
3200 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 6, NO. 2, APRIL 2021

SMAC: Symbiotic Multi-Agent Construction
Caleb Wagner , Neel Dhanaraj, Trevor Rizzo , Josue Contreras, Hannan Liang , Gregory Lewin ,

and Carlo Pinciroli

Abstract—We present a novel concept of a heterogeneous, dis-
tributed platform for autonomous 3D construction. The platform
is composed of two types of robots acting in a coordinated and
complementary fashion: (i) A collection of communicating smart
construction blocks behaving as a form of growable smart matter,
and capable of planning and monitoring their own state and the
construction progress; and (ii) A team of inchworm-inspired builder
robots designed to navigate and modify the 3D structure, following
the guidance of the smart blocks. We describe the design of the
hardware and introduce algorithms for navigation and construc-
tion that support a wide class of 3D structures. We demonstrate
the capabilities of our concept and characterize its performance
through simulations and real-robot experiments.

Index Terms—Building automation, distributed robot systems,
multi-robot systems, robotics and automation in construction,
swarm robotics.

I. INTRODUCTION

MULTI-ROBOT systems promise solutions for construc-
tion at much larger scales than the robots themselves.

With many robots working in parallel, construction can be
completed in a fast and efficient manner. Decentralization may
also enable robust solutions with no single point of failure,
paving the way for uncrewed construction of colonies in adverse
environments such as the Moon or Mars.

The design space of possible approaches to collective con-
struction is vast, and it requires a careful co-design of hard-
ware, software, and fabrication [1]. A particularly important
open problem is how to coordinate the construction process
autonomously. In this letter, we frame it as the study of how
intelligence should be distributed across the system [2], [3].

To address this question, we explore a concept for multi-robot
construction that comprises two types of robots. The first type
is a smart construction block, where all of the blocks as a whole
behave as a form of growing smart matter. By communicating
with one another, the smart blocks monitor the state of the
structure and its construction progress in a decentralized fashion.
The second type of robot is the builder, unaware of the global

Manuscript received October 15, 2020; accepted February 9, 2021. Date of
publication March 1, 2021; date of current version March 22, 2021. This letter
was recommended for publication by Associate Editor S. Hauert and Editor
M. A. Hsieh upon evaluation of the reviewers’ comments. (Caleb Wagner and
Neel Dhanaraj contributed equally to this work.) (Corresponding author: Carlo
Pinciroli.)

The authors are with the Department of Robotics Engineering, Worcester
Polytechnic Institute, Worcester, MA 01609 USA (e-mail: cwagner@wpi.edu;
dhanaraj@usc.edu; tarizzo@wpi.edu; jdcontrerasalbuj@wpi.edu; hliang2@
wpi.edu; glewin@wpi.edu; cpinciroli@wpi.edu).

This letter has supplementary downloadable material available at https://doi.
org/10.1109/LRA.2021.3062812, provided by the authors.

Digital Object Identifier 10.1109/LRA.2021.3062812

target structure but able to manipulate and transport blocks
in 3D thanks to its inchworm-shaped body. Builders perform
localization and path planning by communicating with the smart
blocks, which perform the necessary computation. The two types
of robots constitute a symbiotic system in that their continuous
collaboration is necessary for success. For this reason, we called
our approach SMAC — Symbiotic Multi-Agent Construction.

Related work. The coordination of robotic construction
through interaction with the environment is inspired by stig-
mergy in social insects [4]. Several approaches have been pro-
posed in this context, both in simulation [2], [5]–[9] and with
real robotic platforms [10]–[15]. In particular, AMAS [2], [14]
is a smart block / inchworm concept where the building material
is capable of storage, communication, and power transmission.
With AMAS, the inchworms perform construction in a decen-
tralized manner through a gradient-based algorithm where the
blocks act as a shared ‘blackboard’. SMAC is based on a different
mechatronic design, where the blocks plan the construction
rather than store information. SROCS [13] is another approach
based on smart blocks used for local information storage. An
extension of SROCS in which the smart blocks participate in
planning construction is currently being developed [9]. How-
ever, the builder robot is a crane incapable of traversing the
ongoing structure, making it impossible to build structures be-
yond the builder’s own size. The problem of navigating and
localizing within an ongoing structure has been the subject of
several influential works. Localization is typically achieved by
tracking the number of blocks covered since the entry point
of the structure. In addition to the already cited AMAS [14],
TERMES [16] pioneered a concept in which a wheg-equipped
robot, co-designed with a convex block, constructs 2.5D struc-
tures by block deposition and removal. The robot follows a plan
calculated by an optimization algorithm [17] with the ability to
recover from placing errors. Bill-E [18] is another inchworm
robot designed to navigate and build versatile 3D structures
composed of special blocks that latch magnetically, rather than
mechanically as in AMAS and SMAC. Planning is centralized
in a dedicated machine [15], rather than being performed by the
inchworms or the blocks.

