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Disruption-Resistant Deformable Object
Manipulation on Basis of Online Shape Estimation

and Prediction-Driven Trajectory Correction
Daisuke Tanaka , Solvi Arnold , and Kimitoshi Yamazaki

Abstract—We consider the problem of deformable object manip-
ulation with variable goal states and mid-manipulation disruptions.
We propose an approach that integrates online shape estimation,
prediction of shape transitions, and mid-manipulation trajectory
correction. All functionalities are implemented using two neural
network architectures. We apply this approach to the problem of
cloth folding, and perform evaluation experiments in simulation
and on robot hardware. We demonstrate that the system can
achieve good approximation of given goal states, even when the
manipulation process is disrupted by cloth slipping or external
interference.

Index Terms—Deep learning in grasping and manipulation,
model learning for control, neural and fuzzy control, dual arm
manipulation, cloth manipulation.

I. INTRODUCTION

ROBOTIC manipulation of cloth objects is complicated by
the fact that these objects take on many different shapes.

However, humans manipulate cloth with great dexterity. This
raises a number of fundamental questions for the pursuit of
robotic manipulation of deformable objects. How do humans
mentally image the object’s deformations? How do we decide
our manipulation strategy? How do we conceptualize the ma-
nipulations we perform, and how do we mentally grasp the
state of the object? These mechanisms remain ill-understood
and therefor hard to replicate.

Our overarching goal here is to establish a framework for
functionally approximating human cloth manipulation. The fo-
cus of the present work is on continuous shape monitoring and
self-correction. We place particular emphasis on the following
criteria: (1) An up-to-date representation of the object’s shape
must be maintained throughout the manipulation process. This
requires estimation of a topological representation of the ob-
ject on basis of discrete sensor data, which must be robust

Manuscript received October 15, 2020; accepted February 5, 2021. Date
of publication February 19, 2021; date of current version March 30, 2021.
This paper was recommented for publication by Editor Markus Vincze upon
evaluation of the Associate Editor and reviewers’ comments. This work was
supported by NEDO and JSPS KAKENHI. (Corresponding author: Daisuke
Tanaka.)

Daisuke Tanaka is with the Department of Science and Technology, Graduate
School of Medicine, Science and Technology, Shinshu University, Nagano 380-
8553, Japan (e-mail: 19hs203j@shinshu-u.ac.jp).

Solvi Arnold and Kimitoshi Yamazaki are with the Department of Mechanical
Systems Engineering, Shinshu University, Nagano 380-8553, Japan (e-mail:
s_arnold@shinshu-u.ac.jp; kyamazaki@shinshu-u.ac.jp).

This article has supplementary downloadable material available at https://doi.
org/10.1109/LRA.2021.3060679, provided by the authors.

Digital Object Identifier 10.1109/LRA.2021.3060679

against ambiguity resulting from occlusion. (2) An up-to-date
prediction of the manipulation’s outcome must be maintained,
and manipulation trajectories must be corrected on the spot when
the necessity arises. In short, we must perform shape estimation,
shape change prediction, and motion correction in a continuous
online cycle.

Existing work has realized these functionalities in isolation
[1], [2]. If we loosen the demand for online operation, work
combining multiple of these elements can also be found [3].
However, to the best of our knowledge, realising the estimation-
prediction-correction cycle in online fashion has remained a
challenge. The current work proposes methods for realization
of the constituent functions and their integration in an online
cycle. Below we list the core features.

a) Shape estimation: We represent cloth shapes as mesh
structures, and estimate the configuration of the mesh from
point clouds obtained from a RGBD sensor. By assigning
uncertainties to the individual vertices of the mesh, we
make it possible to express ambiguity in our estimations.
Processing time is <150ms on average.

b) Shape prediction: We predict cloth shape evolution as the
robot performs a given manipulation. Processing time is
<11ms for 100 frames on average.

c) Trajectory correction: When the predicted outcome for the
present manipulation diverges from the goal, we revise the
remainder of the manipulation trajectory in order to realign
the expected outcome with the goal.

We believe this combination of functionalities allows us to
capture more of the flexibility seen in human deformable object
manipulation than has previously been achieved.

The paper is structured as follows. The next section discusses
related work. Section III explains the global structure of our ap-
proach. Section IV describes shape estimation, Section V shape
prediction, and Section VI manipulation generation. Section VII
reports and discusses the results of our simulation and real-world
experiments. Section VIII concludes the paper.

II. RELATED WORK

A. Cloth Shape Representations

Automated cloth manipulation is an active field of research.
Some approaches explicitly estimate cloth shapes. A common
approach is to model the cloth as a polygon model. Miller
et al. [4] match polygon models to comparatively complex
topologies such as long-sleeved shirts. Stria et al. [5] similarly
estimate clothing shapes, and perform folding. Twardon et al. [6]
demonstrated tracking of garment openings (e.g., sleeve ends)
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Fig. 1. Overview of system functions and their integration.

by means of ACBM. These methods can be applied online, but
are insufficiently expressive to capture fine detail and complex
shape configurations.

For finer shape representation, mesh models are an option.
Kita et al. [7] and Li et al. [8] demonstrated accurate shape
estimation for suspended garments using an active recognition
strategy wherein cloth objects are lifted and manipulated for the
purpose of shape estimation. Active strategies are effective for
acquiring initial models of cloth objects, but unsuitable for esti-
mating shape continuously during goal-directed manipulations.
Willimon et al. [9] and Han et al. [1] also propose estimation
routines for deformable objects, but the amount of deformation
considered is less than many common cloth manipulation sce-
narios, including ours, require.

