOLEC80 TEST FOLD

TABLE II
RECALL, PRECISION, F1-SCORE OVER THE SARAS TEST FOLD

where TP is the number of true positives (anomalous frames),
FP the number of false positives and FN that of false negatives
(normal frames). Although anomaly detection is completely un-
supervised, this labelling was conducted to allow a quantitative
assessment of the system’s performance.

D. Detection Accuracy

In Tables I and II the performance of our model is com-
pared with that of two competitors: the Ganomaly (gener-
ative adversarial network for anomaly detection) approach
in [28] and a deep autoencoder similar to ours but without
residual connections (DAE without RC). Standard evaluation
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metrics such as recall, precision and F1-score are used for
performance analysis on the Cholec80 and SARAS dataset,
respectively.

As it can be appreciated, the Ganomaly [28] approach of
estimating the reconstruction error directly in the latent space
using a GAN architecture turns out to be inferior to our approach
of measuring the reconstruction error in the RGB space. Fur-
thermore, autoencoders without residual connection are shown
not to be good at reconstructing frames, because of the afore-
mentioned issue with gradient loss in the encoding/decoding
cascade. The absolute performance of our model is quite satis-
factory, although it flags significant challenges. On Cholec80,
our model detects anomalies with a specificity of 57.1%, a recall
of 78.4% and a precision of 91.5% using a threshold range of
[θi = 48, θj = 65]. On SARAS, our model achieves a speci-
ficity of 98.5%, a recall of 95.63% and a precision of 88.10%.
Here anomalies are detected using a upper threshold value
θi >= 57.4.

Speed-wise, the processing time on a single NVIDIA GTX
1070 GPU with 8 GB VRAM is 25 ms per frame, for clips with
frame resolution 854× 480.

V. DISCUSSION AND CONCLUSIONS

Overall, the proposed architecture has been shown capable
of detecting anomalies in basically real-time in an unsupervised
fashion and with satisfactory accuracy. The model uses deep
autoencoders with residual connections to propagate gradient
values throughout the network more reliably. The complete
system was validated on the real-data Cholec80 surgical dataset
(suitably augmented) and the SARAS phantom dataset, achiev-
ing promising results for unsupervised anomaly detection in
endoscopic videos.

We compared our results with that of a GAN based approach
in which error is measured in the latent space, and with that of
autoencoders without residual connections, showing the supe-
riority of our method. Nevertheless, the absolute performance
numbers attest that much progress is needed in unsupervised
methods for anomaly detection to allow their real-world de-
ployment in autonomous surgical environments. A number of
research avenues remain open. One could think of adding a small
quantity of anomalies to the validation fold (since annotation is
available) to enforce separation. However, in most cases there are
no anomalies to do supervised learning upon (e.g. in the SARAS
phantom dataset surgical anomalies are not present). In addition,
if we teach the system what an anomaly is during training it will
likely not be able to detect other (possibly unforeseeable) forms
of anomaly not in the training set.

Another observation is that the reconstruction error may vary
even in absence of anomalies depending on the complexity of the
image. Furthermore, some anomalies are spatially localised (e.g.
bleeding), suggesting that the overall reconstruction error should
be replaced by a pixel-wise distribution of the error. We will
explore autoencoder architectures which exploit this principle
in the near future.

Finally, the approach can be extended to detect anomalies
using 3D video feature extraction in a GAN architecture, com-
bining the strength of the two approaches.
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