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Gaze-Based Dual Resolution Deep Imitation
Learning for High-Precision Dexterous

Robot Manipulation
Heecheol Kim , Yoshiyuki Ohmura , and Yasuo Kuniyoshi

Abstract—A high-precision manipulation task, such as needle
threading, is challenging. Physiological studies have proposed con-
necting low-resolution peripheral vision and fast movement to
transport the hand into the vicinity of an object, and using high-
resolution foveated vision to achieve the accurate homing of the
hand to the object. The results of this study demonstrate that a
deep imitation learning based method, inspired by the gaze-based
dual resolution visuomotor control system in humans, can solve the
needle threading task. First, we recorded the gaze movements of
a human operator who was teleoperating a robot. Then, we used
only a high-resolution image around the gaze to precisely control
the thread position when it was close to the target. We used a
low-resolution peripheral image to reach the vicinity of the target.
The experimental results obtained in this study demonstrate that
the proposed method enables precise manipulation tasks using a
general-purpose robot manipulator and improves computational
efficiency.

Index Terms—Imitation learning, deep learning in grasping
and manipulation, bioinspired robot learning, telerobotics and
teleoperation, failure detection and recovery.

I. INTRODUCTION

D EEP imitation learning ([1], [2]) is used to train deep neural
networks on demonstration data, and has good potential

for application to robots used in daily life because it does not
require a hard-coded robot control rule. This study demonstrates
that deep imitation learning can be applied to high-precision
visuomotor robot manipulation tasks, such as needle threading.
This task is difficult both for humans and robots because (1)
the clearance is small, (2) the thread is deformable, and (3) the
posture of the needle varies in each picking trial. Therefore, this
task requires a complex control policy with high precision. If it
can be demonstrated that the general-purpose robot manipulator
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can learn a complex policy, the scope of future robots used in
daily life will expand.

Humans use two control systems with different visual reso-
lutions for manipulation tasks [3]. The anatomical study of the
human eye indicates that the retina is divided into the fovea and
peripheral vision. The fovea is located at the center of the retina
with a cone photoreceptor-dominated field, which is denser and
relatively thicker than other parts of the retina [4], and thus
provides high-resolution visual information. When a human
moves its hand to a target, the eye gaze is naturally foveated
at the target [5]–[8], whereas the peripheral field contains a
relatively sparse placement of photoreceptors, mostly dominated
by rods [4]. Central vision and peripheral vision are functionally
separated when the hand reaches out to the target under visual
guidance [3]. The human first moves its hand into the vicinity
of the target with fast feedback loop control using peripheral
visual information, and accomplishes the accurate homing of
the target through a slow feedback loop with central vision
at the end of the manipulation trajectory [3], [9]. However,
most existing deep learning based visuomotor control methods
for robot manipulation learn an action policy with the entire
visual input [1], [2], [10], [11]. A recent study [12] used human
gaze during demonstrations to learn the action policy. However,
the visuomotor control system was not separated into foveated
vision and peripheral vision.

This study proposes a highly precise object manipulation
method inspired by the separated visuomotor control system
of humans. The foveated vision (10◦) around the gaze posi-
tion measured by the eye-tracker retains high spatial resolution
(142× 120 from the 1280× 720 entire image), and the entire
image is resized as a low-resolution image (128× 72) to form
the peripheral vision (Fig. 1 ). The deep neural network model
infers fast-action only with a peripheral image to reach the target,
and slow-action only with a foveated image to precisely grasp
the thread or insert it into the eye of the needle. This sepa-
rated visuomotor control architecture has two benefits compared
with previous deep imitation learning methods. First, using the
foveated vision with an explicit gaze mechanism improves gen-
eralization because (1) this mechanism extracts important visual
features to focus on from the entire scene, and (2) fewer neural
network parameters are required. Second, higher computational
efficiency can be achieved because only the foveated vision
retains high-resolution.
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Fig. 1. The proposed method can efficiently calculate a precise policy with
both global features from peripheral vision (1a) and detailed visual information
for the needle and thread from foveated vision (1b).

Fig. 2. Difference between thread grasps. The proposed method can adjust its
policy with respect to the posture of the grasped thread.