B. Motion Generation

Various strategies have been proposed for generating ma-
nipulation motions, with significant variation in the scope of
the problem setting. Van den Berg et al. [10] target folding
with given manipulation procedures. They solve the problem of
determining whether the given procedure is possible with a given
number of grippers, and translate it into gripper trajectories un-
der a set of idealized assumptions about cloth dynamics. Execu-
tion is open-loop. Maitin-Shepard et al. [11] and Doumanoglou
et al. [3] propose folding pipelines from unordered states to
folded states with intermittent recognition, operating in fixed,
flowchart-style manipulation procedures. Li et al. [2] used sim-
ulation to generate folding trajectories, obtaining high quality
trajectories and online performance. Sun et al. [12] perform
flattening using a geometric approach, generating high quality
2.5D representations of wrinkled cloth. Seita et al. [13] and Wu
et al. [14] generate manipulations for smoothing a square cloth
using reinforcement learning.

Limitations of the above approaches are lack of on-line tra-
jectory correction during manipulation, and the assumption of
fixed goal states. Petrík and Kyrki [15] realize fine feedback
control with robustness to material variation for the constrained
case of folding a strip of cloth in two, using a reinforcement
learning approach with a low-dimensional state representation.
Hu et al. [16] tightly interlink recognition and motion generation
using machine learning techniques operating on raw sensor data.
Yang et al. [17] achieved online cloth folding by generating
motions directly from sensor images. However, the dynamics
model and manipulations learned do not necessarily transfer well
to different goals.

Work accommodating variable goals remains scarce. We have
proposed a system for generating multi-step manipulation plans
with variable goals [18], [19] using forward models of the
cloth dynamics. Subsequently, Kawaharazuka et al. [20], Hoque
et al. [21] and Yan et al. [22] proposed forward model-based
approaches capable of accommodating variable goal states to
varying extents.

Here, we focus on execution of individual manipulations with
various goal states, combining intra-manipulation mesh estima-
tion with forward model-based shape prediction of the course of
the manipulation in order to realize on-line trajectory correction.
Eventually we aim for integration with the mesh-based version
of our multi-step planning system [23].

III. FUNCTIONAL OVERVIEW AND APPROACH

A. Function Overview and Integration

We consider the task of manipulating a cloth object into
a given goal configuration. Fig. 1 shows an overview of our
approach. First, we estimate the initial shape of the object from
sensor data. Then we initialize the manipulation for transforming
the object from its current shape to the target shape (manip-
ulation planning is treated in [23]). During manipulation, we
continuously perform shape estimation (a) and shape prediction
(b) on basis of the sensor data acquired over the course of the
manipulation. By comparing the predictions with the goal shape,
we monitor the progress of the manipulation process. When
the difference between prediction and goal shape exceeds the
admissibility threshold, function (d) revises the manipulation
motion on-the-spot, and manipulation resumes.

The advantage of this mechanism is its ability to respond to
unexpected situations during manipulation. For example, if the
cloth slips over the surface of the work surface, or is pulled by an
external force, the system can adjust the manipulation on-the-
spot through estimation of the new cloth shape and prediction
of the shape evolution for revised trajectories.

B. Approach

Among the functions in Fig. 1, (a) shape estimation and (b)
shape prediction in particular require online performance, which
is challenging. We approach this challenge as follows. We train a
neural network to generate initial probabilistic shape estimates in
milliseconds. We combine this estimate with prior knowledge of
the object topology through a short energy minimization process
(“refinement”) to find a shape that is both realistic and consistent
with the estimate. For shape prediction we use a second network,
which learns the relation between hand motions and cloth shape
change at fine temporal granularity. This lets us predict the
evolution of the cloth shape, again with processing times on
the order of milliseconds.

The next sections explain our methods for shape estimation
(Section 4), and shape transition prediction and trajectory correc-
tion (Section V). Both assume a dataset of manipulation exam-
ples, containing manipulation trajectories and the corresponding
cloth shape evolution at fine temporal granularity. In the present
paper we generate this dataset in simulation. Dataset generation
is detailed in Section VII.



TANAKA et al.: DISRUPTION-RESISTANT DEFORMABLE OBJECT MANIPULATION 3811

Fig. 2. Shape estimation pipeline. Processes in gray are specific to training
and evaluation on simulation data.

IV. SHAPE ESTIMATION

Fig. 2 shows an overview of the shape estimation pipeline.
We explain the constituent parts and processes below.

A. Voxel-To-Mesh Net

Our shape estimation approach employs a neural network
(NN) that generates a probabilistic mesh estimate on basis of
a voxel representation of the current cloth shape. We refer
to this NN as the Voxel-to-Mesh net (VtM for short) below.
We then apply an energy minimization procedure to derive a
deterministic mesh representation from the probabilistic esti-
mate and prior knowledge about the cloth object. We refer to
this process as “refinement” below. The choice for NN-based
shape estimation is motivated by three factors. (1) Speed: initial
shape estimates are generated in less than 4ms on average. (2)
Simplicity and generalizability: whereas geometric methods of-
ten require task-specific categorization of shape elements (e.g.,
wrinkle categories [12]), our NN-based estimation strategy is
low on assumptions and in principle applicable to a broad variety
of tasks and cloth topologies. (3) Occlusion handling: occlusion
handling is a complex problem for geometric methods. Notable
geometric approaches are limited to occlusion-free shapes (e.g.,
the 2.5D descriptions in [12]) or manipulate items into low-
occlusion configurations for shape estimation (e.g., [24]), which
can be inefficient. The NN approach can learn the rules gov-
erning positional uncertainty implicitly from data, quantifying
uncertainty at fine granularity with minimal computational cost.

