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Scenario-Based Trajectory Optimization in Uncertain
Dynamic Environments

Oscar de Groot , Bruno Brito , Laura Ferranti , Dariu Gavrila , and Javier Alonso-Mora

Abstract—We present an optimization-based method to plan the
motion of an autonomous robot under the uncertainties associated
with dynamic obstacles, such as humans. Our method bounds the
marginal risk of collisions at each point in time by incorporating
chance constraints into the planning problem. This problem is not
suitable for online optimization outright for arbitrary probability
distributions. Hence, we sample from these chance constraints us-
ing an uncertainty model, to generate “scenarios,” which translate
the probabilistic constraints into deterministic ones. In practice,
each scenario represents the collision constraint for a dynamic
obstacle at the location of the sample. The number of theoretically
required scenarios can be very large. Nevertheless, by exploiting the
geometry of the workspace, we show how to prune most scenarios
before optimization and we demonstrate how the reduced scenarios
can still provide probabilistic guarantees on the safety of the motion
plan. Since our approach is scenario based, we are able to handle
arbitrary uncertainty distributions. We apply our method in a
Model Predictive Contouring Control framework and demonstrate
its benefits in simulations and experiments with a moving robot
platform navigating among pedestrians, running in real-time.

Index Terms—Motion and path planning, optimization and
optimal control, collision avoidance.

I. INTRODUCTION

MOBILE robots are increasingly becoming part of our
society, with applications in warehouses [1], automo-

tive [2], maritime transportation [3], etc. In all these domains, it
is essential that the robots can safely operate in dynamic environ-
ments (e.g., near humans). However, uncertainty is omnipresent,
for example, in the future motion paths of the dynamic obstacles
or in sensing (i.e., localization) errors. Our goal is to design a
local robot motion planning algorithm able to plan collision-free
trajectories in the presence of possibly unbounded and arbitrary
uncertainties.

Optimization-based motion planning methods avoid colli-
sions by imposing constraints in the optimization problem. Clas-
sical methods consider deterministic obstacle predictions, that
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is, they do not account for the presence of uncertainties. When
uncertainties come into the picture, deterministic frameworks
fail to achieve safety, since they do not consider the possible
spread of outcomes. In the case of bounded uncertainties, that
is, if the probability density function is non-zero in a bounded
domain of the robot’s workspace and is zero elsewhere, then
it is possible to set the acceptable level of risk to zero. This
approach is referred to as robust optimization. On the one hand,
this approach allows for the addition of uncertainties in the
deterministic framework. On the other hand, the assumption that
the distribution is bounded can be limiting (e.g., when obstacle
predictions are Gaussian). Additionally, it becomes conservative
when the domain of support is large. In the presence of un-
bounded uncertainties, chance constraint optimization allows
one to constrain the probability of collisions to be below an
acceptable level of risk. In this work, and likewise to [4], [5], we
consider the marginal probabilities of collision at each point in
time. This is, we constrain the chance of collision for each step
of the trajectory, separately.

Directly evaluating these chance constraints is intractable,
especially for arbitrary shapes of the distribution. Instead they
are often either approximated (e.g., using particle filters [6]) or
bounded. Approximation techniques have received most atten-
tion, due to their sample efficiency. However, the safety of these
approaches cannot be guaranteed, especially when operating in
unknown environments.

Contribution. In this work, we assume that a perception
module provides predictions of the motion of dynamic obsta-
cles together with a description of their (unbounded, possibly
non Gaussian) uncertainty. To provide probabilistic safety for
each step of the planned trajectory with respect to the modeled
uncertainties, our work presents a novel probabilistic trajectory
optimization framework for motion planning in uncertain dy-
namic environments, that is, a Scenario-based Model Predictive
Contouring Control (S-MPCC) design. Our S-MPCC builds on
nonconvex scenario-optimization framework [7] and the model
predictive contouring control (MPCC) design of [8]. We show
that in contrast with the general a posteriori results in [7], we
obtain the perceived risk of our motion plan before optimization.
The support subsample, which is the key indicator for the risk
in [7], is obtained through the geometry of the problem, leading
to efficient evaluation of the samples. While sampling-based
chance constrained approaches are generally considered in-
tractable for real-time motion planning, our method is compet-
itive in terms of computation times with state-of-the-art plan-
ning methods, while applicable to generic uncertainties. The
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Fig. 1. Grid wise evaluation of the collision probability, with r = 0.5 m of
chance constraints (2c) and (7b) in an example where δ follows a Mixture-of-
Gaussians (MoG) distribution. The red square denotes the linearization point.

approach handles multiple obstacles and accounts for the size
of the vehicle and obstacles.

