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Pose Consistency KKT-Loss for Weakly Supervised
Learning of Robot-Terrain Interaction Model

Vojtéch Salansky @, Karel Zimmermann

Abstract—We address the problem of self-supervised learning
for predicting the shape of supporting terrain (i.e. the terrain
which will provide rigid support for the robot during its traversal)
from sparse input measurements. The learning method exploits
two types of ground-truth labels: dense 2.5D maps and robot
poses, both estimated by a usual SLAM procedure from offline
recorded measurements. We show that robot poses are required
because straightforward supervised learning from the 3D maps
only suffers from: (i) exaggerated height of the supporting terrain
caused by terrain flexibility (vegetation, shallow water, snow or
sand) and (ii) missing or noisy measurements caused by high spec-
tral absorbance or non-Lambertian reflectance of the measured
surface. We address the learning from robot poses by introducing
a novel KKT-loss, which emerges as the distance from necessary
Karush-Kuhn-Tucker conditions for constrained local optima of a
simplified first-principle model of the robot-terrain interaction. We
experimentally verify that the proposed weakly supervised learning
from ground-truth robot poses boosts the accuracy of predicted
support heightmaps and increases the accuracy of estimated robot
poses. All experiments are conducted on a dataset captured by a real
platform. Both the dataset and codes which replicates experiments
in the paper are made publicly available as a part of the submission.

Index Terms—Deep learning for visual perception, represen-
tation learning.

1. INTRODUCTION

CCURATE real-time prediction of robot-terrain inter-

action from raw sensory measurements is crucial for
many mobile robotic tasks ranging from computing traversabil-
ity/costmap for high-level path planning [1] to state representa-
tion for low-level motion control [2]. Even though a usual low-
level map such as ICP-aligned lidar scans (optionally discretized
to voxelmap or heightmap) is often sparse and assumes terrain
to be rigid, it is often used as an input to these tasks [1], [3]-[6].
In contrast to others, we propose to predict an intermediate
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Fig. 1. Top: The real platform is equipped with four independently actuated
flippers, which allows traversing complex terrains. Bottom: The input x of
the prediction network hg is the sparse heightmap obtained by projecting the
ICP-aligned lidar scans on the discretized horizontal plane, enriched by visual
features. The proposed approach learns to predict the support heightmaps h
by enhancing the reconstruction loss by the pose-consistency loss. The pro-
posed pose-consistency loss explicitly models the robot-terrain interaction and
enforces the predicted support terrain to be physically consistent with the robot
poses. Ground-truth map and ground-truth poses used for learning are obtained
from all the measurements along the training trajectories.

representation — the shape of supporting terrain. We show that
such architecture outperforms existing state-of-the-art methods
in terms of accuracy of predicted supporting terrain and conse-
quently estimated robot poses. Since there is no straightforward
way to obtain the ground-truth shape of supporting terrains
without manual annotations, we propose to learn it in a self-
supervised way from “future”” maps and robot poses optimized
in simultaneous localization and mapping pipeline (SLAM).

We define the supporting terrain as the layer of terrain, which
can provide rigid support for the robot during its traversal. For
example, for flexible terrain such as grass, the supporting terrain
corresponds to the shape of the lidar-immeasurable rigid layer of
the terrain (ground). The shape of supporting terrain is modelled
by a dense 2.5D heightmap.

The most straightforward way of estimating the supporting
heightmap is linear interpolation from ICP-aligned lidar mea-
surement. We show that such an approach typically suffers from
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Fig. 2. Robot is represented as a set of mass points p;, m; Terrain is repre-

sented as heightmap fzj. Top: Network predicts the shape of the supporting
terrain (blue heightmap) from measurements available in the current pose.
The ground-truth pose is inconsistent with the terrain since the robot model
is in collision (red points). Bottom: Optimization of KKT-loss for a given
ground-truth pose yields physically plausible reconstruction, which does not
force the terrain to copy the shape of the robot.

(i) missing measurements caused by terrain self-occlusions,
(ii) the low spatial resolution of distant terrains, (iii) missing or
noisy measurements caused by high spectral absorbance or non-
Lambertian reflectance of the measured surface, (iv) exaggerated
height of supporting terrain caused by terrain deformations
(flexible vegetation, shallow water, snow or sand).

Issues (i) and (ii) could be partially overcome by learning to
interpolate the terrain in a self-supervised way, where ground
truth is estimated from offline-optimized 3D maps of the en-
vironment [7]. This approach partially suppresses (i) the ter-
rain occlusions and (ii) low-spatial resolution by introducing
the measurements from additional viewpoints into the learning
procedure, however (iii) the lidar unfriendly surfaces and (iv) the
terrain flexibility remains unresolved.

