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Real-Time Self-Collision Avoidance in Joint Space
for Humanoid Robots

Mikhail Koptev , Nadia Figueroa , and Aude Billard , Member, IEEE

Abstract—In this letter, we propose a real-time self-collision
avoidance approach for whole-body humanoid robot control. To
achieve this, we learn the feasible regions of control in the hu-
manoid’s joint space as smooth self-collision boundary functions.
Collision-free motions are generated online by treating the learned
boundary functions as constraints in a Quadratic Program based
Inverse Kinematic solver. As the geometrical complexity of a hu-
manoid robot joint space grows with the number of degrees-of-
freedom (DoF), learning computationally efficient and accurate
boundary functions is challenging. We address this by partitioning
the robot model into multiple lower-dimensional submodels. We
compare performance of several state-of-the-art machine learning
techniques to learn such boundary functions. Our approach is
validated on the 29-DoF iCub humanoid robot, demonstrating
highly accurate real-time self-collision avoidance.

Index Terms—Collision avoidance, humanoid robot systems,
machine learning for robot control.

I. INTRODUCTION

HUMANOID robots have a wide span of possible applica-
tions, potentially becoming universal assistants. Though

they are difficult to control due to balancing, stepping, and
whole-body control considerations [1]–[3], they have many
advantages. They do not require flat floors to operate, are
capable of bi-manual dexterous manipulation, and can extend
their manipulation workspace by bending forward or crouching.
Achieving such behaviors is challenging, as the control schemes
must prevent collisions with the environment and their bodies
(see Fig. 1). Robots with back-drivable joints [4] or equipped
with soft skin [5], may allow self-collisions or exploit self-
contacts and compliance to achieve a goal. However, for robots
not equipped with such capabilities, self-collision prevention is
necessary to avoid hardware damage.

In this paper, we focus on providing a real-time solution to the
self-collision avoidance (SCA) problem for high-dimensional
position-controlled humanoid robots. In the literature, the SCA
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Fig. 1. Self-collided postures example. Links in the collided state are high-
lighted red. On the left – arms collide with legs in the crouching scenario, on
the right – self-collisions between the arms.

problem is often tackled with offline motion planning algorithms
that generate optimal collision-free paths in configuration space
for robots in challenging and constrained environments [6]–[12].
Yet, as the robot’s joint space dimensionality increases, so does
the computational and geometrical complexity of the problem.
While these specific methods have been capable of generating
collision-free trajectories for high-DoF humanoid robots that
can be dynamically-stable, efficient and optimal [8]–[10], their
main shortcoming is computation time. It may take seconds to
minutes to generate a single collision-free trajectory [9], [10].
Hence, their applicability to reactive and dynamic real-time
control is limited.

To alleviate this, online reactive approaches for high-
dimensional humanoid robots have been explored [13]–[20].
These approaches rely on distance computations between sim-
plified geometrical representations of segments of the robot’s
body; i.e. spheres, swept-sphere volumes, capsules, convex-
hulls, patch-based bounding volumes, etc. Self-collisions are
avoided by using the distance functions as “repulsive potential”
functions transformed to joint velocities for Jacobian-based
inverse kinematics (IK) [13], [15], [17] and to joint torques
for torque control schemes [14], [18]; or as constraints in
optimization-based IK solvers [16], [19], [20].

Although providing better computational efficiency than the
offline methods, this family of approaches have several issues.
First, the accuracy and computation time of collision avoidance
relies heavily on the precision of the geometric representation. A
highly accurate representation of the segments will yield highly
accurate distance functions but are more computationally taxing;
and vice-versa. Further, the former approaches are susceptible
to numerical issues induced by Jacobian inversions and are not
robust to local minima [13]–[15], [17], [18]. This is handled by
the latter approaches in which inequality constraints are defined
as the distances between closest points on the robot body. Yet, in

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-7888-8298
https://orcid.org/0000-0002-6873-4671
https://orcid.org/0000-0002-7076-8010
mailto:mikhail.koptev@epfl.ch
mailto:aude.billard@epfl.ch
mailto:nadiafig@mit.edu
https://doi.org/10.1109/LRA.2021.3057024