We show how our approach allows the robot to move con-
tinuously through its environment while reasoning about its
probability of colliding with dynamic obstacles. In our frame-
work, illustrated in Fig. 2, instead of directly solving the chance
constrained motion planning problem, we solve an associated
deterministic problem obtained as follows. First, we apply a
tailored linearization of the chance constraints, then we sample
from the linearized chance constraints a large set of deterministic
constraints, known as scenarios. The number of scenarios drawn
is linked with the associated risk of collisions. This allows us to
reformulate the original planning problem in a deterministic one,
known as a scenario program. Using this approach we effectively
resolve the chance constraints in a preprocessing step.

Uncertainty of predictions is generally non Gaussian and
appears, for example, when Gaussian uncertainty is propagated
through nonlinear dynamics. Our method is applicable to generic
uncertainties. We demonstrate our framework for Gaussian and
non Gaussian uncertainties using an autonomous ground robot,
both in simulation and in experiments.

Related Work: Trajectory optimization with chance con-
straints for collision avoidance has previously been considered
in the case of Gaussian uncertainties. For example, [8] defined
collision avoidance constraints in an MPC framework, by model-
ing the dynamic obstacles as ellipses. This representation allows
the planner to accommodate Gaussian uncertainties (as the level
set of a Gaussian distribution are ellipses) and solve a deter-
ministic nonlinear optimization problem online. The approach
was applied for autonomous driving in [9]. In [4] the chance
constraint problem is solved explicitly. Their approach linearizes
the collision chance constraints, and uses the prior of Gaussian
uncertainty to formulate deterministic constraints on the mean
and covariance of the distribution.

Literature on motion planning for non Gaussian uncertainty
distributions is still limited. Inspired by particle filter ap-
proaches, [6] introduces a method to approximately evaluate
the chance constraints using particles. Their method uses a
relatively small sample size, but cannot provide any guarantees
on the safety of the solution. In [10], a Rapidly-expanding
Random Trees (RRT) algorithm is presented where the un-
certainty is evaluated for each node in the tree. The dynamic

obstacle trajectories are predicted using Gaussian Processes.
In [11], assuming full knowledge of the probability distribution,
polynomial chance constraints are transformed to deterministic
inequalities using the statistical moments of the non Gaussian
distribution.

Compared to the previous methods, our approach bounds
the probability of collision using the scenario optimization
framework. This framework is well established for convex op-
timization ([5], [12]–[16]). A framework for non-convex sce-
nario optimization was recently introduced in [7]. We rely on
this framework and extend it in the context of robot motion
planning.

II. PROBLEM FORMULATION

We consider the motion planning problem of a mobile robot,
whose dynamics can be represented by the following nonlinear
discrete-time system:

xk+1 = f(xk,uk), (1)

where xk ∈ Rn and uk ∈ Rm denote the states and inputs,
respectively. The robot can move within a workspace (e.g., the
2D plane when we consider ground robots). In the workspace,
the robot must avoid collisions with dynamic obstacles. We
model the collision region of the robot Vk at time k as the union
of nc circles, and the collision region of the dynamic obstacles
Dv

k at time k as a single circle.
The position of dynamic obstacles along the planning horizon

of the robot is uncertain. We denote the uncertainty of the
obstacles at stage k with a tuple (Δk,Dk,Pk,real), where Δk is a
probability space equipped with aσ-algebraDk and a probability
measure Pk,real. We allow the probability spaces to be unbounded
and non Gaussian. We assume that at each step a perception
module provides the motion planner with an independent model
of the uncertainty, formalized as follows.

Assumption 1: The planner is provided with a model Pk of
the real probability measure Pk,real for each k.

Assumption 2: Random variables δj∼ Pj and δl∼ Pl are
independent for all stages j, l ∈ {1, . . . , N}, where j �= l.

Assumption 2 implies that the dependency induced, for exam-
ple, by the dynamics of an obstacle, is handled by the perception
module such that the uncertainties are independent as viewed
from the perspective of the motion planner. The assumption
is common in state-of-the-art perception modules, for exam-
ple [17]–[19].