In order to address issues (iii) and (iv), we enhance the
fully-supervised reconstruction loss of [7] by a new pose-
consistency loss; see Fig. 1 for the outline. The proposed ar-
chitecture simultaneously optimizes two losses: Reconstruction

loss L,.(h, fl), where ground-truth heightmap h (obtained from

offline-optimized maps) enforces the predicted support terrain h
to be close to its rigid reconstruction, and pose consistency loss

Lt (¢, h), where ground-truth robot pose ¢ implicitly enforces
the predicted supporting terrain to provide a necessary (yet
collision-free) support of the robot. The pose consistency loss
provides additional supervision on places, where ground-truth
heightmap h is not available. Fig. 2 shows supporting terrain
after optimization of the pose consistency loss.

To construct the pose-consistency loss, we exploit a sim-
ple yet non-convex first-principle model, which assumes that
the robot pose on an uneven terrain corresponds to a minimum
of its potential energy with respect to robot-terrain collision
constraints. The solution to this problem provides the physically
plausible robot pose on a given heightmap. We construct the
pose-consistency loss to answer the opposite question: does the
predicted heightmap make the ground-truth pose to be a solu-
tion to this problem? To do so, we simplify the problem and
search for heightmaps, for which the ground-truth pose satisfies
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the necessary Karush-Kuhn-Tucker (KKT) conditions [8] for
the constrained local optima of this first-principle model. The
proposed KKT-loss is constructed to measure the distance from
these KKT conditions. Consequently, its optimization directly
leads towards physically consistent heightmaps in the sense that
any heightmap, which zeros the KKT-loss, is considered to be
physically consistent with the ground-truth pose.
Main contribution lies in:
® introducing a novel KKT-loss, which allows for weakly-
supervised learning of the supporting terrain from ground-
truth poses and suggesting an algorithm for its efficient
optimization
e evaluating the proposed method on a real dataset and
publishing the codes and the dataset, which replicates
the results reported in the experiments. '

II. RELATED WORK

This section consists of two parts. The first part summarizes
approaches that predict the robot-terrain interaction and discuss
their relation to the proposed supporting terrain. The second part
discusses learning approaches that resemble proposed KKT-loss
in the sense that they learn to predict values connected with
ground-truth labels through an optimization problem.

A. Robot-Terrain Interaction Models

Typical quantities, which are predicted in order to model
the robot-terrain interaction, are arbitrary values that represent
the expected behaviour of the robot on uneven terrain. We briefly
discuss several different quantities such as the expected pose
of the robot on the terrain [9], robot-terrain reaction score [6],
friction/slippage coefficient [10]. Most of these methods is not
a direct competitor; however, their accuracy heavily depends
on the accuracy of reconstructed terrain, which is provided as
an input. Consequently, we discuss different models of ter-
rain shapes such as ICP-aligned pointclouds [11] and neural-
network-refined voxelmaps [7].

Geometrical analysis: The most straightforward way of
predicting the robot-terrain interaction is the direct geomet-
rical analysis of the terrain shape, such as point cloud or
heightmap. Geometrical analysis typically exploits heuristics
based on manually chosen features, such as terrain normals,
height difference, slope, roughness, and robot shape [12], [13].
Some approaches [9], [ 14] iteratively optimizes the robot-terrain
transformation to obtain the contact points and static robot
pose.

Self-supervised learning: Other methods learn to predict the
robot-terrain interaction directly. Methods such as Suryamurthy
et al. [5] learn to estimate terrain roughness from RGB images
for wheeled Centauro robot, where terrain roughness labels are
automatically computed from SfM optimized heightmaps. In
contrast to us, such an approach inherently suffers from the
inability to assess the terrain’s flexibility and the inability to
reconstruct visually homogeneous terrain. Many others directly
learn from the recorded behaviour of robot on the terrain. For
example, Wellhausen et al. [6] estimate the ground reaction
score for the legged ANYmal robot, where force-torque sensors
automatically estimate labels. Similarly, Angelova et al. [10]
estimate the slippage coefficient for a planetary rover. The

! github.com/ctu-vras/pose-consistency-kkt-loss
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approach proposed by Chavez et al. [15] learn to predict the
terrain traversability estimated from the simulator and Nouza et
al. [16] predicts robot poses.