II. RELATED WORK

One representative task of small clearance manipulation is
the peg-in-hole task. Because this task has small clearance, it is
important to establish a control model of the peg under friction
with the hole [13] or achieve the accurate alignment of the peg
and hole [14]–[17]. Force/torque feedback is mainly used to
estimate the state of the peg/hole or the friction between the peg
and the hole [13], [18], [19]. [17] used visual feedback to align
the peg and hole. By contrast, needle threading cannot use force
feedback because the robot cannot sense friction between the
needle and the flexible thread. Therefore, unlike the peg-in-hole
which handles rigid objects, the robot must adjust its policy
with thread deformation using visual feedback. Because it is
difficult to establish a model with high-precision deformation
prediction, the model-based approach cannot be applied to the
needle threading task.

Related studies, such as [20], [21] and [22], considered nee-
dle threading tasks. [20] achieved a rope-into-ring task. An
imaginary guide was set inside the ring to insert the rope tip
into the ring. For the needle threading task considered in this
study, it is difficult to calculate the imaginary guide tube be-
cause of the small clearance and insufficient visual resolution,
even with 1280× 720 images. Furthermore, in our setup, the
robot must appropriately control the thread, even when the

thread is deformed by collision with the needle. [21] achieved
high-precision assembly behaviors with laser-based sensing and
validated with needle threading and USB insertion tasks. A
dual-arm system where one sensing arm mounts the laser scanner
was used to compensate for errors. However, their approach
requires a high-resolution depth sensing device mounted on a
robot arm, which may not be suitable for a general-purpose robot
system, and assumes that the thread is rigid. [22] achieved needle
threading using high-speed visual feedback. Their idea was that
a thread rotating with high-speed can be approximated as a rigid
object, and thus the control models can be simplified. However,
this study used a two-degree-of-freedom single purpose mech-
anism and did not automate the thread mounting. To the best
of our knowledge, a series of pick-and-threading tasks has not
been learned by a general-purpose robot manipulator to date.

Active vision is a research field about actively control the
camera coordinate with respect to given sensory input to focus
visual attention to a relevant target [23]–[25]. [26], [27] achieved
active stereo vision on a camera head system. [28]–[30] designed
camera systems in which high-resolution central vision and
low-resolution peripheral vision in hardware, and [29], [30]
further implemented the proposed camera lens on an active
stereo vision system. [31], [32] extended attention to sensory-
motor control. [31] proposed a reinforcement learning system
that can learn to focus on necessary sensory input. [32] used
foveated images for imitation learning on a two-dimensional
video game. However, our research objective is to demonstrate
that visual attention acquired from the human gaze can improve
performance for real-world robot manipulation.

III. METHOD

A. High-Resolution Image Processing With Human Gaze

In our setup, a human operator teleoperates a UR5 robot
(Universal Robots) based on visual input from a head-mounted
display (HMD), which reflects images from the ZED Mini stereo
camera [33] on the robot, while the eye tracker mounted on the
HMD measures the operator’s eye gaze.

The high definition (HD) stereo image (1280× 720) from
the camera is processed into a foveated image and peripheral
image. The peripheral image is the entire stereo image reduced
to 128× 72. The foveated image is a stereo image cropped to
142× 120 around both the left and right gaze from the raw HD
image, and corresponds to the central retina (10◦) of the human
eye [3] (see Appendix A for details). The derived foveated and
peripheral images are used as input for the visuomotor policy
calculation introduced in III-D. Each image and subsequent
robot joint angles are collected at 10 Hz. Therefore, each step is
defined as 0.1 seconds throughout this letter.