Under the, possibly unbounded, uncertainty of the dynamic
obstacles, we constrain the marginal probability of collision at
each time step of the trajectory using chance constraints, simi-
larly to [4], [5]. Each chance constraint is subject to an acceptable
risk level εk, which can be tuned accordingly. This implies that
we cannot give a non-conservative bound on the collision risk
of the full motion plan. However, by frequently recomputing the
motion plan, for example in an MPC framework, the actions in
the near future are probabilistically safe and risk in later stages
is reconsidered when the robot moves closer. We formulate the
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Fig. 2. Our approach exemplified for one robot’s disc and one dynamic obstacle for a single stage. The robot and the obstacle are drawn in blue and red,
respectively. Fig. 2(a) shows the 1 σ to 3 σ interval of the uncertainty in red shades. Fig. 2(b) shows the probabilistic collision region when linearized from the
robot disc at the front. Fig. 2(c) shows the sampled locations in red and boundaries of the constraints in black. Fig. 2(d) shows the resulting minimal polytope in
blue.

motion planning problem as follows:

min
u∈U

N∑
k=1

J(xk,uk) (2a)

s.t. xk+1 = f(xk,uk), x ∈ X (2b)

Pk

[||xd
k − δvk||2 > r,∀d, v] ≥ 1− εk, ∀k, (2c)

where u = {u1, . . . ,uN} ∈ U are the optimized system inputs
subject to input constraints, δvk ∈ Δv

k is the uncertain position
of obstacle v at stage k and J(xk,uk) ≥ 0 is the cost function
specifying performance metrics. The radius r is the sum of vehi-
cle and obstacle radii. To simplify the notation, we assume this
radius to be a constant. The chance constraint, (2c), constrains
the probability of collisions between each collision circle d of
the vehicle and the collision circle of each dynamic obstacle v
at prediction step k to be below the risk level εk, as visualized
in Fig. 2(a). The probability measure Pk refers to the modeled
uncertainty.

Problem (2) is a chance constrained optimization problem.
As discussed in Section IV, to solve this problem, we rely on
the nonconvex scenario optimization (NSO) framework of [7],
for which we provide an overview in the following section.
This framework can in general provide a bound on the risk
with respect to the unknown probability distribution Preal, by
sampling from the real system. In the real-time setting of this
letter, however, collecting samples online is intractable. Instead
we propose to sample from the model distribution P , as defined
in Assumption 1. For consistency of notation, the results of [7]
are presented here using the model P .

III. NONCONVEX SCENARIO OPTIMIZATION

The NSO framework allows us to replace chance constraints
with deterministic constraints by sampling. Consider the Chance
Constrained Problem (CCP)

min
u∈U

J(u) (3a)

s.t. P [g(u, δ) ≤ 0] ≥ 1− ε, δ ∈ Δ, (3b)

where u are decision variables, δ ∈ Δ is the realization of
the uncertainty and the function g : X×Δ→ R is a nonlinear
function associated with the nonconvex constraint g(x, δ) ≤ 0.

The authors of [7] established a link between CCP (3) and the
deterministic Scenario Program (SP):

min
u∈U

J(u) (4a)

s.t. g(u, δi) ≤ 0, δi ∈ Δ, ∀i ∈ S. (4b)

We denote its solution by u∗SP . Each of the S constraints
in (4b) is constructed by drawing a sample δi from Δ, and
formulating the constraint g(u, δi) ≤ 0 in the scenario where
the sample δi is a realization of the uncertainty. Since each of
the samples specifies a scenario, the samples themselves are
called scenarios and the constraints (4b) are known as scenario
constraints. The violation probability, V : U → [0, 1], given by

V (u) := P [δ ∈ Δ : g(u, δ) > 0] , (5)

defines the probability that input u violates a newly observed
scenario. The solution of the SP in (4) depends on randomly
sampled scenarios and hence its violation probability is a random
variable over the product probability measure, given by P S =
P × · · · × P (S times). To link the SP of (4) with the CCP of
(3), we are therefore interested in bounding the probability that
V (u∗SP ) satisfies our risk bound ε, a probability which we refer
to as the confidence. A key definition in this direction is the
support subsample.

Definition [7]: A support subsample of an SP is a subset of
scenarios Ssupport ⊆ S that results in the same optimizer as the
original SP. The cardinality of the support subsample, that is, the
support subsample size, is denoted by s. The smallest support
subsample size is denoted by s∗.