Most of the previously discussed methods heavily depend
on the accuracy of provided terrain shape. Since ICP-aligned
point clouds [11] or heightmaps are inaccurate, it is possible to
improve their accuracy by a refinement step, which provides a
more accurate estimate of a terrain shape. Methods such as [7],
[17], [18] complete the sparse laser measurements using the
neural networks. In contrast to our approach, these methods do
not take the robot-terrain interaction (such as robot pose) into
account, and therefore they can only reconstruct the rigid terrain
with lidar-friendly surfaces.

In contrast to the straightforward prediction of previously
mentioned quantities (terrain roughness score, slippage, ground
reaction score, or the traversability), we suggest predicting the
supporting terrain as a preliminary representation, which is more
suitable input to these methods than a noisy 3D point clouds.
This claim is experimentally verified on the pose prediction and
heightmap reconstruction problem.

B. Learning With Implicit Optimization

The problem of learning the shape of support terrain from
ground-truth poses belongs to the class of learning approaches,
where itis not easy to obtain the ground truth for fully-supervised
learning. However, it is possible to use predicted values as an
input to an optimization problem, the solution of which can be
compared to an alternative ground truth that is easy to obtain.
It has been recently shown that a convex optimization problem
could be used as a differentiable layer in neural network [19].
While various applications ranging from optimal control to
signal denoising has been shown, it cannot be directly used since
we need to differentiate through the non-convex first principle
model of the robot-terrain interaction.

Inverse reinforcement learning (IRL) is a class of meth-
ods, which use an optimization layer to relate predicted values
(costmap) to ground truth (expert trajectories). Such approaches
exploit an expert driver to collect trajectories, which serves as
easy-to-obtain ground truth for learning the costmap model, for
which the straightforward ground truth is typically not available.
The IRL assumes that the expert driver has a latent costmap,
for which the executed trajectory is optimal (i.e. has the lowest
sum of costs). Given this assumption, it is possible to learn
to predict this costmap by searching the optimal trajectories
on predicted costmaps and then comparing them with those
executed by the driver. The learning requires backpropagating
through the layer that performs the search of optimal trajectories
for a given costmap. Authors typically either train differentiable
policies that imitate drivers’ behaviour or use Dijkstra in each
iteration and than backpropagate gradients along the fixed opti-
mal trajectory only. IRL has been used on several mobile plat-
forms. For example, Silver et al. [1] apply it on the six-wheeled
Crusher military platform, while Wulfmeier ef al. [4] or Zeng et
al. [20] learned spatial traversability for driving an autonomous
car in complex urban environments. In contrast to previous
self-supervised approaches, the IRL allows to learn also the
non-traversable terrain directly on the real platform from the
expert behaviour. However, the connection between the expert
trajectories and the traversability is often weak; therefore, the
problem is typically ill-posed [21]. In addition to that, expert
trajectories are often sub-optimal, which significantly harm the
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resulting costmap. Since IRL methods use different ground truth
(the expert trajectories) and the optimization layer (search for
cost-minimizing path), it cannot be easily applied for learning
from ground-truth poses.

Multiple Instance Learning (MIL): One way to avoid direct
backpropagation through an optimization layer is to explicitly
generate all possible predictions, which make a given ground
truth to be the solution of the underlying optimization problem,
and then train on these predictions via MIL. For example, the
proposed KKT-loss enforces the predicted support heightmap
to provide a necessary (yet collision-free) support of the robot.
One could achieve a similar effect by employing the MIL [22].
Such an approach would generate huge positive bags consisting
of all supporting terrains, which are physically consistent with a
given ground-truth pose, and then minimize the reconstruction
loss from the closest sample in each positive bag. However, the
number of heightmaps consistent with a single pose is immense
since it grows exponentially with the predicted heightmap size.
In contrast to the multiple instance learning, the proposed KKT-
loss does not require to generate all pose-consistent heightmaps
explicitly; it just measures the distance from KKT conditions.

Multi-task learning: Another alternative, which allows to
easily backpropagate through the optimization problem, is to
train a network, which directly estimates solutions of the opti-
mization layer and use this network as a simply differentiable
replacement for the optimization layer. A similar idea appears
either in multitask learning [23] or weakly-supervised learn-
ing [24]. The main disadvantage is that the replacement network
strongly biases the learning process by its own inaccuracy. This
approach is detailed in the paper, and the proposed KKT-loss is
quantitatively compared with it.

