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Probabilistic Surface Friction Estimation Based on
Visual and Haptic Measurements

Tran Nguyen Le”, Francesco Verdoja

Abstract—Accurately modeling local surface properties of ob-
jects is crucial to many robotic applications, from grasping to
material recognition. Surface properties like friction are however
difficult to estimate, as visual observation of the object does not
convey enough information over these properties. In contrast, hap-
tic exploration is time consuming as it only provides information
relevant to the explored parts of the object. In this letter, we propose
a joint visuo-haptic object model that enables the estimation of
surface friction coefficient over an entire object by exploiting the
correlation of visual and haptic information, together with a limited
haptic exploration by a robotic arm. We demonstrate the validity
of the proposed method by showing its ability to estimate varying
friction coefficients on a range of real multi-material objects. Fur-
thermore, we illustrate how the estimated friction coefficients can
improve grasping success rate by guiding a grasp planner toward
high friction areas.

Index Terms—Perception for grasping and manipulation,
probabilistic inference, sensor fusion.

I. INTRODUCTION

OWADAYS, robots are used extensively to perform vari-
N ous tasks from simple pick-and-place to sophisticated ob-
ject manipulation in complex environments from factory floors
to hospitals. For such tasks, robots are required to interact with,
and adapt to, unknown environments and objects. In order to
successfully accomplish these tasks, robots need to identify
various properties of the objects to be handled. For these reasons,
identifying object models that can represent the properties of
objects has become a crucial issue in robotics.

Many object-modelling approaches have focused on object
shape and geometry by utilizing vision [1]-[3]. However, other
physical properties also play an important role in characterizing
object behavior during interaction and handling. In particular,
surface properties such as surface friction, texture, and rough-
ness are vital for manipulation planning.

Various methods have been proposed to learn object surface
properties from vision [4]—-[6] or haptic feedback [7]-[11]. Also
the combination of both vision and haptic cues [12], [13] has
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Fig. 1.  After the shape of an object has been captured from a camera, surface
friction on a small part of the object is estimated using haptic exploration. The
friction over the entire object is then predicted by coupling visual information
with the local haptic measurements.

been proposed, similar to human perception [14]. However, most
published works assume the surface properties to be identical
across the whole surface of the object. This assumption does
not hold for many real objects, since objects often consist of
multiple materials.

To address this, we propose a method to estimate the surface
properties of a multi-material object by combining a visual
prior with haptic feedback obtained while performing haptic
exploration on the object. We focus on one property, the surface
friction coefficient, but the proposed method could be applied to
other properties such as texture and roughness. The approach is
based on the assumption that visual similarity implies similarity
of surface properties. By measuring a property directly using
haptic exploration over a small part of the object, the joint dis-
tribution of visual and haptic features can be constructed. Using
the joint distribution, the measurement can then be generalized
over all parts of the object that are visible. The inference allows
recovering both the expected value of friction for each part as
well as a respective measure of prediction confidence.

The main contributions of this letter are:

® aprobabilistic method to estimate the object friction coef-

ficient based on visual prior and haptic feedback without
being restricted by the assumption that objects have uni-
form homogeneous friction everywhere;

® a set of experiments on a physical robot showing the

proposed method working on a wide range of objects,
including multi-material objects;

® a case study, demonstrating the ability of the estimated

friction coefficients to guide grasp planning towards areas
of high friction, improving grasping success rate.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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II. RELATED WORK
A. Friction Estimation From Vision

In the context of friction estimation from vision, most recent
improvements come from the adoption of deep learning. Major-
ity of the works focuses on recognizing the material using images
then assigning the friction coefficient based on a material dataset.
For instance, Zhang et al. [4] presented a material recognition
method of deep reflectance code that encodes information about
the physical properties of a surface from reflectance measure-
ments. The predicted friction coefficient of a sample is then
assigned as the average of friction coefficients of corresponding
samples in the dataset. Another approach for material recogni-
tion was proposed by Xue et al. [5], where they developed a deep
neural network architecture using angular variation features.
Brandao et al. [6] proposed a solution to this problem by combin-
ing a state-of-the-art deep Convolutional Neural Network (CNN)
architecture to predict broad material classes from images with
known distributions of material friction. The predicted friction
coefficient is then used to plan the locomotion of biped robot on
different terrains.