Novelty and contributions. This work explores the co-design
space of collective construction with symbiotic robot teams
comprising growing active matter and mobile robots. In this
domain, our letter provides four main contributions:

1) We propose the co-design of two types of robots, both of
which present novel challenges and solutions;

2) We introduce planning algorithms that achieve construc-
tion and navigation of 3D structures;

3) We showcase a subclass of structures that are achievable
through our system;

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-3787-9261
https://orcid.org/0000-0002-1395-7464
https://orcid.org/0000-0002-5827-0391
https://orcid.org/0000-0003-1877-9991
https://orcid.org/0000-0002-2155-0445
mailto:cwagner@wpi.edu
mailto:dhanaraj@usc.edu
mailto:tarizzo@wpi.edu
mailto:jdcontrerasalbuj@wpi.edu
mailto:hliang2@penalty -@M wpi.edu
mailto:glewin@wpi.edu
mailto:cpinciroli@wpi.edu
https://doi.org/10.1109/LRA.2021.3062812

WAGNER et al.: SMAC: SYMBIOTIC MULTI-AGENT CONSTRUCTION 3201

4) We demonstrate the effectiveness of our approach through
simulations (particularly regarding scalability) and real-
world experiments.

The letter is organized as follows. In Section II we list the main
requirements. In Section III we describe the hardware design,
and in Section IV we describe our algorithms for planning
and navigation. We report the results of the evaluation of our
approach in Section V and discuss conclusions in Section VI.

II. PROBLEM STATEMENT

SMAC is designed to explore novel questions regarding large-
scale, multi-robot 3D construction. In particular, we aim to
separate the planning/monitoring logic from the physical aspects
of construction, such as navigation and block placement. This
enables the study of research questions centered around the
concept of extended stigmergy [3], in which simple, reactive
robots build smart structures composed of modules capable of
dynamic monitoring and (re)planning.

For the purposes of this work, we consider three high-level
design requirements to achieve this vision:

1) We want our builders to navigate over challenging 3D
structures. The robots must also be capable of manipula-
tion/placement of blocks in any part of the structure.

2) We want our smart blocks to locally compute and commu-
nicate information pertinent to the ongoing construction
task. Communication must occur both among blocks and
between a block and an attached inchworm.

3) Finally, we aim to demonstrate the potential of this kind
of distributed, spatial intelligence by devising algorithms
that achieve construction efficiently and scalably.

III. ROBOT PLATFORMS

A. Inchworm Builder and Smart Block Co-Design

We first define the parameters and decisions that dictate the
inchworm and block co-design.

Smart block side length. The first design parameter is the
side length L of the smart blocks, which we consider the ‘unit’
of the lattice constituting any target structure. A large side length
would allow for better electronics and mechanical capabilities
for a block, but it would also increase the size and weight of
the inchworm. A short length, on the other hand, allows for a
smaller, lighter inchworm, while limiting the capabilities of the
smart block.

Inchworm-block docking interface. The docking interface
between an inchworm and a block face dictates how the inch-
worm climbs a structure and manipulates a block, as well as
how the blocks assemble to become a structure. We selected
a 4-dowel pin-to-hole design for two reasons: (i) this type of
interface can sustain sufficient shear loads; and (ii) it fosters
alignment, which is beneficial for both inchworm locomotion
and placing blocks onto the structure. An actuated screw is used
to create a positive connection between two faces. The interface
is shown in Fig. 2.

Inchworm-block communication. The communication in-
terface between an inchworm and a block occurs between the
inchworm’s end effector and any female face of a block. This

Fig. 1. Overview of proposed concept.

Fig. 2. CAD model of the smart block and inchworm end effector, showing
the common interface mechanism used by both designs.

allows the inchworm to both communicate and localize itself on
the structure without ambiguity. Localization of both the smart
blocks and the inchworm is achieved through communicating
the coordinates, axis, and direction of the face engaged in
communication.

B. Inchworm Builders

In the literature, robots such as wheg-equipped [16],
aerial [19], quadrupedal [20], and bipedal robots [14], [18] have
demonstrated the traversal of simple 3D structures to place
building material with varying levels of dexterity and control
complexity [1]. In the quest for a versatile design with low con-
trol complexity, we identified an inchworm-inspired platform as
a satisfactory solution [14], [18]. An inchworm can traverse over
almost all block structures and can pick and place blocks onto
structures at any position and orientation in their workspace.
This capability does not compromise other important factors
such as weight and cost.