III. THEORY

We train a convolutional network hy : X — H, which maps
sparse heightmaps x € X, estimated by projecting the ICP-
aligned [11] lidar scans on the discretized horizontal plane
(optionally enriched by visual features), on dense support
heightmaps h € H, where 6 is the vector of network param-
eters, see Fig. 3 for an overview. In our experiments, the input
x is either a two-channel 2D array with heights in the first
channel and NaNs binary encoded in the second channel or
amultichannel 2D array with heights, NaNs, and visual features.
We exploit two types of self-supervised labels (i) ground-truth
heightmaps h € H, (ii) ground-truth robot poses ¢ € @, both
estimated offline from recorded measurements by a SLAM
pipeline [11]. Therefore, the ground truth for a prediction in
a certain time-stamp also includes future measurements. Both
types of labels are imperfect. Heightmaps are noisy, incomplete,
and overestimate support heights on flexible terrains. Robot
poses constrain the shape of the underlying terrain only by
its physical consistency with the predicted terrain. Learning is
defined as the minimization of composite loss on both types of
labels.

Learning from ground-truth heightmaps: Given a ground-
truth heightmap h and predicted supporting heightmap h, we
use (optionally asymmetric) L2-loss £,.(h, h) = || max{a(h —
h),h — h}||2 , which optionally provides decreased loss for
underestimated heights. Especially, if a = 0 the reconstruction
loss is quadratic upper bound, if @ = 1 the reconstruction loss
becomes a usual L2 loss.
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Fig. 3.

Visualization of network architectures. Network hy predicts the dense supporting heightmap from sparse input. Training minimizes reconstruction loss

and pose consistency loss. We propose two types of pose consistency losses: (i) KKT-loss and (ii) pose predicting loss (concatenation of pretrained pose regression
network g,, predicting roll, pitch, z on the dense supporting heightmap with L2 loss on ground-truth poses).

Learning from ground-truth poses: We introduce an addi-
tional penalty for predicting heightmaps, which are physically
inconsistent with the ground-truth robot pose, such as terrains
that either does not provide sufficient stability of all degrees of
freedom of the robot or colliding with the robot body. To enforce
the penalty, we propose two different pose-consistency losses:
(i) the KKT-loss Ly :  x H — R, which is purely based on
the first-principle model (Section III-B) and (ii) pose-predicting
loss L, : ® x H — R (Section III-C), which contains pose-

predicting regressor g, followed by L2 loss on predicted (}5
and ground-truth pose ¢: L£,(¢, h) = Lo(¢, g.,(h)). The pose-
predicting regressor g, has to be trained in advance.

A. Architecture

We study two different cases: (i) strictly rigid terrain, on which
the supporting terrain is equivalent to its dense reconstruction,
and (ii) partially flexible terrain, on which the predicted support
terrain is lower or equal to its dense reconstruction.

1) Strictly Rigid Terrain: In this case, the input x is only the
sparse heightmap (2D array with NaNs). The learning minimizes

both losses simultaneously £,.(h, h) + Ly (¢, h). For the re-
construction loss, we use a = 1, since the output should directly
correspond to ground truth h.

2) Fartially Flexible Terrain: In this case, the input x is the
sparse heightmap enriched by visual features obtained by pro-
jecting outputs of RGB network on the heightmap. We observed
that the simultaneous minimization of both losses on a flexible
terrain suffers from undesirable interference. The reconstruc-
tion loss pulls predicted heights towards lidar-measured heights
on flexible terrain, while the pose consistency loss enforces
lower heights that do not collide with the robot body. To avoid
such undesirable behaviour, we propose to divide hy into two
sub-networks. The first sub-network (denoted as “rigid terrain
prediction” in Fig. 3) is responsible for reconstructing the terrain
fld as it has been rigid, the second sub-network (denoted as “soft
terrain adjustment” in Fig. 3) predicts the terrain flexibility. The
reconstruction loss is connected between these sub-networks,
while the pose consistency loss is connected in the end. The

learning minimizes compound loss: £,.(h, fld) + Lkt (¢, fl) +
Lo (fld, ﬁ), where the last term slightly encourages the predicted
supporting terrain to be similar to the rigid reconstruction hy, see
Fig. 3. The reconstruction loss naturally enforces that the rigid
reconstruction hy is a necessary part of the predicting process
without influencing the second sub-network. In this scenario,
we experimented with asymmetric reconstruction loss (i.e. with
a < 1). Eventually, it turned out that the best is to enforce the
upper bound directly into the hy architecture by making the
“soft terrain adjustment” sub-network only able to decrease hy
by subtracting the non-negative outputs from hy.

B. KKT Loss

This section is structured as follows: Section III-B1 introduces
a simple first-principle model, which allows to estimate robot
pose ¢, given a predicted heightmap hy(x). Section III-B2 then
employs this model to construct the KKT loss. Section III-B3
describes efficient estimation of KKT loss by the inner-loop
minimization of its KKT multipliers.