One downside of the aforementioned approaches is that wrong
material recognition will lead to wrong friction coefficient esti-
mation. As the mentioned works utilize different visual features
to recognize the materials, the recognition result depends heav-
ily on the quality of visual input. However, vision is usually
impaired by occlusions, lighting condition, and location of the
sensor. Furthermore, even assuming the visual input to be per-
fectly gathered, these approaches may also fail in cases such
as

1) different visual features having the same friction coeffi-

cients, or

2) same visual features having different friction coefficients.

In this letter, we overcome these limitations by combining the
visual input with haptic feedback to directly estimate friction
coefficients of an object. The addition of haptic feedback offers
the possibility of accessing information that is hardly perceptible
visually. In addition, the aforementioned works only attempt to
estimate surface properties for outdoor scenes and applied to
mobile robotics domain while in this work we target household
objects.

B. Friction Estimation From Haptic Feedback

The idea of using exploratory actions to estimate physical
properties of objects has been carried out in many works [15].
One of the earliest work on friction estimation from haptic
feedback was proposed by Yoshikawa et al. [7], where the
authors described a method to estimate the friction distribu-
tion and the centre of friction of an object by pushing it with
a mobile manipulator. Similar works on estimating friction
coefficient were carried out with different exploration actions
such as pushing [16], pressing [17], or lateral sliding [8]-[11].
However, all these works are only valid under the assumption
that the surface properties are identical across the whole object
surface. This limitation makes it difficult to apply the methods
on a wider range of objects including multi-material objects,
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something that we address in this work. Rosales ef al. [12]
attempted to lift this limitation by proposing a representation that
consists of both shape and friction that were gathered through
an exploration strategy. They then used a Gaussian Process to
approximate the distribution of the friction coefficient over the
surface. However, the results presented in that work show that
the friction coefficient is only estimated for the regions that are
explored by the robot. Unexplored areas on the object surface are
then assigned a non-sense value. Our method, on the other hand,
estimates friction coefficient also for unexplored areas based
on information gathered from explored areas. Additionally, [12]
only considers single-material objects such as a paperboard box,
and a metallic can for experimental evaluation. In this work,
we experimentally evaluated our method with different objects
including both single-material and multi-material objects.

III. PROBLEM FORMULATION

The problem of identifying the friction coefficients of an
unknown object is difficult. A typical approach for this problem
is to utilize haptic sensory feedback. However, haptic feedback
is usually high cost, noisy, and unreliable due to the fact that
haptic sensing introduces many issues such as low durability, low
performance, high cost, and less compatibility with other sen-
sors [18]. Another way of gathering data that can be processed
for friction estimation is visual sensing. Although visual feed-
back is cheap and intuitive, it does not always provide enough
information to identify friction coefficient of an unknown object.
In this work, we address the problem of estimating friction
coefficient of unknown objects lying on a supporting plane by
combining both visual and haptic sensing. The goal of this letter
is to understand the correlation between the known visual and
haptic feature of the target object and, based on that correlation,
to then extrapolate the unknown haptic features from the visual
features.

Visual information about the scene is obtained by a RGB-D
camera whose pose is known relative to the robot. Haptic feed-
back is gathered while performing exploratory actions on the
target object using a robotic arm equipped with a plastic finger
and force/torque sensor. To make it easier for latter representa-
tion, the regions that are touched by the robot during the haptic
exploration are called explored regions, and the one that are not
touched unexplored regions. Let V and H denote visual and
haptic features, respectively. For the explored regions, both V
and H are known while for unexplored regions only V is known.
The goal is to infer haptic feature H from the visual feature V
of unexplored regions based on the joint (V, H) model of the
explored regions. In other words, the objective is to find the
conditional probability P(H | V) for unexplored regions.