Inchworm design summary. Our inchworm robot is a sym-
metric, bipedal, serial-linkage robot with 6 links and 5 rotational
joints (see Fig. 3). Two of these joints are wrist joints located
at each end effector, which enable the inchworm to traverse 3D
structures and manipulate the blocks along 2 axes of rotation.

Link design and analysis. We derived a relationship between
the required link lengths and the fundamental inchworm motion
configurations to ensure versatile 3D navigation. Fig. 4 shows
the fundamental motions that we considered. For this analysis,
the side view of the inchworm simplifies the analysis by reducing
the problem to a 4-link robot (labeled A through D in Fig. 4).
The minimum link length is constrained by the robot’s ability to
navigate a convex corner without collision as shown on the right
of Fig. 4. To determine a relationship between the inchworm link

3202 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 6, NO. 2, APRIL 2021

Fig. 3. CAD design of the inchworm builder.

Fig. 4. Navigation capabilities of the inchworm.

length and block side length, L, we expressed the link lengths
as vector loop equations [21]. To solve these equations in the
convex corner configuration, we set the length of the A and D
links to 1.375L and the clearance vector between the middle
joint and the block corner to 0.25L. By solving the vector loop
equations, the relationship between the block side length,L, and
the inchworm link lengths are expressed byLA = LD = 1.375L
and LB = LC = 2.144L. Furthermore, if we define a worst-case
scenario as a fully extended, static robot that is perpendicular
to the direction of gravity, the required joint torque increases
quadratically with respect to L. Based on budget considerations
and a review of available commercial off-the-shelf actuator
options, the standard form factor RC-servo was the strongest
candidate for joint actuators. We therefore defined the block side
length as L = 76.2mm and the current inchworm prototype is
realized using RC-servo motors. The link lengths of the final
inchworm are reported in Fig. 3. The resulting inchworm is
large enough to fully enclose the necessary electromechanical
components.

Fig. 5. Inchworm robot behavior tree.

Motor selection. To specify a suitable motor, we calculated
the dynamic torques for the worst-case scenario where each
joint has a positive instantaneous velocity and acceleration. For
this calculation, we considered a joint speed of 30 ◦/s, while
the maximum acceleration was determined from a trapezoidal
velocity profile [22]. Using a point mass dynamic model of the
robot, the worst-case dynamic joint torque resulted in 0.17 Nm.
We chose a standard form factor JX PDI-HV5932 mg 30 Nm
servo as it provides a safety factor of 1.5 based on the worst-case
dynamic joint torque.

Gripper end effector design. The end effector design, de-
picted in Fig. 2, consists of a flat disk with four pins integrated
into the surface, as seen on the right of Fig. 2. The pins are
12.7 mm in diameter and absorb the shear loads on the robot-
to-structure interface and align the end effector with the block.
We use a single, actuated 4–40 threaded rod to screw into the
structure and absorb the normal load acting on the interface.
The rod and pin ensure that the overall connection can sustain
the loads required to be attached to the structure. Based on the
dynamic model of the inchworm, the maximum torque between
the inchworm and structure was calculated to be 25.7 Nm during
fast movements. The maximum expected load on the screw is
67.6 N, which is well within the proof load of the gripper screw.
To attach a block, the gripper has an actuated Allen key that
is used to turn the block screwing mechanism. Lastly, each
gripper has a Near-Field Communication (NFC) antenna that
is used to communicate with the structure. NFC is discussed in
Section III-C.

Electronic design. The inchworm uses a Teensy 3.6 micro-
controller and Raspberry Pi Zero for low-level control and joint
trajectory planning. We added 14-bit, absolute position encoders
(AS5048B from AMS) to the joints to provide precision position
feedback (0.02 ◦ resolution). The current prototype of the robot is
powered by a 9V power supply instead of a battery for simplicity
in conducting experiments.

Inchworm behaviors. We structured the inchworm behaviors
into a behavior tree [23]. We found that this approach fits well
with the reactive nature of the inchworm behavior, while being
simple and extendable. The main subtrees involve (i) receiv-
ing updates from the structure; (ii) waiting; (iii) moving to a
specified location; and (iv) building sections of the structure.
Each of these subtrees is composed of simple behaviors such
as picking up blocks, pathfinding, and placing blocks. With
reference to Fig. 5, the behaviors are prioritized top to bottom,
left to right. Individual behaviors are described in the Planning
and Navigation section.

WAGNER et al.: SMAC: SYMBIOTIC MULTI-AGENT CONSTRUCTION 3203

Fig. 6. Structure made of smart blocks showing the flooding communication
strategy.

C. Smart Blocks

To address the second design goal in Section II, our smart
blocks attach to and communicate with nearby blocks and
inchworms, which allows the following functionalities: system
awareness of structure configuration, detection of failed or de-
tached blocks, and communication of location or structure status
to inchworm.