B. Action Separation by Speed of Action

The target-reaching movement of humans is divided into the
fast reaching movement calculated from peripheral vision and
accurate homing with a slow feedback loop calculated from
central vision [3], [9]. In our method, on the basis of this result
obtained from physiological studies, the separated foveated and
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Algorithm 1: Proposed Algorithm.
Parameter: Fast-action πfast, slow-action (standard)
πslow, slow-action (recovery) πrec, gripper open/close
πgp, recovery classifier θ, gaze predictor ρ, recovery step
predictor ψ, action speed classifier φ

1: step← 0
2: count← 0
3: succeed← false
4: while step < 500 And ¬ succeed do
5: ol, or ← 1280× 720 left/right camera image
6: pl, pr ←

resize(ol, (128, 72)), resize(or, (128, 72)) {resize
to left/right peripheral vision pl, pr}

7: p← concat(pl, pr) {concatenate peripheral vision}
8: gl, gr ← ρ(p) {predict left/right gaze position gl, gr}
9: cl, cr ← crop(ol, gl), crop(or, gr) {crop left/right

foveated vision}
10: c← concat(cl, cr) {concatenate foveated vision}
11: gp← πgp(c) {predict gripper command gp}
12: if θ(c) is true And count = 0 then
13: count← ψ(c)
14: end if
15: if φ(c) is fast-action then
16: action← πfast(p) {predict action from

peripheral vision}
17: else
18: if count > 0 then
19: action← πrec(c){predict recovery action from

foveated vision}
20: count← count− 1
21: else
22: action← πslow(c) {predict action from

foveated vision}
23: end if
24: end if
25: Execute (action, gp) on robot
26: step← step+ 1
27: Manually decide succeed
28: end while

peripheral images are used to infer slow-action and fast-action,
respectively. As rotation is not significant in our needle thread-
ing and bolt picking tasks, the action speed is defined by the
Euclidean norm of the positional difference ( 1), whereas the
action is defined as the difference in the end-effector position
and orientation between the next step and current step during
the teleoperation:

st =
√

(xt+1 − xt)2 + (yt+1 − yt)2 + (zt+1 − zt)2, (1)

where st represents the speed of action at timestep t. The
action is separated into fast-action and slow-action according
to the speed of the action using a threshold. To determine the
threshold that separates fast-action and slow-action, we assume
that fast-action and slow-action are sampled from mutually

Fig. 3. Histogram of action speed and fitted GMM of needle threading. The
intersection point of the two Gaussian distributions is defined as the threshold
between slow-action and fast-action.

independent probability distributions in terms of the action
speed. A Gaussian mixture model (GMM) with two Gaussian
distributions corresponding to the slow-action and fast-action,
respectively, is fitted from the [x, y, z] speed of actions (Fig. 3).
Then, the intersection point of the two Gaussian distributions is
determined as the threshold.

After learning, the action has to be automatically selected
from either slow-action or fast-action. To achieve this, a binary
classifier, that is, the action speed classifier, is trained using the
action speed labels. The foveated vision is used as the input to
the action speed classifier because we observed that the foveated
vision had sufficient information for classification.

C. Recovery Action

Owing to the small clearance of the needle threading task,
even human demonstrators fail frequently. In the training data,
the failure rate on each trial was 36.4%. In these failures, humans
recover from the failure and try again until the threading is finally
successful ( Fig. 5). Hence, we assume that the robot should be
able to recover from failure and achieve better performance in
subsequent attempts.

In this study, we adopt neural networks that recognize the
failure state and switch to the recovery action (Fig. 4). The failure
states and recovery actions are annotated based on demonstra-
tion data, respectively. The failure states are defined as threads
passing by the needle without being inserted into the eye of the
needle, whereas the recovery actions are defined as retreating
actions until the next threading. Failure actions are removed
from the training data.

The annotated recovery actions are separated from other
threading actions in the training data (standard action) and are
trained in a separate neural network that only infers the recovery
action. Two additional neural networks are used to recognize
the failure state. From the current foveated image, the recovery
classifier predicts whether the current state is a failure, and the
recovery step predictor predicts how many steps are required to
complete the recovery. If the current state is a failure, the robot



KIM et al.: GAZE-BASED DUAL RESOLUTION DEEP IMITATION LEARNING 1633

Fig. 4. Proposed architecture.

Fig. 5. Example of task failure caused by the human operator. The operator
failed to thread the needle (5b), recovered from the failure (5c), retried, and
finally succeeded (5d).

executes the inferred recovery action for the predicted number of
steps. During the recovery steps, the robot continues the recovery
action regardless of the change of the recovery classifier’s result.