To this end, we propose to model the joint distribution
P(V,H) by fitting a Gaussian Mixture Model (GMM) over
all the visuo-haptic features of all points in the explored regions.
More precisely, for an object with n materials, let us build the
C-component GMM that better fit the visuo-haptic data from
the explored regions, with one component for each of the n
materials, plus one background component describing an unin-
formative visuo-haptic prior, i.e., C' = n + 1. Formally, we build
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The proposed pipeline: the object’s visual properties are first acquired as point-cloud, which is then filtered and pre-segmented into regions. The robot

then performs an haptic exploration over some of the regions. The proposed model then is used to estimate the friction coefficient over the whole object, together

with the corresponding confidence.

a multivariate GMM model M to estimate the joint probability
distribution P(V, H) from gathered data in the explored regions,
ie.,

Zﬂ'c

where 7., ., and 2. denote the prior probability, mean, and co-
variance of the c-th Gaussian component respectively. Formally,
let us decompose the GMM parameters 1. and 3. as
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After the model M is fitted to a given dataset, by using

Gaussian Mixture Regression (GMR) [19], we can estimate

the haptic feature H; at each data point ¢ = 1,..., N in the

unexplored regions given input V; by means of the conditional
probability P(H | V) expressed as

P(H, | V,) 3)

Then, given an input V;, the mean /i and covariance S of
its corresponding output H; are computed by
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IV. IMPLEMENTATION

The system pipeline shown in Fig. 2 consists of:

i) filtering and pre-segmenting the real objects,

ii) conducting an haptic exploration process to gather and

couple haptic data with visual data,

modeling the variable friction model using visuo-haptic

data, and

iv) inferring the friction coefficients and inference confi-
dence of unexplored regions from the modelled distri-
bution.

iii)

A. Visual Filtering and Pre-Segmentation

The scene in the original point-cloud Y contains a target object
lying on a table. As the pose of the camera with respect to the
robot is known, we can first remove points that are part of the
supporting surface, and points that belong to the background
indicated by their distance exceeding a certain threshold. We
then obtain a filtered point-cloud Y containing only the view of
the object to be pre-segmented.

Formally, let y = (xp, V) denote a point in the filter point-
cloud Y (y € Y), xp € R? is the position of the point with
respect to the camera frame, and V € R? is the RGB component
vector representing its visual feature. It should be noted that for
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objects with textured appearance, visual texture features could
be used instead of color.

As discussed in the previous section, the main goal of this
work is to estimate haptic features for unexplored regions based
on the gathered visual and haptic features of explored regions.
Thus, we consider a region-based representation of the target
object. The idea is to divide the target object into a large number
N of connected regions, wherein each region ¢ = 1, ..., N has
its own visual feature and haptic feature. We achieved this using
a state-of-the-art supervoxel segmentation named VCCS [20].
Given the filtered point-cloud Y, we defined an N-region seg-
mentation as a partition R = {r; }*_, of the points of Y. More
precisely, the regions must satisfy the following constrains:

VyeY (IreR|yer);
Vre R (] € R|rnr’ #£0). (6)

These constrains guarantees that all points in the filtered point-
cloud Y belong to a region, and no point can belong to two
regions. The second step in Fig. 2 shows the result after the
filtering and pre-segmentation step. The next step is to gather and
couple haptic data with visual data through haptic exploration.