1) First-Principle Model: Let us assume that a set of mass
points represents the robot (p;, m;) i = 1... N, where p; € R?
are 3D coordinates and m; € R are weights, see Fig. 2. We omit
modeling the passive compliance? of flipper-motors and assume,
that the positions of four independently articulated flippers in a
given time are fixed in a measured position, therefore flipper
points become a rigid part of the model. Robot pose ¢ = [a, t]
is uniquely determined by its roll, pitch, yaw angles denoted by
« and translation vector t € R3. Matrix R(cx) denotes rotation
matrix corresponding to rotation angles a. Given a predicted

heightmap h= hg(x) € H, we define robot pose estimation
problem as the minimization of its potential energy

S mi g [R(@) pi 4. M

2By passive compliance, we refer to flipper motors inability to lift the body
without any additional support of the main tracks, which results in a passively
smooth motion over the terrain.
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with respect to collision constraints

hi — [R(e) -pi +t], <0 V,,

where [.|, denotes the z-coordinate of the vector inside the brack-
ets and h; is the height corresponding to point R(«) - p; + t.
Note, that if the pose needs to optimized (which is not the case
of this section) then the point-height correspondences have to
be re-established in each iteration.

2) Consistency of Predicted Heightmap With Ground-Truth
Pose: We express the consistency of the predicted heightmap h
with a ground-truth pose ¢ as the L2-distance from the necessary
conditions for the constrained local optimality of ¢ in this model.
In particular, given the Lagrangian of the pose estimation model

S
+ Zli(ﬁi - [R

where A denotes the KKT multipliers, we express necessary
optimality conditions:
Stationarity conditions

OL(a,t,h,A) . OR(a) pi+t]
a2 TR

L(a,t,h,A) = ) pi+t].+

a) - p; +t), 2

:0’

complementary slackness conditions
ki (hi = [R(@) -pi +t].) =0,
primal feasibility conditions
hi — [R(@) -p; +t]. <0 Vi,
dual feasibility conditions
A>0.

While stationarity together with complementary slackness as-
sure physical stability of the robot on the predicted heightmap
h in all considered degrees of freedom ¢, the primal feasibil-
ity assures that the predicted heightmap does not collide with
the robot model. R

The KKT-loss of the predicted heightmap h for a ground-truth
pose ¢ is then defined as follows

> (mig — i) OR(e) pi +t): +

Liact(¢,h) = mxin{‘ da, t

i

3 (h -

Ra) p; +1].)) +

—|—C-(max{0,izi—[ () pi+t]s ) ’x>0},
3)

where C' > 0 is a learning hyper-parameter. In our experiments,
we use C' = 100, since it was a reasonable compromise be-
tween resulting primal feasibility and obtaining an optimization-
friendly landscape of the KKT-loss. However we have not
noticed any significant impact on the results for C' = 10 or
C = 1000 (if the learning rate was correspondingly adjusted).
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Algorithm 1: Estimating the gradient of KKT-loss.
Input: Training batch (x;,¢,), j=1... M
Robot model p;,m;, i=1...N
for j=1...M do
Predict heights (feedforward pass): h=hy (x5)
Estimate A" by solving the non-negative least
squares Problem (4).
Construct KKT-loss Lyt (@5, ho(x;)) by
substituting inner loop minimizer A* into eq. (3).
Cumulate gradient w
parameters 6

with respect to

end

3) Estimating the KKT-Loss by Efficient Inner-Loop Opti-
mization: Since the Lagrangian L(c, t,h, 1) is linear in KKT
multipliers, the minimization over A > 0 reduces to the follow-
ing non-negative least squares problem:

S (mig — ) 6[R(aa)

%

o, t

+

A" = arg mlln{
2

“FZ()%'UALZ_

which is known to have an efficient solution [25]. For the sake
of simplicity we skip the terms which does not depend on A;.
Learning of parameters 8 with the KKT-loss is summarized in
the following algorithm:

We provide fully differentiable implementation of the KKT-
loss, which allows for learning through standard PyTorch inter-
faces such as kkt_loss (net) .backward ().

R(a) pi +).)) \x>0} 0

C. Pose-Predicting Loss

We suggest to follow the idea of multi-task learning for se-
mantic segmentation, where a classifier of another task is trained
in advance and then used to estimate labels for the original task.
Similarly, we start by learning the pose regressor g, : H — @,
which predicts the robot pose ¢ given the heightmap h; see
Fig. 3 for network architecture details.

Since the robot observes a significantly larger area than it
physically visits, there are many heightmap patches for which
the pose is unknown. We denote .J to be the set of indices of
heightmap patches for which the real ground-truth pose is known
and K to be the set of all indices. Since .J is relatively small for
training a reliable pose regressor, we decided to exploit also the
real heightmap patches K\ J for which the real pose is unknown
by estimating synthetic robot poses on them.