D. Model Architecture

It is important to recognize the three-dimensional state of the
thread for the needle threading task. Therefore, both the left and
right image of the stereo camera are used as input.

The entire architecture is shown in Fig. 4. First, the raw
1280× 720 left and right RGB images are concatenated into
six channels and resized to a 128× 72 peripheral image. This
peripheral image is used to infer the fast-action and left/right
gaze coordinate. The left/right foveated images are cropped from
left/right 1280× 720 raw images using the inferred left/right
gaze coordinate, respectively. The left/right foveated images are
concatenated into six channels. The foveated image is used to in-
fer (1) the gripper opening/closing, (2) standard slow-action, (3)
recovery slow-action, (4) recovery classification, (5) recovery
step prediction, and (6) action speed classification (slow/fast)
(Fig. 4). The action speed classifier determines whether to use
the slow-action or fast-action in the current state. The recovery
classifier predicts whether the robot has failed to thread the nee-
dle. If the classifier decides to use the slow-action and recovery
is required in the current state, the recovery action is selected and

Fig. 6. Neural network architectures.

executed for n steps, where n is the number of steps predicted
by the recovery step predictor. If recovery is not required, a
standard (fast or slow) action is executed based on the decision
of the action speed classifier (Algorithm 1).

Similar to previous research [12], gaze coordinate is inferred
by the mixture density network (MDN) [34]. The MDN com-
putes the parameters of the GMM to estimate the probability
distribution of the target conditioned on the input data. In this
study, the MDN architecture inputs a concatenated left/right
peripheral image at the current time step to output μ, σ, and
ρ, which represent the mean, standard deviation, and correlation
of the two-dimensional gaze position probability, respectively.

The coordinate of the end-effector and the target is important
for fast-action control using the peripheral image because the
fast-action control moves the end-effector into the vicinity of
the target. To extract the coordinate information as a feature,
spatial softmax [1], [10], which represents a feature as a two-
dimensional coordinate (Fig. 6(a)), is used. The gaze predictor
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TABLE I
NEEDLE THREADING RESULT. THE PROPOSED METHOD WAS SIGNIFICANTLY BETTER THAN THE TASK RESULTS MARKED USING∗ (CHI-SQUARE TEST, P < 0.05)

Fig. 7. Task setup.

also uses the network architecture with the spatial softmax
(Fig. 6(a)) because the target location is important in gaze
coordinate prediction.

By contrast, the recognition of the three-dimensional state of
the thread and the needle is important for the processing of the
foveated image. Spatial softmax is inadequate for inferring such
information because the extracted feature is a two-dimensional
coordinate. Therefore, the foveated image is processed using a
series of convolutional neural networks and max-pooling layers
with a stride of two (Fig. 6(b), 6(c)).

The extracted features are processed with a series of fully-
connected (FC) layers. Batch normalization [35] and the ReLU
activation function [36] are used between the FC layers. There
are 200 nodes for each FC layer. Four neural network models
that infer actions (standard slow-action, recovery slow-action,
fast-action, and gripper opening/closing) use three FC layers
followed by Fig. 6, whereas the other neural network models
use two FC layers.

IV. EXPERIMENTS

A. Task Setup

In the needle threading task (Fig. 7(a)), the robot manipulator
had to (1) pick up the thread and (2) insert it into the eye of
the needle that was randomly placed on a 9 cm× 9 cm area
on the table. In this setup, the trials varied in the location of
the needle and the grasping position of the thread (Fig. 2). The
neural network had to adjust its policy with such variances.

TABLE II
EFFICIENT LEARNING OF NEURAL NETWORKS USING THE GAZE

(NEEDLE THREADING)

TABLE III
BOLT PICKING RESULT

TABLE IV
MEDIAN OF THE GAZE PREDICTION ERROR (HORIZONTAL:

error_in_pixels/width× 100, VERTICAL:
error_in_pixels/height× 100)

To demonstrate that the proposed method is generally appli-
cable to precise tasks, a bolt-picking task was also conducted
(Fig. 7(b)). In this task, the robot had to pick up aM6× 14 bolt.
Hence, the robot had to learn the precise location to grasp the
bolt while avoiding colliding with the table.