1) Architecture: The VtM net is a Multi-Layer Perceptron
(MLP) architecture (we have experimented with 3D convolu-
tional architectures as well, but achieved better results with
the fully connected architecture). Input is a 32 × 32 × 32
binary voxelization of a cloth shape. Output is a 32 × 32 ×
6 probabilistic mesh representation. Input and output volumes
are flattened for network I/O. In between are four hidden layers
of 4096 neurons each. Hidden layers use the hyperbolic tangent
(tanh) activation function. Each 1 × 1 × 6 subvolume of the
output defines a 3D multivariate normal distribution with a
diagonal covariance matrix. We denote the means as μx, μy ,
μz and the non-zero elements of the covariance matrix as σx,
σy , σz . The activation function on the output layer differs
for μ and σ values, as the latter should take positive values
only. For μ-outputs we use the linear activation function and
for σ-values we use aout = ELU(ain) + 1.05, where ELU is
the Exponential Linear Unit activation function. This function
ensures thatσ-values are positive, and larger than 0.05 (this helps
to stabilize training as σ-values growing too small can lead to
incidental extreme loss values).

2) Input/Output Processing: We define the net’s
“workspace” as a volume of space running from (−1, −1,
0) to (1, 1, 1/3). For all network I/O, cloth shapes are scaled
and translated to fit this space. Shapes are translated so that
their centres are at (0, 0) in the XY plane, by projecting them
onto the XY plane, finding the centre of the projection, and

Fig. 3. Examples of equivalent mesh representations of the same shape.
Geodesic coordinates for the corner vertices are shown. Texture added to
visualize how the mesh is laid out in Cartesian space.

subtracting the centre coordinates from the coordinates of the
points comprising the shape. Shapes are scaled such that a fully
spread out, axis-aligned cloth runs from (−0.7, −0.7) to (0.7,
0.7). Quantities in the remainder of this section apply in this
normalized format.

For input, we convert the input shape representation to a voxel
representation, with the voxel volume spanning the workspace
defined above. Before voxelization, we non-linearly boost z-
coordinates as follows:

zboosted = tanh (3z) (1)

The non-linearity in this transformation has the effect of em-
phasising depth differences close to the work surface (z = 0)
and deemphasising depth differences further above the work
surface. Regions of the cloth that are being lifted up generally
present simple shapes, as they hang down under the effect of
gravity. These parts can be interpreted well enough at crude
z-axis resolution. Regions resting on the work surface or on
underlying layers of cloth present more detail due to wrinkling
and layering. After applying this transformation, we convert
point data to voxel representation by setting all voxels containing
at least one point to 1 and all other voxels to 0.

3) Occlusion: Measurement of the real cloth is subject to
two types of occlusion: self-occlusion and occlusion by the
hands and arms of the robot. We handle self-occlusion by ar-
tificially applying occlusion consistent with our hardware setup
to simulation data during training. This occlusion applies to the
voxel input, while target output (ground truth mesh) remains
unoccluded. While we centre states for estimation, real-world
occlusion occurs before this centring. To ensure that the net
can handle the range of occlusions that occur in the real-world
manipulation setup, we apply random offsets to the relative
camera position used for calculating artificial occlusion during
training.

4) VtM Net Training: Each possible shape has eight equiva-
lent mesh representations (i.e., there are eight equivalent assign-
ments of Cartesian coordinates to the mesh’ geodesic coordi-
nates). Fig. 3 illustrates mesh equivalence with some examples.
Consequently, there are eight correct answers for each input. We
account for this by defining the training loss for the VtM net as
follows:

lossV tM = MIN
({

NLL
(
si, ŝ

) |i ∈ [0, . . . , 7]
})

(2)

Here si is the ith mesh representation in an arbitrary ordering
of the set of equivalent mesh representations of the ground truth,
and ŝ is the probabilistic mesh estimate output by the net. NLL
is shorthand for Negative Log-Likelihood and MIN selects the
smallest value from a set of values.

Training employs various types of data augmentation. The
simulation data we use for training is in mesh format, so during
training batch generation we convert meshes to noisy point
clouds by taking the set of vertices as points, duplicating each
point to increase the point count, and adding Gaussian noise
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γ ∼ N(0, 0.01) to each point independently. Augmentation
with noise improves robustness and promotes generalization to
real-world data. We apply random mirroring on the X axis and
random rotation around the Z-axis. To improve robustness to
slight variations in the relative position and angle of the camera
in real-world experiments, we add tilt and Z-shift augmentations.
The tilt augmentation tilts the state over the X and Y axis by
angles (in degrees) drawn from U(−5, 5), and Z-shift translates
the state on the Z-axis by a distance draw from U(0, 0.02), where
U(a, b) denotes the continuous uniform distribution over the
interval [a, b]. Tilt and Z-shift are applied to input but not to
ground truth, so the net learns to remove them. We train the net
using the SignSGD update rule [25].

The training and augmentation logic facilitates transfer to
real cloth. Augmentation and noise on the input improve the
net’s robustness to noisy real input, while it is trained to output
clean shapes from the distribution that generated the training set.
Hence the net “interprets” real states into similar states from the
training distribution, to some extent. This bias reduces the need
to harden processes further down the pipeline.