KOPTEV et al.: REAL-TIME SELF-COLLISION AVOIDANCE IN JOINT SPACE 1241

Fig. 2. SCA value function Γ(q) projected to two selected dimensions. Red
areas denote negative class (Γ(q) < 0) and collided configurations, whereas
blue area represent feasible configurations (Γ(q) > 0). Arrows inside collision-
free region stand for gradient ∇Γ(q) that is pointing in the direction away from
collisions.

order for the optimizations to converge, the distance functions
should be continuously differentiable [16]. This can be difficult
to achieve. A distance function between two geometrical objects
is continuously differentiable only if one object is convex and the
other strictly convex [19]. To guarantee convergence, [16], [19]
and [20] have proposed novel geometrical representation and
distance functions that ensure differentiability. However, they
rely on convex geometrical representations and approximations
which can over-constrain the problem; i.e. SCA might be too
conservative.

Insights from previous work on SCA for multiple fixed based
robot arms [21], [22] show that self-collision regions of a
multi-body robot are static and unique in joint space. Hence, a
continuously differentiable function can be learned to model the
self-collision boundary between collided and free joint configu-
rations (see Fig. 2). In [21], [22] a sparse support vector machine
(SVM) formulation [23] was used for fast (∼2 ms) and accurate
(∼98%) collision detection and repulsive gradient computation.
The SCA boundary functions and gradients were re-formulated
as inequality constraints in a quadratic program (QP)-based
optimization problem that is solved in real-time. This approach
was validated on a 14-DoF dual-arm setup, however, it’s scala-
bility to higher-dimensional humanoid robots was not explored.
Following this work, we propose to learn continuously differen-
tiable boundary functions that can be approximated in real-time
to prevent self-collisions while controlling the 29 DoF iCub
humanoid.

Self-collision boundary functions can be learned by sampling
the robot’s workspace for collided and non-collided joint space
configurations. With a sufficiently representative dataset, several
function approximation approaches could learn the boundary
functions with high prediction accuracy. Since the dataset is
collected offline, we can use precise triangle mesh represen-
tation of the iCub robot body to acquire a highly accurate
sampling of the boundary. The challenge we face is that such
datasets are in the order of millions. Further, we seek to provide
high SCA prediction accuracy and computationally efficiency
while ensuring continuity requirements. We offer the former
by decomposing the robot’s 29-dimensional joint space into
independent submodels of lower dimensionality, each covering

a sub-combination of limbs and bodies. To learn the bound-
ary functions, we explore and compare the sparse SVM used
in [21], [22] known as Cutting-Plane Subspace Pursuit (CPSP)
algorithm [23], GPU-accelerated feed-forward neural networks
(NN) and GPU-accelerated SVM implementations.

Paper organization: In Section II we summarize related works
that learn SCA boundaries. Sections III-IV describe the proposed
dataset building technique and the analysis of boundary function
approximation approaches. Section V describes the proposed
IK optimization problem with the learned boundary functions
as constraints. In Section VI,we show that our approach yields
highly accurate real-time SCA for the 29 DoF iCub [24].

II. RELATED WORKS

Similar to our previous work [21], [22], the approach pre-
sented in [25] uses a SVM to detect self-collisions of the 31-DoF
WALKMAN humanoid robot [25]. In this work, the SVM is
used as a prediction tool to accelerate the online computation of
the pairs of closest points. Given these predictions, the actual
Euclidean distances are used to formulate constraints fed to
a task-prioritized optimization problem as in [16]. While this
approach is computationally efficient (10–20 ms), the misclas-
sification rates of the learned SVMs are high and are dealt with
an additional heuristic to improve prediction accuracy. Further,
this approach may suffer from convergence issues due to the
nondifferentiability of the constraints.

The idea of learning a model of a robot’s workspace with SVM
and using it to detect collision is also explored in [26]. An active
learning scheme and kernel approximation are leveraged to effi-
ciently detect collisions. They accelerate offline motion planning
approaches such as rapidly exploring random trees (RRT) [27]
variants to orders of magnitude above the state-of-the-art. This
work clearly demonstrates the computational advantage of using
a learned collision function over classical pairwise distance
searches. However, its scalability to high-dimensional humanoid
robots and applicability to real-time IK solvers is yet to be
demonstrated.