In particular, given a pretrained reconstruction network

he(x), we first reconstruct each dense heightmap h = hg(x)
and then find corresponding ground-truth pose as the solution
of the first principle model:

= arg InlIl E my -

subject to: h; — [R(a) -p;+t]. <0 V;, (5

) pi +t].

The solution is searched by the steepest gradient method with a
quadratic exterior penalty function.
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Given these synthetically estimated poses we learn the pose
predicting regressor g,, on mixed training data K, consisting of
both real and synthetically estimated poses

argmin ) _ Lo (¢, g (hi))- ©)

keK

Finally, we construct the pose predicting loss £,, as the L2 error
between ground-truth pose ¢ and predicted pose ¢ = g, (h)

‘CP(¢7 fl) = £2(¢a gw(fl)) = £2(¢7 (Ab) (7)

and train the heightmap predicting network hy by minimizing
pose predicting loss on real ground-truth poses ¢;,j € J.

> Ly(d;,he(x;)) ®)

jeJ
Since the change in parameters ¢ changes the distribution of

reconstructed heightmaps hy,, the pose regressor should be re-
trained. Theoretically, we should iterate this process until a fixed
point is reached; however, we observed in the practice that a good
initialization of hy is sufficient.

The pose predicting loss can be understood as a counterpart
of the proposed KKT-loss. In contrast to KKT-loss, the pose
predicting loss suffers from the regressor bias. The bias is strong
since flexible terrains and lidar-unfriendly surfaces cannot be
used for the regressor training. In the other hand, the pose-
predicting loss does not require any inner-loop optimization,
therefore its backpropagation is faster.

IV. EXPERIMENTS

We evaluate the performance of the proposed methods on a
real-world dataset. The achieved results are compared with two
state-of-the-art methods [7], [16]. For the sake of a fair com-
parison, all methods are implemented and trained from scratch
on the same network architectures, training/testing subsets and
hyper-parameters®.

A. Dataset

Dataset consists of trajectories collected by the tracked robot
during the traversal of various rigid and flexible obstacles.
The robot was equipped with a spherical camera PointGrey
Ladybug3, LiDAR SICK LMS-151, and inertial measurement
unit (IMU) Xsens MTi-G. Internal camera parameters were
factory calibrated, camera-lidar calibration was based on [26].
The data consist of the sparse input heightmaps x enriched by
projected RGB-ResNet [27] features, ground-truth heightmaps
h and ground-truth robot poses ¢. All heightmaps are obtained
as follows: Given a set of lidar scans, odometry measurements,
and IMU data, we estimate a 3D point cloud map by a SLAM
approach [11]. We filter out the ceiling automatically and dis-
cretize the resulting 3D point cloud into a heightmap with 10-cm
bins. This heightmap is transformed into a robot-centric frame
with gravity-aligned z-axis (i.e., the frame with roll and pitch
equal to zero). The whole dataset consists of 871 training, 335
validation, and 745 testing heightmaps each of size 25.6m

3The backpropagation over the KKT-loss for a single robot pose takes about
35 ms on a quad-core 2.3 GHz Intel i7 processor with 16 GB RAM.

4All the approaches were trained using Adam optimizer with learning rate
10~%, and the final weights were picked using the validation set.
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Fig. 4. Example crop from testing data. First row: Robot approaching the
obstacle in the hallway. The scale is in meters. Yellow pixels are walls, dark
blue denotes a floor an light blue blob in the middle is the obstacle. Second row:
Robot in the experimental mine has noisy and missing data on the floor, our
network fill the gaps.

@) ® © @

Fig. 5. Example crop from testing data. Robot measured an input heightmap
(a) and predicts the supporting terrain (b) using the ResNet features (d). The
scene is shown on image (c). Only maximum channel of ResNet features is
shown in the image (d). The heightmaps (a) and (b) are in meters.

x25.6 m. It contains over 4 - 105 predictable heights (usually
only a part of the heightmap is known) and more than 2 - 10*
robot poses (there are multiple robot poses for each heightmap).
The 2/3 of the dataset (used for the ”Strictly rigid terrains”
experiment) consist only of rigid terrain, collected indoor with
robot traversing over various obstacles and driving on uneven
terrain in experimental mines (see Fig. 4). The remaining 1/3 of
the dataset (used in the “Partially flexible terrains’ experiment)
contains both rigid and flexible terrains. This part of the dataset
was collected outdoor on various terrains such as cobblestones,
rocks, paths, grass, or clay (see Fig. 5). While the proposed
methods could be adapted to different robot models, the dataset
we collected is specific to the robot and sensor model.