Theorem 1 in [7] provides the following confidence bound

P S[V (u∗SP ) > ε(s∗)] ≤
S−1∑
s=0

(
S

s

)
[1− ε(s)]S−s = β. (6)

Here ε(s) : {0, . . . , S} → [0, 1] can be designed subject to (6)
and ε(S) = 1, an example can be found in [7, Sec. II]. Equation
(6) theoretically links the sampling sizeS, confidence parameter
β (complement of the confidence) and risk ε, based on the
observed support sample size. Notice that in this work, as a
consequence of using model distribution P , the bound (6) applies
to the modeled uncertainty rather than the real robot, in contrast
with [7, Th. 1].
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IV. PROPOSED APPROACH

Our method relies on the Model Predictive Contouring Con-
trol (MPCC) framework [8] to define the objective to optimize to
plan a suitable path for the robots. Our method differs from [8]
in the way we deal with dynamic obstacles, as detailed in the
rest of the section. As such we will refer to our approach as
Scenario-MPCC (S-MPCC). To present the method, we consider
a single dynamic obstacle and one of the discs used to represent
the vehicle.1

A. Chance Constraints Linearized in the Robot Position

Chance constraints (2c) are nonconvex in the robot position
when sampled (see discs in Fig. 2(c)) and the associated SP
may have many local optima and a sizable support subsample.
We therefore consider a linearization of the collision regions
(depicted by the lines in Fig. 2(c)) before sampling to decrease
the support subsample size of the SP. This step reduces the risk
of its solution significantly. We modify the constraints as

Ak =
δk − x̂k

||δk − x̂k|| , bk = Ak
T (δk −Akr), (7a)

Pk

[
AT

k xk ≤ bk
] ≥ 1− εk, ∀k, δk ∈ Δk, (7b)

where we linearize the collision region with respect to x̂k, the
k-step ahead prediction of the robot position. We employ the
trajectory of the previous planning cycle, forward propagated, as
predictor. That is,2 x̂t|k = xt−1|k+1 and x̂t|N = xt−1|N . Hence,
we search for collision-free solutions around the planned trajec-
tory of the previous planning cycle. We show in Section IV-C that
after linearization, the free-space of the resulting SP is convex
in the robot position. A comparison between chance constraints
(2c) and (7b) for an example is provided in Fig. 1. The linearized
chance constraints capture less of the shape of the distribution,
but are accurate near x̂k and thus sufficient for motion planning.
Note that the linearizations are performed for each stage of the
trajectory, as illustrated in Fig. 2(b).

B. Scenario Program

For each of the chance constraints in (7b) we construct a set
of deterministic constraints by sampling from the uncertainty.
The red circles in Fig. 2(c) represent these samples and the black
lines are the scenarios (Section III). The resulting SP is given
by

min
u∈U

N∑
k=1

J(xk,uk) (8a)

s.t. xk+1 = f(xk,uk), x ∈ X (8b)

AT
k (δ

i
k, x̂k)xk≤bk(δ

i
k, x̂k), ∀i ∈ Sk, ∀k. (8c)

The theoretic properties of SPs, discussed in Section III, are
limited to CCPs with one chance constraint. However, (7b)

1Section IV-D shows how this case extends linearly to multiple dynamic
obstacles and multiple discs.

2We denote by xt|k the k-step ahead prediction of the robot trajectory for the
MPC planning cycle at time t

describes multiple chance constraints, one for every stage of
the planned trajectory. We now show that multiple chance con-
straints can be handled separately, resulting in a probabilistic
feasibility property per stage.

Theorem 1: Under Assumption 2, the probability that the
solution of SP (8) violates its associated chance constraint at
stage k, satisfies

P Sk

k [Vk(u
∗
SP ) > εk(s

∗
k)] ≤ βk(Sk), (9)

where

βk(Sk) :=

Sk−1∑
s=0

(
Sk

s

)
[1− εk(s)]

Sk−s . (10)

Proof of Th. 1: The proof follows along the lines of the convex
proof [5, Th. 4.1]. In the following, we derive the result for
k = 1. The proof is analogous for all other k. We use the notation
ωk = {δ1k, . . . , δSk

k } to denote the collection of all samples per
stage. Consider the complement of the confidence of the first
stage, when the samples of all other stages have been drawn,

P S1
1 [V1(u

∗
SP (ω1)) > ε1(s

∗
1) | ω2, . . .ωN ], ω1 ∈ ΔS1 . (11)