Finally, none of the aforementioned works use the learned
SCA models to directly formulate the avoidance constraints. In
this work, we show that the learned SCA models can be used
to actively avoid self-collisions within a real-time IK solver (<
5 ms computation time).

III. PROBLEM FORMULATION

We seek to learn an SCA model for the iCub humanoid
robot [24] in joint space to predict and prevent self-collisions.
Our motivation is to avoid repetitive geometrical sampling
and minimal distances computations by learning a continuous
and continuously differentiable function Γ(q) : Rn → R from
a dataset of sampled postures q ∈ Rn. This function should
represent the cost for a self-collision constraint, describing
collided and free robot configurations. WhileΓ(q) ∈ R can help
determine how close a given posture is to a collided state, the
gradient of this function, ∇Γ(q) ∈ Rn, can be used to navigate
existing path-planning methods away from the collision border,
see Fig. 2.
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Fig. 3. Visualization of humanoid self-collision model separation into ten independent submodels. For each submodel 1–10 orange links are checked for collisions,
while blue links’ collisions are ignored. Neighbouring links collisions are also ignored. The features of each submodel correspond to the joints adjacent to highlighted
links. For models 2, 3, 5 and 6 torso joints are also considered as features.

TABLE I
HUMANOID ROBOT MODEL SEPARATION (1–10). ENTRIES MARKED WITH (∗x)

ARE SYMMETRICAL TO UNMARKED MODELS x. FULL-BODY IS PRESENT AS

ZERO ENTRY FOR COMPARISON. VISUALISATION IS PRESENTED IN FIG. 3

To learn Γ(.), any machine learning function approximation
technique could in principle be used. Here, we set to compare
three techniques: SVM, sparse SVM (CPSP), NN. In the case
of SVM, the number of parameters (support vectors) grows
linearly with the number of datapoints [28]. Hence, we evaluate
the sparse SVM version (CPSP) [23]. We then contrast this to
Neural Networks with a focus on finding the minimum number
of neurons to achieve similar accuracy. We show that the result-
ing constraints from any of these techniques are continuously
differentiable.

IV. SELF-COLLISION BOUNDARY LEARNING

This section describes our approach applied to the iCub
humanoid robot, yet it is applicable to any humanoid.

A. Self-Collision Dataset

To learn a self-collision detection function, we generate a
dataset containing examples of both collided and collision-free
classes. The iCub has 53 actuated joints [24]. Excluding hands,
eyes and the 3 joints associated with neck and head movements1

reduces the number of actuated joints to 29. The resulting joint
space of the iCub is equivalent to R29, as each joint qi is revolute
and has corresponding joint limits:

q−i < qi < q+i , i = 1, . . ., 29.

As noted by [25] and evidenced in our experiments, due to the
complex joint space geometry, learning a single SCA model
for a high-dimensional humanoid robot that is both highly
accurate and computationally efficient is challenging. In this
work, we simplify the problem by decomposing the 29 DoF
humanoid model into ten submodels of lower dimensionality,
that independently describe possible collisions between robot

links. The links, joints and feature dimensionality for every
submodel are specified in Table I and Fig. 3. Notably, certain
pairs of submodels become symmetric if the torso joints are
mirrored. By exploiting this symmetry, we reduce the number of
models to be learned from ten to six. We indicate the symmetric
submodel pairs in Table I.

While many works rely on geometrical simplifications of
robot structure, we use precise triangle meshes. To detect col-
lisions we use the Flexible Collision Library (FCL) [29]. The
dataset is generated by a uniform random sampling with balanc-
ing heuristics. The dataset creation is structured so that 50% of
samples are collided postures, 35% are feasible postures with a
minimal distance across link pairs lower than a threshold (to have
a better representation of collision boundary), and 15% of entries
are uncollided postures without minimal distance requirements.
For every submodel, we randomly sample robot configurations
within the joint limits until the desired dataset size (for collided,
within the threshold, and free postures) is reached.