B. Mesh Refinement

The VtM net produces probabilistic mesh estimate s̃p. We
convert this estimate into a deterministic estimate s̃d that is both
plausible w. r. t. s̃p and consistent with prior knowledge about the
cloth, using a refinement procedure that incorporates the cloth’s
topology in the form of a spring model.

Refinement employs the following losses: Negative log-
likelihood of s̃d w.r.t. s̃p (lossnll), spring energy (lossspring), and
an upward bias (lossup). For computing lossspring, we define a
set of springs between the vertices, following a spring pattern
common to cloth simulation (see e.g., [26]). Let k be the distance
between orthogonally neighbouring vertices. A vertex at indices
(u, v) connects to neighbour vertices (u, v ± k) and (u ± k, v)
(“stretch” springs), (u ± k, v ± k) (“shear” springs), and (u, v ±
2k) and (u ± 2k, v) (“bend” springs), insofar these vertices exist.
Spring energy loss is then calculated as follows.

lossspring =

Nsprings−1∑

i=0

(li − ri)
2 (3)

Here li is the current length of the spring, ri is the resting
length of the spring (i.e., its length in the cloth’s fully spread-
out default state), and Nsprings is the total number of springs.
Consideration of self-collision would be desirable, but because
of its high computational cost we omit it.

The third loss biases refinement against downward adjustment
of vertex positions, because this can push vertices into the work
surface. The upward bias ensures that wrinkles produced by
optimization form in upward direction. Upward bias loss is
computed as the mean over max(0, s̃pµz − s̃dz), where s̃pµz and
s̃dz are theμz and z components of s̃p and s̃d and subtraction and
max operate element-wise. Spring loss is multiplied by 5000 to
be on the same order of magnitude as lossnll. Upward bias loss is
multiplied by 1000. The refinement process starts by initialising
the vertex positions. Recall that the purpose of the VtM net in
our system is to continually track the cloth shape as the cloth
is being manipulated. Consequently, consecutive inputs usually
correspond to consecutive moments in time (frames), and repre-
sent similar shapes. We exploit this fact by initializing refinement
with the refinement result obtained for the preceding frame, if

Fig. 4. Overview of network architecture.

a preceding frame exists. This tends to reduce refinement time
cost, and can help to disambiguate the current frame in some
cases. When no preceding frame exists, or its difference with
the μ component of the present s̃p exceeds a given threshold,
we initialize with the μ component itself. We update vertex
positions using gradient descent on the sign of the gradients of
the compound loss, with an update rate of 0.001, running until
the loss stabilizes or 300 iterations have passed.

V. SHAPE TRANSITION PREDICTION

A. Mesh Representation

For prediction, we represent each vertex as a tuple of five
values: its coordinates in 3D space, and two values gr, gl speci-
fying the vertex’s grasp state, taking value 1 when the vertex is
grasped by the right and left hand, respectively, and 0 otherwise.
Shape si denotes the list of vertices at frame i.

B. DNN-Based Shape Transition Prediction

Fig. 4 shows the global network architecture. The network
consists of an encoder, an LSTM (Long Short-Term Memory
[27]) module, and a decoder. The net predicts the sequence of
shapes traversed as the robot’s hands pass through the sequence
of points mi:n from state si. Here mi = (mj

i |j ∈ [0, hands)) ,
with hands indicating the number of hands used in the manip-
ulation. We define motion vectors describing the hand motions
per frame as Δ mi = (Δmj

i |j ∈ [0, hands)) , where Δ mj
i =

mj
i+1 −mj

i . Below we explain the role of each network
module.

The encoder compresses a given mesh representation si into
a low-dimensional latent encoding hi. The decoder does the
opposite, recovering full state representation ŝi from latent
encoding hi. Encoding into latent representation serves two
purposes: reduction of computational cost, and acquisition of
a representation format that facilitates prediction. By training
the modules end-to-end, we obtain a latent encoding format
optimized for prediction, while also allowing recovery of the full
shape representation. The encoder consists of 3 convolutional
layers with channels depths of 64, 128, 256, kernel sizes 3 × 3,
3× 3, 5× 5, and strides 2, 3, 1, followed by a dense layer with an
output dimensionality of 256. All layers use the tanh activation
function. Input is presented as a 32 × 32 × 5 volume, with each
1 × 1 × 5 subvolume representing one vertex. The decoder
largely mirrors this architecture, using transposed convolution
instead of convolution layers, and using linear activation on its
output neurons. Its output is a 32 × 32 × 3 volume specifying
the predicted coordinates for each vertex.

The LSTM module predicts the shape evolution for a given
trajectory. The net consists of 10 layers containing 256 LSTM
units each, and has six input neurons. We initialize the internal
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state (i.e., activation values) of all layers with latent encoding
hi from the encoder. We then iterate through Δmi:n, feeding its
elements in order on the input neurons. The sequence of internal
states of the last layer observed over the course of this process
gives the latent encoding sequence hi+1:n describing the shape
evolution in latent form. By passing this sequence through the
decoder, we obtain the shape sequence ŝi+1:n.

C. Shape Transition Learning

The network is trained on our dataset of manipulation ex-
amples. For each example presented during training, we select
an integer i, 0 ≤ i < n, where n is the length of the example
in frames. We let the net process si and Δmi:n−1 to obtain
prediction sequence ŝi+1:n, and compute the training loss (MSE)
over si+1:n and ŝi+1:n. Using random starting points ensures
that the shape transition can be predicted from any point in the
manipulation. We apply rotational augmentation. We train the
net using the Adam update rule [28] until loss converges.