Input x: The sparse input heightmap at time ¢ is the heightmap
estimated from lidar, IMU, and odometry measurements cap-
tured until this time by the procedure described above. We extend
the heightmap by RGB features obtained from the camera image
captured in time ¢. The RGB features are estimated from the
camera image by a pre-trained ResNet network. The resulting
150 features are upsampled to original image resolution and
projected onto the heightmap. The input for terrain reconstruc-
tion x has dimension 256 x 256 x 152. The sparse array with
terrain heights is in the first channel (see Fig. 4(a)), the binary
mask of unknown measurements is in the second channel and
the camera features in the subsequent 150 channels. In the
experiment showing rigid terrain reconstruction, we use only
the first two channels consisting of a sparse measurement and a
corresponding mask.
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Ground truth: The ground-truth label h at time ¢ is the
heightmap estimated from lidar, IMU, and odometry measure-
ments captured along the whole recorded trajectory by the pro-
cedure described above. In contrast to sparse inputs, the ground
truth also contains future measurements, therefore it is signif-
icantly denser and more accurate (compare Figures 4(a) and
4(b)). Nevertheless, the ground-truth heightmaps are still often
inaccurate and incomplete, and they suffer from discretization
along all axes (see Fig. 4(b)). Each ground-truth pose ¢ contains
roll and pitch angles of the robot and z coordinate of the position,
resulting from the same SLAM procedure.

B. Methods

We evaluate the performance of proposed methods (r+kkt
and r+p), which minimize compound loss described in Sec-
tion III-A, with two state-of-the-art methods (li [16] and r [7])
in terms of the supporting terrain reconstruction accuracy and
pose predicting accuracy. All compared methods use the same
SLAM procedure [11] to align the input measurements and
the pose is always predicted from estimated supporting terrain
h by pose predicting network g,,. g,, is trained® to minimize
L(b, g.o(h)). A detailed description of implemented methods
is in the following paragraphs.

li: This method is based on work [16], which predicts the robot
poses from heightmaps by linear and Gaussian process regres-
sion on linearly interpolated heightmaps. We replicate this work,
by filling the missing measurement by linear interpolation and
then predicting the pose by g, .

r: This method replaces the linear interpolation by deep
convolution network hg trained by minimizing reconstruction
loss £, (h, hg(x)) similarly to [7]. The pose estimation remains
the same as in work [16].

r+p: Method corresponds to learning with pose-predicting
loss (Section III-C). This method first pretrains the iy and g, net-
work in the same way as in previous methods. Then we connect
the computational graphs of both networks hg and g,, and train
only # parameters by backpropagating the pose-predicting errors
of g,, and reconstruction errors of hy. In particular we minimize
the weighted sum £,.(h, hy) + £,(¢, h) + Lo(h, hy).

r+kkt: Method corresponds to learning with KKT-loss (Sec-
tion III-B). The pre-training procedure is the same, the final

training minimizes weighted sum: £, (h, fld) + Lkt (D, fl) +
‘CQ (h7 hd)

C. Evaluation and Discussion

1) Strictly Rigid Terrains: This experiment demonstrates
the ability of proposed methods to reconstruct the heightmaps
and predict poses from sparse inputs on rigid terrains; see Fig. 4
for testing examples and for the qualitative results. Since terrains
are assumed to be rigid, we have omitted the “soft terrain
adjustment” part of hy for this experiment (see Fig. 3). The
quantitative results on the testing data are depicted in Table I.
The first three rows show Root-Mean-Square error (RMS) on
Sfully-measured heightmaps (i.e. those, where input heightmap
x does not contain any NaNs). The second part of the table
shows how methods perform on all heightmaps, including also
incomplete input heightmaps x.

5To train the g, network we used 5 - 10° terrain-poses, and the testing error
evaluated on ground-truth heightmaps was 0.070.
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TABLE I
MEAN AVERAGE TERRAIN RECONSTRUCTION ERRORS AND POSE ESTIMATION
ERRORS FOR RIGID TERRAIN RECONSTRUCTION

errors li r r+p r+kkt
[11] [16] | [11][7]1[16] | (Sec.III-C) | (Sec.III-B)
@ roll [rad] 0.113 0.077 0.075 0.073
2 pitch [rad] 0.075 0.069 0.065 0.064
g | z[m] 0.067 0.049 0.072 0.057
roll [rad] 0.140 0.082 0.078 0.075
— | pitch [rad] 0.191 0.089 0.072 0.071
< | z[m] 0.140 0.080 0.082 0.068
heightmap [m] 0.202 0.118 0.096 0.089
TABLE II