Under Assumption 2, the samples ω1 are drawn independently
from the samples ω2, . . . ,ωN . Moreover, since ω2, . . . ,ωN

have been observed, we can merge their respective constraints
into the feasible set

X̃2:N =
N∏

k=2

{xk | g(xk,ωk) ≤ 0}. (12)

This results in the following modified optimisation problem

min
u∈U

N∑
k=1

J(xk,uk) (13a)

s.t. xk+1 = f(xk,uk), x ∈ X (13b)

P 1[g(x1, δ1) ≤ 0] ≥ 1− ε1 (13c)

x2:N ∈ X̃2:N . (13d)

This problem is a nonconvex CCP of the form (3) with one
chance constraint, hence we can apply (6), which shows that the
confidence of the first stage satisfies the proposed theorem for
k = 1 and analogous derivations apply for k = 2, . . . , N . Even
though constraints (13d) are deterministic, the solution to the
optimization problem has not changed compared to SP (8). We
therefore conclude that the result holds. �

C. Probabilistic Safety Guarantees

The key insight that makes our approach tractable is that due
to the geometric structure of the problem, the free space may be
described by only a small subset of the scenarios. To see this, first
note that each scenario constraint in (8c) defines a half-space.
The collision-free space, if it exists, is formed by the intersection
of half-spaces and is convex, as i) each half-space is convex and
ii) the intersection of convex constraints is convex. This results
in a free space polytope Pk (see Fig. 2(d)), spanned by those
half-spaces that form the boundary of the polytope. We may
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Algorithm 1: S-MPCC.
1: Compute Sk from εk, s̄, for all k
2: for all t = 1, 2, . . . do
3: Δt

k ← Retrieve uncertainty from perception module
4: for all k = 1, . . . , N do
5: Sample δik ∈ Δt

k, i = {1, . . . , Sk}
6: Compute Ai

k, b
i
k from (7a) for all samples

7: FindHk and verify |Hk| ≤ s̄
8: end for
9: ut ← Solve (14)

10: Output: ut|1
11: end for

define this subset of half-spaces by their indices as

Hk := {i | ∃xk ∈ Pk,A
T
k (δ

i
k, x̂k)xk = bk(δ

i
k, x̂k)}.

The usefulness of the set Hk is twofold. First, we may replace
(8c) with only those half-spaces that span polytope Pk, greatly
reducing the size of the online optimization problem. Second,
the setHk contains indices of the constraints that may be active
during optimization and hence the support subsample is bounded
by its cardinality, that is, s∗k ≤ |Hk|. We use the latter fact to
establish the link between the CCP subject to (7b) and SP (8).
There always exists an upper bound, s̄, for the cardinality ofHk

and for our problem we find experimentally that this upper bound
s̄ is much smaller than the sample size. That is, for uncertainty
distributions where the samples are not cluttered at the boundary,
only few scenarios are active.

We can now compute sampling size Sk offline, using (i)
Theorem 1, (ii) upper bound s̄, (iii) confidence parameter βk,
and (iv) risk εk. The SP we solve online is given by:

min
u∈U

N∑
k=1

J(xk,uk) (14a)

s.t. xk+1 = f(xk,uk), x ∈ X (14b)

AT
k (δ

i
k, x̂k)xk ≤ bk(δ

i
k, x̂k), i ∈ Hk. (14c)

Algorithm 1 summarizes our method. Online, we sample from
the distribution and identify the minimal polytope and the
support subsample size (line 4-9). We then solve optimization
problem (14) (line 10) and use the first input as control input
(line 11). In the following we provide a result for improving
performance by discarding outlier scenarios.

Theorem 2: Consider solving the CCP (3) using the SP (4),
where after sampling, part of the scenarios are discarded. Sup-
pose that we have a discarding algorithm R that removes R of
the S scenarios, leaving P = S −R scenarios to be considered
for the optimization. Let ε(s) be a function such that ε(P ) = 1
and

β(S, P ) =

(
S

P

) P−1∑
s=0

(
P

s

)
[1− ε(s)]P−s.