VI. TRAJECTORY OPTIMIZATION

We perform trajectory optimization by minimising the dif-
ference between the predicted manipulation outcome and the
goal shape. We denote the sequence of predicted shapes as
ŝi+1, . . . , ŝn and define the following cost function:

L (s∗, ŝn,mi:n) = MSE (s∗, ŝn) + w · len (mi:n) (4)

len (mi:n) =
1

hands

hands−1∑

j = 0

∥∥∥Δmj
i

∥∥∥+ . . .+
∥∥∥Δmj

n−1

∥∥∥

(5)

Where MSE denotes the mean squared error, len(m) cal-
culates the physical length of trajectory m, and w is a weight
parameter. Shapes are assignments of coordinate values to the
vertices of the cloth mesh, so the MSE over two shapes can be
calculated by computing the squared error over corresponding
coordinate values and averaging them. We penalize trajectory
length to avoid generating unnecessarily long trajectories. We
can now formalize trajectory optimization as the following
minimization problem:

argmin
mi:n

L (s∗, ŝn,mi:n) (6)

We optimize trajectories by obtaining gradients w. r. t.
L(s∗, ŝn,mi:n) for inputs Δmi:n−1, through back-propagation
[29], and adjusting the inputs using the Adam update rule [28].
The procedure for trajectory optimization is as follows:

1) If i = 0, Initialize the trajectory points mi+1:n.
2) Predict sequence ŝi+1:n from si and Δmi:n−1.
3) Calculate the loss over predicted outcome ŝn and goal

shape s∗, and obtain gradients by back-propagation.
4) Update mi+1:n along the gradients.
Steps 2 through 4 are repeated until the loss falls below a

given threshold or a set number of loops has passed. Trajectory
length n is derived from the trajectory used to initialize the
optimization process by adding 40, and remains fixed during
optimization. The additional frames are to allow the cloth shape
to stabilize after being released by the grippers. During stabili-
sation, manipulation input is blank (all-zero), but prediction of
shape development continues.

Fig. 5. Example calculation of trajectories (blue lines) and release points
(r1, r2) from grasp points (gC

1 ,gC
2 ) and displacement vector d. The gray

shape in the background is the cloth silhouette (2D projection).

Given goal shape s∗, current shape si and trajectory points
mi:n, optimization can be performed at any time in the manip-
ulation process. We trigger the optimization process when the
divergence between the predicted outcome ŝn and the goal state
exceeds a given admissibility threshold.

VII. EXPERIMENTS

A. Manipulation Format

We consider single- and dual-handed manipulations on a
square cloth. For data generation and trajectory initialization,
we represent manipulations as real-valued vectors of length six,
defining clean arc trajectories. The format is as follows. The
first four values define two grasp points, gG

1 and gG
2 , by their

geodesic coordinates (u, v) on the cloth, with the cloth surface
running from (−1,−1) to (1, 1). The second grasp point can take
a null value, indicating a single-handed manipulation. The last
two values define a displacement vector d given in 2D Cartesian
coordinates (x, y). Given a cloth state (mesh), this representation
determines grasp point trajectories as follows. We map geodesic
grasp points gG

i to Cartesian grasp points gC
i using the cloth

mesh. For two-handed grasps, we then compute point p:

p =
gC
1 + gC

2

2
+

d

2
=

gC
1 + gC

2 + d

2
(7)

Let m be a line through p perpendicular to d. The x and y co-
ordinates for Cartesian release points ri are found by mirroring
gC
i over line m on the XY-plane. Fig. 5 shows an example. For

single-handed grasps, the x and y coordinate of the single release
point r1 is given by gC

1 + d. The z coordinate for ri is given
by gC

i .z +min(0.2, k/2), where k is the distance between gC
i

and ri in the XY-plane. We find circle c centred at height gC
i .z,

perpendicular to the XY plane, and passing through gC
i and ri.

The shortest segment of c connecting gC
i and ri defines the

trajectory for point i.

B. Dataset Generation

We generate a dataset of 3691 manipulation sequences con-
sisting of 3 manipulations each, using the ARCSim cloth simu-
lator [30], [31]. Each sequence starts with the cloth laid out flat.
Single- and dual-handed manipulations are generated randomly
in a proportion of 1:2. Grasp points are selected randomly from
the convex corners of the projection of the cloth shape onto
the XY plane. Candidate points are found by means of corner
detection [32]. Displacement vectors are generated randomly
with a maximum length of 2.0 (measured in the normalized
workspace of Section 4). The cloth mesh is stored at each frame
of the simulation. The total number of frames in the dataset is
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TABLE I
MESH ESTIMATION ACCURACY

Error unit: length of the side of the cloth. µ: µ-component of network estimate.
R: refined estimate.

TABLE II
ESTIMATION AND REFINEMENT TIME COST

2276887. We use 3491 sequences as training data, and 100 each
for validation and test sets.

C. Environment for Simulation Experiments

For evaluating trajectory correction in simulation, we set the
simulation up to accept frame-by-frame input in the form of 3D
movement vectors for the grasped points. We implement three
evaluation scenarios.

1) Undisturbed manipulation. In this scenario, the cloth be-
haves exactly as in the dataset. This should allow accurate
prediction throughout, so manipulation should be success-
ful with minimal correction.

2) Manipulation with cloth slipping. This scenario reduces
the friction between cloth and work surface. This causes
the cloth to slide somewhat over the course of the manip-
ulation, necessitating correction.