Communication. For communication to be possible across
all faces of a smart block, we considered several technologies, in-
cluding Inter-Integrated Circuit (I2C), Universal Asynchronous
Receiver/Transmitter (UART) and NFC, the latter being favored
because it eliminated the need to design inter-block electrical
connections required for the other methods. The final implemen-
tation uses six NXP PN532 NFC controllers and antennas, one
for each face, all controlled by an Arduino Mini microcontroller.
For two adjacent block faces to communicate over NFC, one
NFC controller must be in card emulation mode and one in card
reader mode. For a block to receive messages, the NFC controller
goes into card emulation mode and the microcontroller polls
each block face for an incoming message. For a block to send
a message, the NFC controller goes into card reader mode
and the message is relayed to the receiving NFC face. The
microcontroller keeps the NFC block faces in card reader mode
until the message transmission has been confirmed. By default,
each block face is set to card emulation mode and is only set
to card reader mode when sending a message. This behaviour
allows for synchronous communication between 2 blocks. As
shown in Fig. 6, the blocks communicate through a flooding
algorithm in which every block broadcasts messages on all its
faces.

Inchworm-block connections. Each block has five female
and one male connection face. The male connection face uses
a 4–40 threaded screw, like the robot gripper, to attach to a
structure. The other five female faces have threaded inserts for
connections with male faces. The top female face (opposite the
male face) has an Allen key input (see Fig. 2) to activate the
attachment screw. The inchworm uses the screwing mechanism
in the following sequence:

1) The inchworm actuates its end effector screw to connect
to the block’s top female face;

2) The inchworm actuates the Allen key to engage (attaching)
or disengage (releasing) the attachment thread screw on
the block;

3) After placing the block, the inchworm disconnects from
the block’s female face.

Power and LEDs. Each block is powered by a 600 mAh LiPo
battery. Average battery life is about 4 hours. Each block face
has programmable Neopixel LEDs, which are used to convey
the state of the block to the user. For example, green means the
block is incorporated into a structure, flashing yellow indicates
a block is waiting to be added to the structure, and flashing red
indicates that an adjacent block has been removed or failed.

Home blocks. A variation of the smart block, the home block,
serves as structure seed and initial planner for the entire system.
This block is equipped with a Raspberry Pi Zero.

D. Structure Perception Functionality

Three key functions leverage the symbiosis between the
blocks and the inchworms:

1) Structure Status. The blocks update the structure’s cur-
rent configuration as blocks are dynamically added.

2) Robot Position. Each inchworm requests its own posi-
tion and the position of other robots with respect to the
structure, enabling localization in 3D space.

3) Heartbeat Protocol. Each block periodically communi-
cates its status to neighboring blocks, allowing the struc-
ture to compare the current configuration to the previous
one, thereby identifying missing or failed blocks.

IV. PLANNING AND NAVIGATION

We devised algorithms for planning and navigation that take
advantage of the hardware design presented in Section III.

A. Planning

The planning algorithm (see Fig. 8) is responsible for calcu-
lating the sequence of operations that must be accomplished to
build the target structure. These operations include retrieving
and placing blocks in the locations indicated in the blueprint
of the target structure. The algorithm is executed by the home
block (or blocks, in case multiple home blocks are deployed).

Divisions. Because navigation is a time-consuming activity
for the inchworms, the planning algorithm splits the structure
into divisions. Each inchworm claims a specific division. Inside
of a division, the inchworm receives instructions from and
communicates to the planner through the smart blocks.

Ferrying. When inchworms are notified that a new block is
available for placement, the inchworm in the nearest division
picks the block up and either places it in the inchworm’s own
division, or carries it to the border of one of the adjacent
divisions. The inchworm responsible for the adjacent division
picks up the block and repeats the above procedure. We call
ferrying the act of passing blocks across divisions until the target
division is reached. Ferrying, akin to a bucket-brigade, is a form
of task partitioning [24], [25] that lowers the navigation cost

3204 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 6, NO. 2, APRIL 2021

Fig. 7. Examples of steps of building algorithm.

Fig. 8. Sequence diagram of the building algorithm executed for every layer
of the target structure.

of the inchworms. The home block provides instructions to the
inchworms by sending messages through the blocks.