Then the probability that the solution of the SP (4) is infeasible
for the original CCP (3) satisfies the upper bound

P S[V (u∗SP ) > ε(s∗)] ≤ β(S, P ). (15)

Proof: Consider the partitioning of the probability space:

ΔS
Ip = {δS ∈ ΔS | R(δS) = Ip}, (16)

The sets ΔS
Ip are events where the picking algorithm selected

the indices Ip. Define the set where the risk bound is violated

BIp = {δS |R(δS) = Ip, V (u∗Ip)>ε(s∗Ip)}. (17)

Notice that the last condition is upper bounded by (6) with
S = P . But the distribution of the samples is biased due to the
samples that were removed from the iid sample set. We obtain
the following bound on the biased sample set

P S[BIp ] ≤
P−1∑
s=0

(
P

s

)
[1− ε(s)]P−s. (18)

This result holds for all index sets which also contains all the
possible biases introduced byR. Hence, the upper bound

P S[B] = P S

[⋃
Ip
BIp

]
≤ β(S, P ), (19)

is attained by independence of the samples. �
Remark 1: Bound (19) is conservative. For example if we

pick a random discarding algorithm forR, then the samples are
still iid and we can use (6) directly with S = P , giving

P−1∑
s=0

(
P

s

)
[1− ε(s)]P−s = β,

which is generally much tighter than (19). However, even if the
bound is conservative we can use it to remove extreme scenarios,
leading to generally better performance.

D. Multiple Dynamic Obstacles and Discs

To apply the strategy above to more than one obstacle, we
use the fact that scenario optimization is distribution agnostic.
We combine the predictions of the obstacles into a probability
space Δk = [Δ0

k . . . ΔV
k ]

T , where samples are denoted
δk = [δ0k . . . δVk ]

T . Although the stacked distribution δk
could be used to model the correlation between the movement
of obstacles, we will sample each component separately from
individual probability distributions. The chance constraints (7b)
need to include all obstacles and are modified as follows

Pk

[
AT

k (δ
v
k, x̂k)xk≤ bk(δ

v
k, x̂k), ∀v

] ≥ 1− εk, δk ∈ Δk, ∀k.
The rest of the method follows analogously to the single
obstacle approach but where the scenarios are drawn for each
obstacle, resulting in more scenarios to process before obtaining
the free space polytope. In the case of multiple vehicle discs,
we formulate multiple chance constraints of the form (2c), one
for each collision disc. We apply the method described in this
Section per disc as samples for each of the discs are independent.
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Algorithm 2: Detailed S-MPCC for (Truncated) Gaussian.
1: Determine Sk from εk, βk, s̄, R
2: ui ← U ×U , ∀i = {1, . . . , Sk} (uniform random)
3: zi0 =

√
−2 lnui

1 cos (2πu
i
2), ∀i = {1, . . . , Sk}

4: zi1 =
√
−2 lnui

1 sin (2πu
i
2), ∀i = {1, . . . , Sk}

5: Verify relevance of samples z, prune irrelevant
6: for all t = 1, 2, . . . do
7: for all k = 1, . . . , N do
8: δik ← (20)

9: δ̂
l

k ← applyR to closest R+ l scenarios in δik

10: Pk ← intersection algorithm onH(δ̂lk)
⋃Hrange

k

11: end for
12: end for

V. S-MPCC WITH GAUSSIAN UNCERTAINTIES

A common class of uncertainties are the (truncated) Gaussian
uncertainties. This section presents a detailed formulation of
Algorithm 1, namely Algorithm 2, one can use in the case of
(truncated) Gaussian uncertainty.

The first step of Algorithm 2 is to determine the sample size.
We set εk = 1− 0.9889, equivalent to the probability mass un-
der the 3σ interval of a bivariate Gaussian (generally considered
as safe). Since the risk has logarithmic dependency on βk [7], βk

is generally small. We pick βk = 1 · 10−6, i.e., one in a million
SPs may not be feasible for the original CCP3. The removal
size R = 50 is empirically determined, verifying that outliers
are removed. Upper bound s̄ is guessed and increased until it
is never exceeded in practice. We find s̄ = 20. Evaluating (19),
we are able to pick Sk ≈ 53050 (line 1). We note that the main
dependency of the sample size is the acceptable risk εk . Sampling
more scenarios results in a higher probability of safety, but at the
cost of more conservative trajectories and increased computation
times.