3) Manipulation with external interference. This scenario
mimics a situation where an external force moves the work
surface during manipulation (or, equivalently, pulls the
cloth over the work surface). Movement is in the direction
of the displacement vector and runs from the 10th frame
to halfway the manipulation.

D. Mesh Estimation Results

We evaluate shape estimation on the shape data of 100 manip-
ulation sequences (300 manipulations, 61660 frames) from the
test set and 100 sequences (300 manipulations, 62226 frames)
from the training set. For consecutive frames, we initialize
refinement with the refinement result of the preceding frame,
unless average vertex distance with the μ component of the
estimate exceeds 0.1 times the cloth length.

Estimation accuracy is reported in Table I, time cost in
Table II, and example results are shown in Fig. 6. Errors are
measured as Euclidean distance between estimated and actual
vertex positions, with the length of the side of the cloth as unit.
Errors vary with the complexity of the cloth shape. Since we
focus here on manipulations starting from the spread-out state,
we report errors for the first manipulation in each sequence
(marked as first step in Table I) in addition to the errors over

Fig. 6. Examples of shape estimation and refinement. Each panel shows top-
down and lateral views. Note the occlusion in the voxel input in the first example,
detail recovery by refinement in the second example, and recovery of height relief
by refinement in the third example.

TABLE III
PREDICTION ACCURACY AND TIME COST

Error unit: length of the side of the cloth. Time unit: milliseconds

the full set (marked main set in Table I). The distance between
the μ component of the estimation and the target averages to
about 1/20th of the cloth length for the full set, and slightly
less than 1/60th for first manipulations. Refinement does not
notably improve accuracy. This is expected: the net is trained to
minimize error exclusively, whereas refinement also considers
shape realism. For example, estimates often omit wrinkles,
indicating them as regions of increased uncertainty instead. This
reduces the surface of the mesh described by the μ component.
Refinement will restore cloth surface by producing wrinkles in
areas of increased uncertainty, moving vertices away from their
μ values. Unless the wrinkles happen to align closely with the
actual wrinkles, this increases the error.

All training data is generated with identical material proper-
ties. To assess how these properties affect accuracy, we generate
three single-step test sets with different material properties.
From the material definitions included with ARCSim, we se-
lected the t-shirt, sweater, and swimsuit materials (for details
about the material definitions we refer to [33]). Cloth topol-
ogy and other settings were unchanged. Estimation accuracy
is shown in Table I. We observe some deterioration, but errors
remain within 1/40 of the cloth length. Domain randomization
could likely further improve robustness to material variation.

E. Shape Prediction Results

We evaluate shape prediction for the full test set and 300
manipulations examples from the training set. For each exam-
ple we perform prediction over horizons of 50, 100, and 200
frames, which are representative horizons for real manipulation
scenarios. We select the starting state randomly from the range
[0, nexample − nhorizon] where nexample is the full number of
frames in the example and nhorizon indicates how far into the
future we are predicting (i.e., from starting frame i, we predict
frame i+ nhorizon). When nexample < nhorizon, we predict
the full example starting at frame 0. Errors measure average
distance between corresponding vertex pairs in ground truth and
prediction, with the cloth length as unit. Table III shows accuracy
and time cost.
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TABLE IV
ERROR BETWEEN OUTCOME SHAPE AND GOAL SHAPE

Unit: length of the side of the cloth.

Fig. 7. Example of manipulation results. Examples of (a) scenario 1 and (b)
scenario 3. The graph shows the error value between the predicted shape and
the target shape at each trajectory point.

F. Trajectory Correction Results

We performed folding in simulation to evaluate trajectory
correction. We set the initial shape s0 and goal shape s∗, and
initialize the trajectory points m0:n to evenly divide a round
arc trajectory defined in the format described in 7A. To isolate
trajectory correction we omit shape estimation in this experi-
ment, using meshes from the simulation directly. We evaluate
the three scenarios described in Section 7C. Each scenario is run
for 50 manipulations from the test set (first-in-sequence manipu-
lations). For comparison, we also run each manipulation without
trajectory correction. Table IV shows accuracy averages. We
observe that in each scenario, trajectory correction reduces the
error between outcome and goal shape. Time cost for correction
ranges from 1 to 20 seconds, and depends on the frame length
of the remaining trajectory.

Fig. 7 shows example results. In Fig. 7a we see that correction
has little influence on the result in scenario 1: close approx-
imation of the goal is achieved with and without correction.
The predicted error w. r. t. the goal shape remains near-constant
over the course of the manipulation. This indicates that under
conditions consistent with the training data, we can accurately
predict the course of the manipulation.

Scenarios 2 and 3 diverge from the training conditions, result-
ing in large errors if no trajectory correction is performed, as seen
in the results for scenario 3 shown in Fig. 7b. The error graph
shows that the widening error with the goal shape is evident from
the network’s predictions during manipulation (dotted line).
When trajectory correction is enabled, the predicted error is
effectively suppressed (solid line). This results in a much better
approximation of the goal state.

G. Hardware Experiments

We performed cloth folding on robot hardware, using HIRO
(Kawada Robotics), a dual-armed robot with six degrees of
freedom per arm. The cloth is observed through an RGBD sensor
(Azure Kinect) placed opposite to the robot. We use square cloths
of 24cm by 24cm. Fig. 8 shows our setup.

Fig. 8. Environment for folding with actual robot. The shape of the cloth
during manipulation is estimated using information from an RGBD camera
placed oppositve to the robot. Bottom row shows result of estimating the cloth
shape during the manipulation shown in the top panel.