B. Assessment of the Proposed Method

The proposed method achieved a success rate of 81.25% for
needle threading using 203.8 minutes of the training data and
68.75% in bolt picking using 39.56 minutes of the training data
(Tables I(a) and III(a), respectively). Fig. 8 illustrates that the
robot grasped the thread (6.0 s), recognized the failure (16.0 s),
recovered from the failure state (18.0 s), and finally succeeded in
threading the needle (22.0 s). In another trial (Fig. 9), the robot
was able to perform the appropriate manipulation, even when
the thread deformed after colliding with the needle. Table IV
shows the gaze predictor accuracy.
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Fig. 8. Example of a successful trial. The robot was able to recognize the failure (16.0 s), recover from it (18.0 s), and finally succeed in threading the needle.

Fig. 9. Another successful trial. The proposed method was able to perform manipulation, even when the thread was deformed.

C. Assessment of Foveated Vision

To evaluate how the gaze affects both computational cost and
performance, the proposed method was compared with methods
that do not use foveated vision. When the foveated images
were replaced with the peripheral image (128× 72), the neural
networks failed at needle threading (success rate of 12.5%).
Moreover, when all images were replaced with the raw image
(1280× 720), the neural networks even failed at picking a thread
(Table I(b)). This network architecture also failed at bolt picking
(Table. III(b)). Therefore, selecting an image with an appropriate
resolution in accordance with the target task contributes to the
improvement of the generalization.

The computational cost of the proposed method and that
of processing a raw 1280× 720 image were compared
(Table II). The proposed method required 8.10 times fewer
multiply-accumulate operations (MACs) to calculate one step,
and approximately 27.7 times less computational time to train
the entire 30 epochs of all neural networks. A difference between
the saved computational time and the saved MACs was caused
by overheads such as memory copy.

D. Assessment of the Action Separation

The success rate of needle threading dropped to 0%
when both the fast-action and slow-action were trained us-
ing only the peripheral image. Additionally, the threshold
search results confirmed that the threshold that separates
slow-action from fast-action should be the intersection point
of the two Gaussian distributions (Tables I(c) and III(c)).
In addition to the intersection point of 0.005 685 ∼ μ1 +
2.315σ1 ∼ μ2-1.069σ2, four possible thresholds were tested:
[0.00 208, 0.00 364, 0.00 790, 0.00 985], which correspond to

[μ1, μ1 + σ1, μ2-σ2

2 , μ2], respectively. μ1, μ2, and σ1, σ2 are
the mean and standard deviation of each Gaussian (μ1 < μ2),
respectively.

E. Assessment of Visuomotor Control Separation

The proposed method assigned peripheral vision to the fast-
action and foveated vision to the slow-action. For other ar-
chitectures, such as allocating only foveated vision to both
the fast-action and slow-action or assigning both foveated and
peripheral vision to the fast-action, the robot failed to pick up
the thread. Moreover, allocating both foveated and peripheral
vision to slow-action decreased the success rate (Table I(d)).

F. Assessment of the Recovery Action

Training both standard and recovery actions using only one
network resulted in inferior performance (Table I e). The reason
for this is that the recovery action was not explicitly acquired,
thus the robot could not recover after failure. Notably, the
proposed method was able to recover from 12 out of 13 failures,
whereas the neural network trained with both standard and
recovery actions only recovered from one out of eight failures.
Additionally, the success rate dropped to 31.25% without the re-
covery step predictor. At this time, the robot repeatedly switched
between the standard action and the recovery action.

G. Assessment of the Resolution

When a half-resolution image (640× 360) was used, the
success rate dropped to 50% (Table I f), which demonstrates that
high-resolution images are required to conduct needle threading
tasks.



1636 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 6, NO. 2, APRIL 2021

H. Assessment of Stereo Vision

To evaluate the necessity of stereo vision, the entire neural
network architectures were re-trained with mono vision using
images from the left camera only (therefore, the number of the
input channels was three). Without stereo vision, the success
rate dramatically decreased (Table I(g)).