Instead of online sampling, we may sample a set of parameter-
ized samples offline followed by an online transformation. This
reduces the online operations, resulting in lower computation
times. We describe this approach for the (truncated) Gaussian
case. We generate offline a number of batches with Sk bivariate
Gaussian samples, centered at the origin and withΣ = I , where
I is the identity matrix (line 2-4). These samples are obtained
using the Box-Muller Transformation (BMT) [20], which also
allows us to draw radially truncated Gaussian samples by simply

changing the support domain of u1 to [e−
r2

2 , 1] [21]. Most of
the samples will be in the center of the distribution and will
not be relevant online. Hence, we run our online algorithm for
scenario selection (explained later), offline and aggregate the set
of selected scenarios. Scenarios that are not in this set are pruned
offline (line 5). In the 3σ example, approximately 95% of the
scenarios are removed offline.

Online, we are only required to transform the offline samples
from the standard bivariate normal distribution to the estimated

3Note that the designer can choose to keep safety margin in the obstacle radius
such that a failure does not have to result in a collision.

mean and variance of the uncertainty (line 8), which is computed
using

δik = AT
k z

i
k + μk, AT

kAk = Σk. (20)

We select for each obstacle only one batch of samples. The
obstacle predictions are sampled with that batch for all stages and
all time steps. This provides the motion planner with consistent
constraints. To further reduce the computational load, we search
online only for the l +R scenarios closest to considered vehicle
position, where we use l = 150 in the following experiments,
we assume that this set contains the support subsample. We
then apply the discarding algorithm R, which removes the
R scenarios furthest from the mean of the distribution (line
9). We construct half-spaces from the remaining l scenario
and add four half-spaces to constrain the vehicle in a square
workspace. To find the minimal polygon in 2D from this set of
half-spaces, we use an intersection based algorithm (line 10).
The algorithm explores the intersections in the inner polygon
in a counter-clockwise fashion. The lines traveled form the
minimal polygon. In the following simulations and experiments,
we incorporate our dynamic obstacle avoidance method in the
MPCC framework [8]. We introduce a cost term that activates
when the robot gets close to the boundaries of the free space
polygon, to penalize movement close to pedestrians.

VI. RESULTS

In this section, we present simulation and real-world results
for a mobile robot navigating among pedestrians. Moreover,
we present a qualitative analysis and performance results of
our method against two baselines: MPCC [8] and Collision
Avoidance with Deep RL (CADRL) [22].

A. Experimental Settings

Our experimental platform is the Clearpath Jackal robot
equipped with an Intel i5 CPU@2.6 GHz. For the robot and
pedestrian’s localization we have used the OptiTrack sys-
tem [23]. Our simulations use the open-source ROS implemen-
tation of the Jackal Gazebo for the robot simulation and Social
Forces model [24] for pedestrian simulation.

To solve SP (14), we use the ForcesPro [25] solver. The
robot dynamics are described by a continuous-time second-order
unicycle model [26]. The model is discretized with steps of
200 ms. The time horizon is set to 3 seconds divided into 15
stages. The sampling period for control is 50 ms.

B. Simulation Results

We compare the proposed method against two methods
for Gaussian uncertainties. The first is a baseline MPCC ap-
proach [8] in which the ellipses used to represent the obstacles
are obtained from the level sets of a known Gaussian distribution
of the uncertainties. For comparison, we use the same tuning for
both approaches (the interested reader can refer to [8] for details
on the definition of the cost function and general constraints).
The main difference between the two approaches is the handling
of dynamic obstacles (i.e., ellipsoidal level sets vs. scenario
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Fig. 3. Simulations using our S-MPCC with 6 crossing pedestrians for 3 types of uncertainties. The top row visualizes the robot (blue) and pedestrian (red)
trajectories, where newer positions are depicted with lighter shades. The bottom row visualizes the free space and active samples at stages 1, 8 and 15 in red, orange
and yellow. All samples considered online are shown in black. The robot’s current and predicted occupied area are denoted in black and blue, respectively.

TABLE I
STATISTIC RESULTS OF THE PROBABILITY OF COLLISION WITH RESPECT TO THE ESTIMATED UNCERTAINTY FOR THE FIRST STAGE (EVALUATED USING MONTE

CARLO SAMPLING) AND VIOLATIONS OF THE SPECIFIED RISK, THE TASK COMPLETION TIME AND THE COMPUTATION TIMES. THE RESULTS ARE COLLECTED

FROM 100 SIMULATIONS OF A CROSSING SCENARIO FOR n ∈ {2, 4, 6} PEDESTRIANS

constraints). The second method for comparison is CADRL [22].
We use the open source ROS implementation in the following
simulations. Similar to MPCC we employ ellipsoidal level sets
as the collision region of the obstacles.