Fig. 9. Outcomes and IoU scores for real cloth folding with six goal shapes
and three materials.

RGBD input is processed as follows. We isolate the cloth
area using Grabcut [34] and contour detection, as shown in
Fig. 8b. Then we obtain a 3D point cloud of the cloth by
retrieving the depth values from the region of the depth image
corresponding to the cloth area. We convert the point cloud to a
voxel representation, and estimate the mesh using the VtM net
and the refinement procedure, resulting in a shape estimate as
shown in Fig. 8d. At the start of a manipulation, the experimenter
instructs the robot to grasp the points indicated by the planned
manipulation. Shape estimation and prediction are executed at
intervals of 10 trajectory frames at a time, and we set trajectory
correction to trigger when the MSE over the predicted outcome
and the goal exceeds 0.003.

We perform two experiments. The first evaluates performance
on six goal shapes for three cloths: a typical hand towel, a square
of stretchy t-shirt fabric, and a square of thin but fairly stiff woven
fabric. We evaluate each combination of goal and fabric once,
for a total of 18 cases. Results and scores are shown in Fig. 9.
Scores represent the IoU (intersection over union) taken over the
XY projection of the goal shape and a mask image of the result
shape taken from top-down view. We obtain an average IoU
of 0.904 overall. The t-shirt fabric is very supple and buckles
easily. In preliminary experimentation, this sometimes led to
shape collapse that is hard to recover from.

The second experiment evaluates manipulation with external
disruptions. We manually disrupt the manipulation by pulling on
the tablecloth covering the work desk halfway into the manip-
ulation, thereby displacing the cloth by a few centimeters. We
use the hand towel for these trials. Results and IoU scores are
shown in Fig. 10 for experiments with and without trajectory
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Fig. 10. Outcomes and IoU scores for real cloth folding with mid-manipulation
disturbance, with and without trajectory correction.

correction. We observe that trajectory correction substantially
improves outcomes, producing satisfactory approximations of
the goal shapes.

Time cost for shape estimation and trajectory search did not
differ significantly from the simulation experiments. Footage of
hardware experiments can be found in the video accompanying
this paper.

VIII. CONCLUSION & FUTURE WORK

We presented an approach for deformable object manipulation
on basis of shape estimation, shape prediction, and trajectory
correction. We quantitatively evaluated the individual parts in
simulation, and tested the integrated system on a selection of
test cases in simulation and on robot hardware. We find that the
system can successfully produce a variety of goal shapes, even
when disruptions occur during the manipulation.

While our experiments are presently limited to square cloth,
the system should in principle be applicable to alternative topolo-
gies with limited modification. However, the assumption that the
topology is known can be limiting. Handling items for which we
do not have sufficient prior topological knowledge will require
integration with garment recognition and shape parametrization
routines, as seen in e.g., [10].

Future directions include more extensive evaluation of the
integrated system. We also pursue integration with our previ-
ously proposed multi-step manipulation planning system [23].
In this integration the planning system would provide initial
trajectories and intermediate goal shapes for execution by the
system proposed here. Lastly, we aim to extend the system
to more topologically complex objects, such as clothes, and
explore domain randomization strategies to further improve
generalization over materials.

REFERENCES

[1] T. Han, X. Zhao, P. Sun, and J. Pan, “Robust shape estimation for 3D
deformable object manipulation,” 2018, arXiv:1809.09802.

[2] Y. Li, Y. Yue, D. Xu, E. Grinspun, and P. K. Allen, “Folding deformable
objects using predictive simulation and trajectory optimization,” in Proc.
IEEE/RSJ Int’l. Conf. Intell. Robots Syst., 2015, pp. 6000–6006.

[3] A. Doumanoglou et al., “Folding clothes autonomously: A com-
plete pipeline,” IEEE Trans. Robot., vol. 32, no. 6, pp. 1461–1478,
Dec. 2016.

[4] S. Miller, M. Fritz, T. Darrell, and P. Abbeel, “Parametrized shape
models for clothing,” in Proc. IEEE Int’l. Conf. Robot. Automat., 2011,
pp. 4861–4868.

[5] J. Stria et al., “Garment perception and its folding using a dual-
arm robot,” in Proc. IEEE/RSJ Int’l. Conf. Intell. Robots Syst., 2014,
pp. 61–67.

[6] L. Twardon and H. Ritter, “Active boundary component models for robotic
dressing assistance,” in Proc. IEEE/RSJ Int’l. Conf. Intell. Robots Syst.,
2016, pp. 2811–2818.

[7] Y. Kita, F. Kanehiro, T. Ueshiba, and N. Kita, “Clothes handling based on
recognition by strategic observation,” in Proc. 11th IEEE-RAS Int’l. Conf.
Humanoid Robots, 2011, pp. 53–58.

[8] Y. Li et al., “Regrasping and unfolding of garments using predictive
thin shell modelling,” in Proc. IEEE Int’l Conf. Robot. Automat., 2015,
pp. 1382–1388.

[9] B. Willimon, S. Hickson, I. Walker, and S. Birchfield, “An energy min-
imization approach to 3D non-rigid deformable surface estimation using
RGBD data,” in Proc. IEEE/RSJ Int’l. Conf. Intell. Robots Syst., 2012,
pp. 2711–2717.

[10] J. van den Berg, S. Miller, K. Goldberg, and P. Abbeel, “Gravity-based
robotic cloth folding,” Algorithmic Foundations Robot. IX. Springer Tracts
Adv. Robot., vol. 68, 2010, doi: 10.1007/978-3-642-17452-0_24.