B. Haptic Exploration and Tracking

In this work, haptic data is gathered using a force/torque
(F/T) sensor attached to the wrist of a robot arm. The haptic
data consists of the contact point on the object surface x. € R3
with respect to the robot base frame calculated using forward
kinematics, and the contact force between the finger and the
object f € R3 expressed in contact frame. The dynamic friction
coefficient, which represents haptic feature H, can be then
estimated using Coulomb friction model as

| £ |
; (N
| £, |

where f; and f, are the tangent and normal forces at the contact
point, respectively. The reason we chose Coulomb friction model
is that it produces less noisy point-wise estimation and requires
less computational time compared to others friction model such
as LuGre model [21]. This claim is made based on the result of
conducted experiments where we used both Coloumb and LuGre
friction models to estimate the friction coefficient of a plastic
plate (Fig. 3) and compared the results with the ground-truth
presented in [22]. The calculated c.o.f. ranges from 0.2 to 0.35,
while the ground-truth ranges from 0.2 to 0.4. In this work,
we consider dynamic friction because it is easier and more
efficient to measure compared to static friction, since static
friction measurement requires starting and stopping motion for
each measurement point. Furthermore, as static friction is often
higher than dynamic friction, the latter will act as the safe lower
bound in grasping scenarios.

To obtain haptic data of an object, we perform an exploratory
action called lateral sliding on the object where we use the
robot arm equipped with an F/T sensor to slide on the object
surface along a linear path. Hybrid force and position control
is used during the exploration to guarantee the contact with the
object surface. The exploration depends on the object remaining
immobile. In our case, the object is manually held to prevent the
object from moving during the exploration. While not optimal,

H=co.f. =
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Fig. 3. A qualitative comparison between friction models. The orange line
denotes the friction coefficient estimated using Coloumb friction model, while
the blue line denotes the one using LuGre friction model (best viewed in color).

this is a typical way to stabilize objects under exploration pro-
cedures [23]. The problem could also be solved by using a dual
arm setup to remove the need for human intervention.

During the exploration, we also need to map the gathered
haptic data to the corresponding position in the pre-segmented
visual data obtained from the previous step. This is done by
tracking the position of the contact point x, € R? through for-
ward kinematics, and finding the point y in the object point cloud
that has the smaller Euclidean distance to the current contact
point (xp ~ Xc). We then assign to y the friction coefficient
computed by (7) at x.. The benefit of using this approach is
that some uncertainties caused by calibration procedure can
be reduced. After the exploration and tracking, the explored
points include both visual V and haptic data H, which can be
represented as y = (xp, V, H). The next step is to learn a model
from the explored regions and use it to infer haptic feature for
unexplored regions.

C. Variable Friction Model Using Visuo-Haptic Measurements

We consider a visuo-haptic dataset £ = {¢; }évzl defined by
N observations ¢; € RP. Each datapoint ¢; is represented with
input/output components indexed by V and H, so that {; =

[ 5;{] and D = DY 4 D*. In this work, &; is a concatenation of
J

visual features, (input component) and haptic features (output
component).

As the haptic exploration is conducted only once on a linear
path along the object, the tip of the robot only touches a few
points in each explored region. Thus, the number of points
that has been assigned a friction coefficient value is always
smaller than the total number of points of each explored region.
Therefore, the covariance between RGB color components is
computed using all of the points in the region while the co-
variance between friction coefficient and color components are
computed using only the points that are touched by the robot.
Then, given the visuo-haptic dataset &£, we use a GMM with
C-components optimized through Expectation Maximization
(EM) to encode the joint probability distribution P(¢7,€9).
After a GMM is fitted to the dataset, GMR can subsequently be
used to estimate haptic features £9 for visual features ¢£ € RP
of unexplored regions as mentioned in Section III.
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Fig. 4.

The experimental setup.

Additionally, as discussed in Section III we include a back-
ground component in the GMM model to reflect the estimation
uncertainty. The background component is constructed using
measurements from the entire scene, thus representing the en-
tire variability. If an input, i.e., visual feature, is not close to
any main components, the corresponding output will depend
primarily on the background component. This allows the model
to capture the estimation uncertainty such that a high variance
is predicted when a particular region is not visually similar to
any of the regions with haptic measurements. This uncertainty
measurement can be used to actively make requests for new
haptic explorations in uncertain regions.