Division creation. Divisions are created by subdividing a
given structure into areas where an inchworm is meant to per-
form work, as shown in Fig. 7 (division creation). While the
divisions extend to 3D shapes, only a layer of the structure,
defined as a group of blocks 1 unit high, is considered at a time.
The size and shape of divisions can vary, but ultimately they
are meant to minimize the amount of inching the inchworms
must perform to either ferry or build blocks. For the purposes of
experimentation, the size and shape of divisions were directly
chosen by a human operator and were homogeneous throughout
the entire structure. Future improvements involve automating
the selection of the size and shape of divisions and allowing
heterogeneous divisions. The number of divisions created is de-
pendent on the size of the structure and the size of the divisions.
A partial ordering of the divisions is used to construct a priority
queue, which determines the order in which divisions should be
built. New blocks are introduced into the system at a designated
feeding location. For simplicity, the demonstrations here use
a single feeding location at the home block. Multiple feeding

locations can be used, however, as the concept of a human
ferrying blocks to the inchworms is similar to an inchworm
ferrying blocks to another inchworm: blocks are placed onto the
structure, which is notified of the added blocks, and the home
block sends messages to the inchworms. The partial ordering
is determined as the relative distance from the feeding location
and calculated using the wavefront algorithm. Divisions that are
closer to the feeding location are built first. Once these divisions
are built, the inchworms traverse the divisions to ferry blocks to
divisions farther away from the feeding location.

Division claiming. Once the partial ordering is established
for a given layer of the structure, the inchworm robots are
tasked with moving to the different divisions, as shown in Fig. 7
(division claiming). A distributed voting algorithm is used to
construct a priority queue that ultimately assigns inchworms to
divisions. Using the communication capabilities of the smart
blocks, each inchworm calculates its distance from all the divi-
sions. The inchworms then place votes on each of the divisions
using the calculated distances as the vote value. In a greedy fash-
ion, each inchworm gets the division with the closest distance.
If multiple inchworms attempt to claim the same division, a
conflict resolution strategy is applied wherein the inchworm with
the larger distance (higher vote) claims the division. Because the
building algorithm proceeds outwards from the feeding location,
conflicts are most likely to arise when an inchworm is equidistant
from multiple divisions. By awarding a contested division to the
farthest robot, the distance for the ‘losing’ inchworm typically
is not increased substantially, if at all.

Block placement. After the inchworms are distributed, the
operator introduces new smart blocks into the system, which
signal to the inchworms that new blocks are available. If an
inchworm is in a division that has already been built, it ferries
the block to another division, as shown in Fig. 7 (ferrying
behavior). If the division has not been built, the inchworms
query the planner for the blueprint of that division and place the
blocks accordingly, as shown in Fig. 7 (building behavior). In the
ideal scenario, the inchworms place blocks in a spiral fashion,
starting from the center of the division and moving outwards.
This method was chosen so that after the first block is placed at
the center of the division, the inchworm can climb onto the block
and act as a fixed-base robot arm, pivoting around the block
to place additional blocks. If the shape and size of divisions
prevent the inchworm from reaching each location, the robot
will inch to place a block. In other situations, the inchworms
are unable to move to the center of a division, as there is not a
block underneath supporting it. In these scenarios, the inchworm
will move to the closest block it is capable of standing on and
build outwards from there. When ferrying, the inchworms place
blocks towards the outer edges of their own division such that a
robot in an adjacent division has to extend as little as possible
into the initial division, thus minimizing the chances of collision
or periods where an inchworm must wait for another inchworms
to move.

Reactive replanning. Once the inchworms have finished
building or ferrying a division, the inchworms will disperse,
or select the next division from the building algorithm priority
queue and move to that division. In the new division, they will
repeat the process of either building or ferrying blocks. Selecting

WAGNER et al.: SMAC: SYMBIOTIC MULTI-AGENT CONSTRUCTION 3205

another division from the priority queue while other inchworms
are ferrying or building is used to reduce the time the inchworms
spend waiting for other inchworms to finish. The procedure of
dividing a layer into divisions, dispersing the inchworms, and
then building or ferrying blocks through the divisions is repeated
for each layer in the structure until the entire structure is built.

Achievable structures. Our algorithm can build any structure
that does not present upside-down L-shape overhangs. It is
possible to build simple cantilevers (up to the structural abilities
of the blocks) by attaching a male face to an open, vertical
(female) face. Because the algorithm builds from the bottom up,
however, it is not possible to remove a block from underneath an
existing block. It is thus impossible to use a temporary support
block for the lower block of an inverted L-shape. Exploring these
scenarios is left as future work.

B. Navigation

In order to reach any given location on the structure, the
inchworm robots must be capable of finding a traversable path
to the given location.

We developed a simple path planning algorithm, called Face*,
that takes advantage of the versatile mobility of the robots. Face*
is an extension of the A* algorithm that treats the exposed faces
of each block as nodes in a network, and uses the Manhattan
distance to each node as the cost associated with reaching
that node. Analogously to the A* algorithm, Face* selects the
node with the lowest associated cost. For each node, an inverse
kinematics simulation ensures no collisions with the structure
are possible.