V. DISCUSSION

In this paper, we proposed a gaze-based dual resolution deep
imitation learning method for robot manipulation. The proposed
method separates the foveated and peripheral vision, which are
used to control the slow-action and fast-action, respectively.
The proposed method enabled a general-purpose robot manip-
ulator to perform needle threading with high precision. This
approach achieved appropriate control even when the thread
was deformed. Additionally, the experimental results obtained
for the bolt picking task partially demonstrated that the pro-
posed method can be generalized and applied to other tasks
that require high precision. As the proposed method enables
the high-precision manipulation of the a deformable object only
from human demonstration data, it is potentially applicable to
tasks that require dexterous manipulation skills such as food
processing, jewelry manufacturing, or clothing manipulation.

The results obtained in this study confirm that this separated
visuomotor control improves both the task performance and
computational efficiency compared with processing using high-
resolution visual input. Moreover, the results of this research
agree with the results obtained by previous studies on the role
of central/peripheral vision in visuomotor manipulation [3], [6],
[9]. This suggests that the characteristics of human behavior
must be considered in the application of imitation learning using
human-generated data to robots, and that only using end-to-end
fitting for the motor control output from input sensory data may
be inadequate.

In this research, the foveated vision is defined as 10◦ around
the gaze position. The experimental results demonstrated that
this setup can solve tasks that handle small objects. Whether
the same setup can solve tasks with large objects still requires
investigation. The area of the foveated vision can be related to the
target objects. Therefore, the active adjustment of the foveated
vision area in accordance with the target task may further in-
crease the generality of the proposed method. Additionally, the
stereo camera was fixed in this work. To fully use the advantages
of active vision, active control of the camera head, in addition
to gaze coordinate prediction in the image, is required.

APPENDIX

A. Calculation of Foveated Vision From the Camera Image

The field of view of the ZED Mini stereo camera is 90◦(H)×
60◦(V )× 100◦. Therefore, the central retina (10◦) corresponds
to 142× 120 of the image from the full image size of 1280×
720.

B Training Details

The neural networks were trained on needle threading using
1713 episodes of training data (203.8 minutes) and 148 episodes

TABLE V
CLASSIFICATION ACCURACY

Fig. 10. Fast/slow-action visualized on each threshold (horizontal: steps in an
episode, vertical: episodes, cyan: fast-action, yellow: slow-action).

of validation data (17.01 minutes). For bolt picking, 775 training
episodes (39.56 minutes) and 102 validation episodes (5.402
minutes) were used. The demonstration was sampled at 10.0 Hz.
Each neural network component was selected from the lowest
validation loss over 30 epochs. The learning rate of 1e− 4,
rectified Adam (RAdam) optimizer [37], and the same action
loss as that in [12] were used.

Each neural network component was trained using a Xeon
CPU E5-2698 v4 and an NVIDIA Tesla V100 GPU with a batch
size of 64. When training was conducted using a 1280× 720
image, a batch size of 8 was used to avoid memory issues. An
Intel CPU Core i7-8700 K and one NVIDIA GeForce GTX 1080
Ti were used to control the UR5 robot manipulator.

C. Evaluation Details

The needle block was a 5 cm× 5 cm sponge block with the
needle installed in the middle, and was placed as similarly as
possible to the previously recorded test positions. To ensure a
fair comparison of the test results, approximately 1 ∼ 2 mm of
the end of the thread was hardened using glue. Notably, this did
not result in loss of deformability for the thread. In the additional
thread experiment, wherein the thread was not hardened using
glue but moistened using a small amount of water, 68.75% of
successful threading was recorded. A trial was assessed as a
failure when it exceeded the maximum steps of 500.

D. Classifier Accuracy

The classification accuracy of the recovery classifier and
action speed classier are presented in Table V.
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Fig. 11. Average number action shifts (fast→ slow & slow → fast) on each
threshold per episode.

E. Assessment of the Action Separation Threshold

Fig. 10 visualizes fast-action (cyan) and slow-action (yellow)
separated with thresholds used in IV-D on the validation set of
the needle threading task. Threshold = 0.00 569, which is the
intersection point of the two Gaussian distributions, showed the
least number of action shifts (Fig. 11), which indicates that the
proposed method shows the least interleaved sub-segmentation
of slow and fast actions.
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