V. EXPERIMENTS AND RESULTS

To demonstrate the ability of the proposed approach to esti-
mate surface friction without being restricted by the assumption
that objects have uniform homogeneous friction everywhere,
we first evaluate the capabilities of the method by testing it with
different objects, including multi-material objects. Furthermore,
we report on the repeatability of the results. Afterwards, we
present a grasping case study in order to demonstrate the benefits
of accurate friction estimation in practical robotics applications.

A. Experimental Setup

The experiments are performed using the Franka Emika
Panda robot and a Kinect 360° camera to capture the input
point-clouds as shown in Fig. 4. We used an Aruco marker for the
extrinsic calibration of the camera. Once the input point-cloud
was captured, it was filtered and pre-segmented as explained in
Section IV. To perform the haptic exploration, we used a six-axis
force-torque sensor (ATI Mini45) attached between the robot’s
wrist and the gripper. The haptic exploration is performed once
for each object.

B. Model Representation With Real Robot and Objects

To study the capability of the proposed method, we ran the
experiment on fifteen different objects, shown in Fig. 5. Of these
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objects, the book (Fig. 5(a)), the boardgame (Fig. 5(b)), the
cereal box (Fig. 5(c)) and the toy blocks (Fig. 5(1)) represent
single-material objects, where friction coefficient is identical
across the whole surface, while the rest of the objects are
composed of multiple materials (ranging from two to four).

Fig. 5 shows qualitative results obtained from the proposed
method applied on the target objects. We show in the result
the original object, the estimated friction, and the estimated
uncertainty of each target object respectively. The haptic explo-
ration is visualized as the green path. For the estimated friction,
regions are colored according to their friction coefficient value,
i.e., more red corresponds to higher friction. For the estimated
uncertainty, the level of uncertainty is represented by green color,
such that the greener the higher uncertainty. The results show
that the proposed method has successfully estimated the friction
coefficient for all the target objects even in presence of multiple
materials. Specifically, the method is able to not only produce
similar friction coefficients across the object surface in the case
of single-material object (i.e., book and cereal box), but also
to provide different friction coefficients for different parts of
objects in the case of multi-material objects. For example, in the
case of the yellow mug (Fig. 5(d)) the method estimated higher
friction coefficient value for the rubber band, and provided an
accurate boundary between the rubber part and the ceramic part
of the object. Furthermore, the proposed method is shown to
work well even for objects that are made from more than two
materials such as the hammer (Fig. 5(0)) and the brush (Fig. 5(j)).
In the case of the brush, the method was able to segment the
object into four parts representing four different materials. This
predicted friction map is accurate compared to the real object
where the handle is made from both plastic and rubber, and the
head is made from steel and fabric.

Another interesting point from the result is that our method
works even in cases where visual features vary a lot but haptic
features are identical across the surface, like the toy blocks and
the board game. As this scenario would likely cause problems
to methods estimating friction only from vision as discussed in
Section II, this experiment shows the benefit of combining both
visual and haptic feedback for friction estimation. Additionally,
in the case of the butcher knife (Fig. 5(i)) with rubber handle,
without encapsulating haptic feedback, one would hardly know
if the handle has lower (made of plastic) or higher (made of
rubber) friction coefficient compared to the steel blade. Since
we conducted haptic exploration across the object, our method
is capable of estimating higher friction coefficient for the handle,
which is consistent with the ground truth object. However, ob-
jects having similar visual features for surfaces having different
friction has proven challenging for our approach. This is the case
for the modified cork trivet (Fig. 5(m)), where we covered half
of the surface with a wood-textured wallpaper. The trivet is now
composed of two materials with similar visual features. The re-
sult shows that our method provides a uniform friction map over
the whole object surface. However, due to the variations in the
haptic features along the explored path, the estimated uncertainty
is shown to be high in the lower area of the trivet. One of the po-
tential solution to overcome this problem is to conduct new hap-
tic explorations in uncertain regions as discussed in Section I'V.
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(a) Book

(d) Yellow mug

(b) Boardgame

““dﬂd

(e) Black cup
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Real objects, along with estimated friction coefficient and uncertainty returned by the proposed method. Red indicates higher friction coefficient value,

while green denotes higher uncertainty. The haptic exploration is showed by the path in green (best viewed in color).