It is important to note that a path is only generated for the end
effector closest to the goal, not for both end effectors. The second
end effector does not require a separate path to be generated as
it can follow in the footsteps of the first end effector. Also note
that if an end effector is not engaged to the structure, Face* first
considers if the already disengaged end effector is capable of
reaching the given position, which allows the inchworm to swing
in place like a fixed-base robot arm and reduce unnecessary
inching. Finally, to avoid the possibility of two robots colliding
while they are moving, the algorithm expands the area around
(adds padding to) all other robots and excludes the expanded
regions from its search. The amount of padding that is added is
set to the length the robots are able to reach in all directions.

V. EXPERIMENTAL EVALUATION

A. Simulated Experiments

We developed a custom simulation environment to visualize
and collect statistics on the performance of the system. The
simulation environment was built using the Visualization Tool
Kit (https://vtk.org/). The experiments were run on a 2015
MacBook Pro. In our simulated experiments, the smart blocks
could connect along all the faces, in contrast to the single male
face connection available on the real smart blocks we built.

Metrics. The performance metrics we considered for the
simulated experiments are (i) whether the construction process
succeeded; and (ii) the speed at which the structure was con-
structed, measured in simulated time steps.

Fig. 9. Examples of structures achievable by our system.

Setup. We tested our approach with diverse structures in-
cluding pyramids, temples, churches, castles, the Empire State
Building, and the fictional Star Trek Reliant ship, among others
(see Fig. 9). We compared the construction speed for differ-
ent numbers of inchworms to investigate the effect of adding
additional robots on construction time. In the simulations,
inchworms were randomly placed on a surface composed of
smart blocks. The inchworms were then tasked with distributing
themselves according to the distribution algorithm explained in
Section IV-A. After the inchworms had distributed themselves,
a virtual operator sets smart blocks down in a corner of the layer,
designated as the feeding location. Prompted by the introduction
of a new block into the system, the inchworms reacted by moving
the blocks throughout the system as explained in Section IV. For
all simulations, the inchworms were able to place all blocks.

Scalability study. The results of two experiments are reported
in Fig. 10. The experiments involve 1 to 4 robots tasked with
building a 10× 10 plane and a pyramid of 316 blocks. As shown
in Fig. 10, the time decreases with additional robots, especially
when comparing a single robot with four robots.

Task specialization. To analyze how collaboration between
inchworms affects performance, we recorded the total amount
of time spent in each behavior by the inchworms. The main
behaviors tracked were receiving updates from other robots and
the structure (Update), moving (Move), waiting (Wait), building
(Build), and ferrying (Ferry). The results shown in Fig. 11 refer
to the same structures considered in the scalability study. For the
single inchworm experiment, the inchworm spends almost all its
time either ferrying or building. Note that, in this experiment,
the single inchworm ferries to itself; it ferries a block to the next
division, and then moves to that division to ferry/build with that
block. Almost no time is spent waiting, and a very small portion
of time is spent receiving updates. This is expected, as there are
no other inchworms with which it must coordinate.

For the experiments with multiple robots, we observed that the
time spent across the different behaviors is very heterogeneous.
Although capable of exhibiting all the behaviors, the inchworms

https://vtk.org/

3206 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 6, NO. 2, APRIL 2021

Fig. 10. Time required to build structures for different numbers of inchworms.

Fig. 11. Time spent performing behaviors for different numbers of robots.

specialized themselves into different groups, in which some of
the inchworms focus more on ferrying while others focus more
on building. In particular, we observed that one inchworm did
most of the ferrying, while the other inchworms mainly focused
on building. The appearance of task specialization depends on
the type of structure built. We also observed that the waiting
time and the time spent receiving updates of all inchworms is
much higher compared to the single inchworm experiment. By
increasing the number of inchworms, the need for increased
coordination demands more communication between the inch-
worms and the smart blocks. Samples of these tests are reported
at https://www.nestlab.net/doku.php/papers:smac.

B. Real-World Experiments

The goal of the real-world experiments was to evaluate the
hardware and investigate whether some of the results found
in the simulation would be consistent with the hardware. We
constructed one inchworm and five smart blocks.

Unit testing. We performed unit tests to verify inchworm
motions needed for construction. We also tested the smart blocks

Fig. 12. In A-D robot steps onto structure, E-F robot walks on structure, G-H
robot picks up and places block.

Fig. 13. 1) A block is added to the structure. 2) The top block turns green to
indicate “all OK.” 3) The bottom block changes color to red after it detects an
error in the top block, which has gone offline.

to detect when new blocks were added or removed, or when a
block went offline, which could be attributed to a fault, dead
battery, or other error. The tests were all successful. Samples
of these tests are reported at https://www.nestlab.net/doku.php/
papers:smac.