MEAN AVERAGE TERRAIN RECONSTRUCTION ERRORS AND POSE ESTIMATION
ERRORS ON PARTIALLY FLEXIBLE TERRAIN

errors li r r+p r+kkt
[11] [16] | [11]1[7] [16] | (Sec.lI-C) | (Sec.III-B)
2 | roll [rad] 0.089 0.084 0.056 0.048
5 | pitch [rad] 0.075 0.064 0.048 0.042
§ z [m] 0.145 0.142 0.056 0.045
g | heightmap*[m] 0.124 0.131 0.057 0.059
roll [rad] 0.093 0.098 0.063 0.057
— | pitch [rad] 0.071 0.084 0.051 0.044
< | z[m] 0.131 0.134 0.067 0.055
heightmap*[m] 0.114 0.129 0.075 0.075

The results demonstrate that the supporting terrain recon-
struction is an important intermediate step for pose prediction
since the linear interpolation (li) suffers from sparsity of input
heightmaps. We can also see that the backpropagation from
ground-truth poses via proposed pose consistency losses (Lt
and £,), improves the accuracy of the predicted terrains and
poses. The results show that the proposed methods decrease
the reconstruction error and pose predicting error by approxi-
mately 20%. Since the ground-truth height of extremely high
and obviously untraversable obstacles such as walls, trees, or
buildings is not well defined (e.g. due to unreliability of ceil-
ing removal procedure), the heightmap reconstruction error is
evaluated only on bins, where ground-truth height is lower than
0.3 m.

2) Fartially Flexible Terrains: This experiment evaluates
the ability to predict the shape of supporting terrain on both
types of terrain (flexible and rigid); see Fig. 5 for an example
of the testing data. In this particular example, the sparse input
heightmap contains the heights measured by lidar on the high
grass. Since these heights are misleading for predicting the robot
pose on this type of terrain, the height of the grass is suppressed
by the “soft terrain adjustment” part of the network (see Fig. 3).
The rigid objects such as cars, stones, trees, roads, or buildings
remain at the original level. The results are summarized in
Table II. Since the ground-truth supporting terrain is generally
unknown, we semi-manually annotated a selected subset of
terrains, by fitting the local ground plane between robot-terrain
contact points. The heightmap reconstruction error is denoted
with * to point out that it is computed on the manually annotated
subset of the dataset.

The benefit of backpropagating the pose consistency loss to
the heightmap reconstructing network is even more obvious
since it allows to predict the correct height on flexible terrains.
Consequently, the pose predicting error and reconstruction error
of proposed methods (r+p and r+kkt) is reduced by 50% with
respect to the state-of-the-art methods (r and li). The accuracy



5484

of r+kkt slightly outperforms r+p, since it is not biased by the g,,
regressor.

V. CONCLUSION

We have addressed the problem of learning to predict support-
ing terrain from SLAM-optimized 3D maps and robot poses. We
have demonstrated that using the pose-consistency loss, which
expresses the physical consistency of predicted terrain with the
robot pose, improves the accuracy of predicted heightmaps and
poses. In particular, two different pose consistency losses have
been proposed: (i) KKT-loss and (ii) pose-predicting loss. The
KKT-loss has been defined as the distance from the necessary
conditions of the first principle model for a given ground-truth
pose. The pose-predicting loss, first learns the pose predicting
regressor and then minimizes the distance between predicted
pose and ground-truth pose. In contrast to KKT-loss, the pose
predicting loss requires prior learning and suffers from the
regressor bias. The bias is strong since flexible terrains and
lidar-unfriendly surfaces cannot be used for the training of the
regressor. On the other hand, the pose-predicting loss does not
require any inner-loop optimization, therefore its backpropaga-
tion is faster.

The experimental comparison shows that the proposed end-to-
end differentiable architecture with proposed pose consistency
losses reduces the error of predicted terrains and robot poses
by 50% on the partially flexible dataset and 20% on the strictly
rigid dataset when compared to state-of-the-art methods. Gener-
alization of the trained model depends on a particular type of the
robot model and a variety of training terrains. We believe that
KKT-loss is directly usable for a broad range of mobile platforms
such as wheeled or skid-steer robots, however its generalization
for legged robots is unclear.

The dataset and codes replicating the reported experiments
are made publicly available. We also provide the fully differ-
entiable implementation of the KKT-loss, which can be sim-
ply included in any future learning methods through the stan-
dard PyTorch interfaces such as kkt_loss (net, robot) .
backward ().
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