The simulation environment consists of a straight road where
pedestrians are crossing freely, as depicted in Fig. 3. The robot
objective is to follow the centerline of the road. We evaluate
our method for 2, 4 and 6 pedestrians. The uncertainty of the
pedestrian predictions is Gaussian with a variance ofΣ = 0.12I .
We set a pedestrian radius of zero. Fig. 3(a) depicts one simu-
lation of S-MPCC with 6 pedestrians. Aggregated results over
100 simulations are presented in Table I. In all tested cases,
collisions are prevented by S-MPCC, while additionally the
risk, evaluated over the perceived uncertainty, remains below the
specified 3σ threshold. The MPCC method frequently switches
between locally optimal trajectories resulting in collisions when
it becomes infeasible. CADRL is reactive, which in the simu-
lated environment leads it to positions where collisions may not
be avoided. This behavior becomes worse with more obstacles.
Interestingly, we find that S-MPCC results in smoother trajec-
tories than both methods which results in earlier arrival at the
goal. The downside is that the computation time of our method is
higher. The computation time may be decreased by considering
only the pedestrians close to the estimate x̂k. We repeated the
simulation with 6 pedestrians in this case. The computation time
was reduced to 6.86 ms mean and 40.94 ms maximum.

Evaluation of S-MPCC for non Gaussian uncertainties is
depicted in Fig. 3. Here, the previous Gaussian predictions are
radially truncated at 3.5σ (Fig. 3(b)) and truncated in their
width at 2.5σ (Fig. 3(c)). In this scenario, width truncated
uncertainties incorporate the domain knowledge that pedestrians

are expected to cross at a crosswalk. Level set based approaches
are not applicable in this case, as the geometry of the level sets
depends on the specified risk threshold. We adapt the pedestrian
locations to simulate a crosswalk. In contrast to the previous
simulations, we specify an obstacle radius of 0.3 m and a
variance ofΣ = 0.082I . We evaluate the probability of collision
in the first stage, with respect to the estimated uncertainty over
100 tests using Monte Carlo sampling. We find a maximum
risk of 0.00 305 for radial truncation and 0.02 038 for width
truncation. The violation of our method in the case of width
truncation corresponds to a single case where the horizon is not
long enough to correctly assess the risk of the full task a priori.
This leads the robot to a state where our method cannot find a
trajectory that satisfies the risk bound along the horizon and the
optimization becomes infeasible. By increasing the horizon, the
risk can be anticipated earlier, improving feasibility at the cost
of larger computation times. The maximum risk over the other
simulations was at most 0.0070.

C. Real-World Results

We evaluated our method on real navigation situations with
pedestrians. In the experiment, the robot navigates on a road
following the lane central line when two pedestrians cross the
robot’s path. We modeled the noise on the pedestrian predictions
as Gaussian distributions truncated at 3.5σ. Fig. 4 provides
snapshots of one experiment.4

4A video of the experiments and simulations accompanies this letter.
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Fig. 4. Experimental results with the robot avoiding two crossing pedestrians. The orange circles depict the robot’s plan, while the blue and green circles the
pedestrians’ (constant velocity) predictions. The solid black lines depict the road boundaries.

VII. CONCLUSIONS AND FUTURE WORK

In this letter we presented a Scenario-based Model Predic-
tive Contouring Control (S-MPCC) method for mobile robot
motion planning in the presence of dynamic obstacles with
arbitrary position distributions. The main idea was to pursue
a scenario-based method (translating probabilistic constraints
into deterministic ones), generating scenarios from a model of
the uncertainty. By using geometry considerations we were able
to prune the possible outcomes (scenarios), while providing
a bound on the marginal risk with respect to the modeled
probability distribution. We demonstrated in simulations that
the proposed method outperformed two recent baselines, in the
sense that it generated trajectories that were significantly safer
and more efficient. This came at a higher processing cost, but
the method is still real-time capable. We furthermore illustrated
the proposed method in a real-world experiment with a moving
robot platform navigating among pedestrians. To further reduce
the uncertainties and improve the navigation of the robot, incor-
porating the interactions between robot and pedestrians would
be useful. The risk bounds that our method provides on the
modeled uncertainty can still be improved by alleviating the
standing assumption that requires our uncertainty models per
stage to be independent. Additionally, the risk bound on the
planned trajectory is relatively conservative. A tighter bound
can be useful for planning safer long term motion, especially
when the robot dynamics are slow. Alleviating these limitations
are part of our future work.
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