Inching precision test. We tested the precision of the inching
motion to estimate how often an inchworm may fail. The inch-
worm was made to take an inching step and retract 10 times.
This experiment was also replicated while an inchworm was
taking a step with a block. It was found that the inchworm
was able to successfully step and grip 100% of the time and
step while carrying a block 80% of the time, which, while
not ideal, was sufficient for performing the demonstrations.
Future experiments will focus in characterizing the reliability
and robustness of the robot.

Inching and gripping test. We tested the capability of our
inchworm to take three steps on a plane while carrying a block.
We timed the inching speed to be 1 step approximately every 40 s.
The majority of this time was spent engaging the end effector
screw, with about 20 s on average for engaging with the structure
and about 10 s for disengaging with it.

Inchworm system test. A complete system-level test was
performed to demonstrate that the inchworm is able to inch,
traverse a structure, manipulate a block, and place it on the
structure. A series of snapshots from the demonstration are
shown in Fig. 12, and video footage is available at https:
//www.nestlab.net/doku.php/papers:smac. Though designed to
complete complex motions such as inching around convex and
concave corners or climbing up a vertical wall, more compre-
hensive tests are left for future work.

Smart block communication. We performed a series of tests
to validate that a new block is detected when it is added into
the structure, and that the structure can detect when a block
is removed from the structure. The images in Fig. 13 show
that the blocks change the color of their LEDs to convey the
change in the structure. Experimentally, the average time for

https://www.nestlab.net/doku.php/papers:smac
https://www.nestlab.net/doku.php/papers:smac
https://www.nestlab.net/doku.php/papers:smac

WAGNER et al.: SMAC: SYMBIOTIC MULTI-AGENT CONSTRUCTION 3207

two smart blocks to exchange a 62-byte package was 500 ms,
which corresponds to an average bit rate of 992 bits/s. We also
estimated the impact of a large structure on communication
latency. The number of hops between any block and the home
block is given by the Manhattan distance between them. A
message originating from block at (x, y, z) of a 3D structure
must traverse |x|+ |y|+ |z| blocks to reach a home block at (0,
0, 0). To put this in perspective, a message sent by a block placed
in the corner of a 10× 10× 10 cube would take 15 s to reach the
opposite diagonal corner. This has important implications when
building large structures, motivating the need for multiple home
blocks to decrease this latency. We will study these aspects in
future work.

VI. CONCLUSIONS AND FUTURE WORK

This letter proposes SMAC, a robotic platform for collective
construction composed of two types of robots: (i) a collection of
smart blocks, forming a network that allows dynamic planning
and monitoring; and (ii) an inchworm-inspired builder robot,
able to navigate a 3D structure and deposit blocks under the
guidance of the smart blocks. We presented the hardware design
of our platform, along with a set of simulated and real-world
experiments aimed at demonstrating its capabilities.

Our work is a step in the study of ‘extended stigmergy’
in multi-robot construction, a promising concept in which the
structure being built is an active component of the process [3],
simplifying the design of the builder robots. We envision our
system as a technology for in-orbit or planetary construction.
In addition, while the smart blocks could be used as actual
construction material, they would also be suitable as smart
scaffolding [26]. This would enable reusable, cost-effective
technology for remote, large-scale, autonomous construction.

Future work will improve the capabilities of our hardware
and explore planning algorithms with extended stigmergy that
respect structural stability constraints. In particular, ongoing
efforts are directed at a universal mating system to reduce the
structural limitations resulting from the gendered connection
and the unequally gendered faces.

ACKNOWLEDGMENT

We thank Prof. Raghvendra Cowlagi for guidance and fruitful
conversations and Cameron Collins for his assistance in the
manufacturing of the hardware of the platform.

REFERENCES

[1] K. H. Petersen, N. Napp, R. Stuart-Smith, D. Rus, and M. Kovac, “A review
of collective robotic construction,” Sci. Robot., vol. 4, no. 28, 2019, Art.
no. eaau 8479.

[2] Y. Terada and S. Murata, “Modular stucture assembly using blackboard
path planning systems,” in Proc. Int. Symp. Automat. Robot. Construction,
2006, pp. 852–857.

[3] J. Werfel and R. Nagpal, “Extended stigmergy in collective construction,”
IEEE Intell. Syst., vol. 21, no. 2, pp. 20–28, Mar./Apr. 2006.

[4] G. Theraulaz and E. Bonabeau, “A brief history of stigmergy,” Artif. Life,
vol. 5, no. 2, pp. 97–116, 1999.

[5] G. Theraulaz and E. Bonabeau, “Coordination in distributed building,”
Science, vol. 269, no. 5224, pp. 686–688, 1995.