[11] J. Maitin-Shepard, M. Cusumano-Towner, J. Lei, and P. Abbeel, “Cloth
grasp point detection based on multiple-view geometric cues with applica-
tion to robotic towel folding,” in Proc. IEEE Int’l. Conf. Robot. Automat.,
2010, pp. 2308–2315.

[12] L. Sun, G. Aragon-Camarasa, S. Rogers, and J. P. Siebert, “Accurate
garment surface analysis using an active stereo robot head with application
to dual-arm flattening,” in Proc. IEEE Int’l Conf. Robot. Automat., 2015,
pp. 185–192.

[13] D. Seita et al., “Deep imitation learning of sequential fabric smoothing
from an algorithmic supervisor,” 2019, arXiv:1910.04854.

[14] Y. Wu, W. Yan, T. Kurutach, L. Pinto, and P. Abbeel, “Learning to
manipulate deformable objects without demonstrations,” Robot.: Sci. Syst.,
2020.

[15] V. Petrik and V. Kyrki, “Feedback-based fabric strip fold-
ing,” in Proc. IEEE/RSJ Int’l Conf. Intell. Robots Syst., 2019,
doi: 10.1109/IROS40897.2019.8967657.

[16] Z. Hu, P. Sun, and J. Pan, “Three-Dimensional deformable object ma-
nipulation using fast online gaussian process regression,” IEEE Robot.
Automat. Lett., vol. 3, no. 2, pp. 979–986, Apr. 2018.

[17] P. Yang, K. Sasaki, K. Suzuki, K. Kase, S. Sugano, and T. Ogata, “Repeat-
able folding task by humanoid robot worker using deep learning,” IEEE
Robot. Automat. Lett., vol. 2, no. 2, pp. 397–403, Apr. 2017.

[18] D. Tanaka, S. Arnold, and K. Yamazaki, “EMD net: An encode–
manipulate–decode network for cloth manipulation,” IEEE Robot. Au-
tomat. Lett., vol. 3, no. 3, pp. 1771–1778, Jul. 2018.

[19] S. Arnold and K. Yamazaki, “Fast and flexible multi-step cloth manipula-
tion planning using an encode-manipulate-decode network (EM∗D net),”
Front. Neurorobotics, vol. 13, 2019.

[20] K. Kawaharazuka, T. Ogawa, J. Tamura, and C. Nabeshima, “Dynamic ma-
nipulation of flexible objects with torque sequence using a deep neural net-
work,” in Proc. IEEE Int’l. Conf. Robot. Automat., 2019, pp. 2139–2145.

[21] R. Hoque et al., “VisuoSpatial foresight for multi-step, multi-task fabric
manipulation,” Robot.: Sci. Syst., 2020.

[22] W. Yan, A. Vangipuram, P. Abbeel, and L. Pinto, “Learning predictive
representations for deformable objects using contrastive estimation,” 2020,
arXiv:2003.05436.

[23] S. Arnold, D. Tanaka, and K. Yamazaki, “Cloth manipulation planning
with mesh representations and incomplete domain knowledge,” in Proc.
38th Annu. Conf. Robot. Soc. Jpn., 2020.

[24] M. Cusumano-Towner, A. Singh, S. Miller, J. F. O’Brien, and P. Abbeel,
“Bringing clothing into desired configurations with limited percep-
tion,” in Proc. IEEE Int’l. Conf. Robot. Automat., 2011, pp. 3893–3900,
doi: 10.1109/ICRA.2011.5980327.

[25] J. Bernstein, Y. X. Wang, K. Azizzadenesheli, and A. Anandku-
mar, “signSGD: Compressed optimization for non-convex problems,”
arXiv:1802.04434.

[26] K. J. Choi and H. S. Ko, “Stable but responsive cloth,” ACM Trans Graph,
vol. 21, no. 3, pp. 604–611, 2002.

[27] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[28] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. Int’l. Conf. Learn. Repres., 2015, arXiv:1412.6980.

[29] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representa-
tions by back-propagating errors,” Nature, vol. 323, no. 6088, pp. 533–536,
1986.

[30] R. Narain, T. Pfaff, and J. F. O’Brien, “Folding and crumpling adap-
tive sheets,” ACM Trans. Graph., vol. 32, no. 4, pp. 51:1–51:8,
Jul. 2013.

[31] R. Narain, A. Samii, and J. F. O’Brien, “Adaptive anisotropic remeshing
for cloth simulation,” ACM Trans. Graph., vol. 31, no. 6, pp. 147:1–147:10,
Nov. 2012.

[32] J. Shi and Tomasi, “Good features to track,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 1994, pp. 593–600.

[33] H. Wang, J. F. O’Brien, and R. Ramamoorthi, “Data-driven elastic models
for cloth: Modeling and measurement,” ACM Trans. Graph., vol. 30, no. 4
Article 71, 12 pages, Jul. 2011.

[34] C. Rother, V. Kolmogorov,and, and A. Blake, “Grabcut: Interactive fore-
ground extraction using iterated graph cuts,” ACM Trans. Graph. Proc.
SIGGRAPH, vol. 23, no. 3, pp. 309–314, 2004.

https://dx.doi.org/10.1007/978-3-642-17452-0_24
https://dx.doi.org/10.1109/IROS40897.2019.8967657
https://dx.doi.org/10.1109/ICRA.2011.5980327


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