Furthermore, the experimental results also show the uncer-
tainty map of the proposed method. In the case of the book
and the cereal box, the uncertainty is extremely low because
there are no abnormal visual features. In other words, all visual
features of unexplored regions are almost as varied as the ones
of explored regions. On the other hand, for the yellow mug case,
the uncertainty is high at the left edge of the mug where the
blue pattern is located. This result is suspected to be because the
haptic exploration is carried out only in the middle of the mug,
where the color is always yellow or brown. As the blue coloris far
from the explored visual feature, that region is classified by the
background class, which in turn produces a high uncertainty for
the prediction. A similar result is shown in the case of the board
game. However, in all these cases, even though the uncertainty
is high, the estimated friction is still similar to that of the rest of
the regions of the same material.

C. Repeatability of the Results

Next we evaluated the repeatability of the proposed method by
running the experiment five times on each object. The estimated
friction coefficient is recorded and plotted as density plots for
analysis as shown in Fig. 6, where, for each friction coefficient,
we show the number of regions found having that value. For
brevity, only the results of the cereal box representing single-
material objects and the yellow mug representing multi-material
objects are plotted for discussion. The results show that the
proposed method produces reasonable result in term of repeata-
bility. Note that despite small variation between repetitions, we

Density Plot for Cereal Box
100
80
60
40

20

0.10 0.15 0.20
Density Plot for Yellow Mug

0.05 0.25

Density

2.0 /\\\
15

1.0

0.5 \

0.0
0.00 0.25 1.00

0.50 1.50
Friction coefficient

Fig. 6. The density plots of the cereal box and the yellow mug, showing
consistent friction coefficient estimation over five repetitions of the experiment.

still can clearly see that both density plots represent accurately
the number of the material in each case. For example, in the
case of the cereal box the density plot only has one peak which
denotes a single-material object while the density plot of the
yellow mug contains two peaks representing a multi-material
object.



2844

Fig.7. Grasp sampling results for two objects, black cup (top) and yellow mug
(bottom), in two cases: using uniform friction (left), and non-uniform friction
model (right).

D. Grasping Case Study

In robotic grasping, grasp selection is usually complex as
its stability takes into account different factors such as gripper
geometry, object shape, mass, and surface friction. Although
methods have been proposed to grasp without needing the esti-
mation of physical properties [24], most common approaches
for grasping rely on metrics based on physical properties to
evaluate grasp quality. In particular, a set of best grasps are
sampled and evaluated from a grasp sampling and evaluation
algorithm. Typically, parameters like surface friction are kept
constant during the process; however, the selected grasps that
are executed in the real worlds may fail as well due to the contact
with low friction surface. In order to demonstrate the usefulness
of our method, we conducted a grasping case study where the
estimated friction information is used to sample and evaluate the
grasps.

In this demonstration, we first capture the target object from
different viewpoints and merge them together in order to obtain
a multi-view point-cloud of the object. The proposed method
is then applied to the given point-cloud to produce the surface
friction estimation. As the input of the grasp sampler is typically
a mesh, we converted the estimated point-cloud to a mesh using
Meshlab. Since the mesh does not contain any information about
the estimated friction, we calculate the center of each face of the
mesh, find its closet point and assign the friction coefficient
value of the point to the corresponded face. Next, the mesh with
assigned friction coefficient is fed to a grasp sampler to generate
grasp candidates. Grasp candidates are sampled using antipodal
grasp sampling method. Specifically, we randomly select a point
on the mesh and assume this point as the first contact point. At
this first contact point, a direction ray that lies inside of the
friction cone is generated. If the ray intersects with a certain
face, the intersect point will be the second contact point, and
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(b) Unsuccessful grasps executed on a region of low friction