[6] A. Grushin and J. A. Reggia, “Stigmergic self-assembly of prespecified
artificial structures in a constrained and continuous environment,” Integr.
Comput.-Aided Eng., vol. 13, no. 4, pp. 289–312, 2006.

[7] J. Werfel, D. Ingber, and R. Nagpal, “Collective construction of
environmentally-adaptive structures,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst., 2007, pp. 2345–2352.

[8] C. Pinciroli, M. S. Talamali, A. Reina, J. A. R. Marshall, and V. Trianni,
“Simulating kilobots within argos: Models and experimental validation,”
in Proc. 11th Int. Conf. Swarm Intell. (ANTS 2018), Ser. Lecture Notes
Comput. Sci. Berlin, Germany: Springer, Oct. 2018, in Press.

[9] Y. Zheng, M. Allwright, W. Zhu, M. Kassawat, Z. Han, and M. Dorigo,
“Swarm construction coordinated through the building material,” Univer-
sité Libre de Bruxelles, Belgium, Tech. Rep., 2020.

[10] A. Martinoli, A. J. Ijspeert, and F. Mondada, “Understanding collective
aggregation mechanisms: From probabilistic modelling to experiments
with real robots,” Robot. Auton. Syst., vol. 29, no. 1, pp. 51–63, 1999.

[11] N. Napp and R. Nagpal, “Distributed amorphous ramp construction in
unstructured environments,” Robotica, vol. 32, no. 2, pp. 279–290, 2014.

[12] T. Soleymani, V. Trianni, M. Bonani, F. Mondada, and M. Dorigo, “Bio-
inspired construction with mobile robots and compliant pockets,” Robot.
Auton. Syst., vol. 74, pp. 340–350, 2015.

[13] M. Allwright, N. Bhalla, H. El-faham, A. Antoun, C. Pinciroli, and
M. Dorigo, “SRoCS: Leveraging stigmergy on a multi-robot construction
platform for unknown environments,” in Proc. Int. Conf. Swarm Intell.
Berlin, Germany: Springer, 2014, pp. 158–169.

[14] Y. Terada and S. Murata, “Automatic modular assembly system and its
distributed control,” Int. J. Robot. Res., vol. 27, no. 3–4, pp. 445–462,
2008.

[15] B. Jenett, A. Abdel-Rahman, K. Cheung, and N. Gershenfeld, “Material-
robot system for assembly of discrete cellular structures,” IEEE Robot.
Automat. Lett., vol. 4, no. 4, pp. 4019–4026, Oct. 2019.

[16] K. H. Petersen, R. Nagpal, and J. K. Werfel, “TERMES: An autonomous
robotic system for three-dimensional collective construction,” Robot.: Sci.
Syst. VII, 2011.

[17] Y. Deng, Y. Hua, N. Napp, and K. Petersen, “Scalable compiler for the
TERMES distributed assembly system,” Distributed Autonomous Robotic
Systems. Berlin, Germany: Springer, 2019, pp. 125–138.

[18] B. Jenett and K. Cheung, “Bill-e: Robotic platform for locomotion and
manipulation of lightweight space structures,” in Proc. 25th AIAA/AHS
Adaptive Structures Conf., 2017, Art no. 1876.

[19] R. Stuart-Smith, “Behavioural production: Autonomous swarm-
constructed architecture,” Arc. Des., vol. 86, no. 2, pp. 54–59, 2016.

[20] R. Volpe, “The lemur robots,” 2019. [Online]. Available: https://www-
robotics.jpl.nasa.gov/systems/system.cfm?System=5

[21] D. H. Myszka, Machines and Mechanisms. Englewood Cliffs, NJ, USA:
Prentice Hall, 2004.

[22] M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot Modeling and
Control. Hoboken, NJ, USA: Wiley, 2006.

[23] M. Colledanchise and P. Ögren, Behavior Trees in Robotics and AI: An
Introduction. Boca Raton, FL, USA: CRC Press, 2018.

[24] F. L. Ratnieks and C. Anderson, “Task partitioning in insect societies,”
Insectes sociaux, vol. 46, no. 2, pp. 95–108, 1999.

[25] G. Pini, A. Brutschy, M. Frison, A. Roli, M. Dorigo, and M. Birattari,
“Task partitioning in swarms of robots: An adaptive method for strategy
selection,” Swarm Int., vol. 5, no. 3/4, pp. 283–304, 2011.

[26] E. Komendera, D. Reishus, and N. Correll, “Assembly by intelligent
scaffolding,” Dept. Comput. Sci., Univ. Colorado at Boulder, Tech. Rep.,
2011.

https://www-robotics.jpl.nasa.gov/systems/system.cfm{?}System$=$5

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