Fig. 8. The robot executing different grasps on an object. The grasps are
proposed by a sampler employing Fig. 8(a) the proposed friction model, or
Fig. 8(b) a uniform friction model.

the closing vector is assured. Next, we randomly generate an
approach vector along the closing vector. The generated grasps
will then be checked for different type of collisions. The grasps
that collide with the mesh are filtered out and the grasps that
are not in collision are then evaluated using Ferrari & Canny L1
quality metric [25].

In this study, we sample 1000 grasps each on two object
models: one with uniform friction coefficient and one with
non-uniform friction coefficient computed using the proposed
method. The coefficient of friction in the case of the uniform
friction was chosen similar to that of the high friction area
computed by our method. The object used in this study are the
black cup and the yellow mug as shown in Fig. 5. Good grasp
candidates together with friction cones at contact points of both
cases are presented in Fig. 7. These results show that the sampler
behaves as expected: In the case of the model with a uniform
friction coefficient (Fig. 7 left figures), the grasp candidates are
distributed across the entire object, while the grasp candidates on
the non-uniform friction coefficient model (Fig. 7 right figures)
only appear around the left side of the object, where the friction
coefficient is high.

To study the effect of the proposed method on grasp per-
formance in the real world, grasp candidates were generated
using the antipodal grasp sampling method. Five grasps with
the highest quality according to the Ferrari-Canny minimum
quality metric were chosen in each case and executed with the
real robot. For the uniform friction coefficient case, we chose
the five best grasps that are on the right side of the object. By
doing this, we can see how the grasps actually behave if they
make contact with low friction area of the object. The grasps in



LE et al.: PROBABILISTIC SURFACE FRICTION ESTIMATION BASED ON VISUAL AND HAPTIC MEASUREMENTS

both cases were executed with the same grasping force of 20 N.
To evaluate if a grasp was successful, the robot moved to the
planned grasp pose, closed its fingers, and moved the arm back to
the starting position. Once there, the gripper was rotated around
the last joint (Fig. 8). A grasp was consider successful if the
object was grasped in a stable manner for the whole procedure
and unsuccessful if the object was dropped.!

All evaluated grasp candidates generated with the sampler that
utilized the proposed method were successful as they grasped
the object at the high friction area. The chosen grasp candidates
generated in the uniform friction case failed to grasp the object
since they aimed for the low friction area of the object, which in
turn, produced slippage during grasping. The results show that
even when the grasp sampler generates grasps with high quality
under the uniform friction case, the grasps still may fail when
executed in the real world due to incorrect friction assumption.

VI. CONCLUSION

We presented an approach that enables the estimation of
local object physical properties, like the surface friction co-
efficient, from visual and haptic cues, which goes beyond the
state-of-the-art by lifting the assumption that the target object
has uniform friction across its surface. The key component
in this work is the use of a probabilistic model to estimate
the surface friction coefficient of the unexplored areas from
visuo-haptic data gathered by haptic exploration. Furthermore,
we also presented an approach to represent a level of uncer-
tainty of the estimate. This could be useful in future work to
actively make requests for new haptic explorations in the regions
with high uncertainty. We demonstrated the capability and the
repeatability of the approach through experiments on a wide
range of objects including single-material and multi-material
objects. The results show that the proposed approach is capable
of providing object representations with varying surface friction
coefficient. Moreover, the friction coefficients can be used to
guide grasp planning towards areas of high friction, improving
robotic grasping success rate. Despite the good results, there is
still room for improvements. For example, using more robust
and complex visual features, like the one that could be obtained
by modern deep learning approaches, could improve the quality
and the robustness of the estimated results against, e.g., reflection
and variations of lighting.
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