The threshold value for 35% of close-to-collision configu-
rations is set to 5 cm. Postures are considered collided if the
minimal distance between any link pair is below 1 cm. Using
joint limits q−i , q

+
i all configurations are normalized, i.e. every

feature belongs to (0, 1). As a result, for each submodel, we
generate a normalized and balanced dataset, where 50% of
samples are of collided configuration, and 50% are uncollided
configurations including safe and close-to-collision postures.
This procedure allows us to generate unlimited amounts of data,
and datasets sizes are only constrained by the computation time.

B. Self-Collision Boundary Learning Via SVM

To learn a self-collision boundary from the collected data,
we first follow the classic SVM formulation, where the kernel
trick is employed to lift the data to higher dimension space and
find separation hyperplane in feature space. We use the radial
basis function (RBF) kernel K(q1, q2) = e−γ||q1−q2||2 , where
parameterγ defines kernel width. For a given robot configuration
q, the SVM decision function Γ(q) has the following form:

Γ(q) =

Nsv∑
i=1

αiyiK(q, qi) + b

=

Nsv∑
i=1

αiyie
−γ||q−qi||2 + b,

(1)

1The collision space with the head moving is quasi equivalent to the collision
space with the head static.
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TABLE II
COMPARISON FOR VARIOUS LEARNING METHODS USED TO LEARN

SELF-COLLISION DETECTION FUNCTION. ALL PARAMETERS REPRESENT SUM

OR AVERAGE VALUE FOR SUCH PARAMETERS ACROSS TEN SUBMODELS (INCL.
SYMMETRICAL) FROM TABLE I

TABLE III
SELF-COLLISION AVOIDANCE CONSTRAINTS PERFORMANCE FOR 1000

RANDOM OBJECT POSITIONS

and the equation for ∇Γ is naturally derived as follows:

∇Γ(q) =

Nsv∑
i=1

αiyi
∂K(q, qi)

∂q
=

= −2γ

Nsv∑
i=1

αiyie
−γ||q−qi||2(q − qi).

(2)

In (1), qi (i = 1, . . ., Nsv) are the support vectors from the train-
ing dataset, yi are corresponding collision labels (−1 if posture is
collided,+1 otherwise), 0 ≤ αi ≤ C are the weights for support
vectors and b ∈ R is decision rule bias. Parameter C ∈ R is a
penalty factor used to trade-off between errors minimization
and margin maximization. Parameters αi and b and the support
vectors qi are estimated by solving the optimization problem
for the soft-margin kernel SVM [28]. For efficient learning of
the SVM model from the sampled data, we use ThunderSVM
– an open-source library that utilizes GPUs to speed-up the
computations [30].

For each of the submodels (Table I) we must generate indepen-
dent datasets and SVMs. Hence, the optimal hyperparameters
C and γ are different for each submodel. To find C and γ we
perform the procedure of grid-search in the following ranges:
C = [1, 5000] and γ = [0.1, 10] for each model. For the grid-
search, we use training and testing datasets with sizes of 100000
and 200000, respectively. This scheme offers faster parameter
optimization with similar results to k-fold cross-validation. The
grid-search results rely heavily on the sampling density and size
of the cells in the grid. However, as we have multiple models
to optimize, dense sampling on a large range would require
excessive computations. Given that, for each model, we first
localize optimal areas by performing two searches with the 5× 5
grids and finally tune precisely with the 10 × 10 grid. Optimal
hyperparameters for submodels are provided in Table IV.

After parameters C and γ are found for every submodel,
we use 250000 sampled postures to train each SVM. We then
estimate classification accuracy and the confusion matrix with

another 150000 points previously unseen by the model. Perfor-
mance validation is achieved by repeating the training five times,
each time randomly selecting points for train and test datasets.
To correctly classify collided and non-collided postures, we do
not need to densely cover all state-space, but rather have enough
points in the classification boundary’s vicinity. As our sampling
procedure is built to include close-to-collision configurations,
we find that 250000 points are enough to learn a model with
decent performance.

To evaluate the performance of the trained model, we use
metrics such as classification Accuracy (A), True Negative
Rate (TNR) and True Positive Rate (TPR). Those are computed
using the elements of the confusion matrix:

TNR =
TN

(TN + FP)
, TPR =

TP

(TP + FN)
, (3)

where TP stands for True Positive, TN – for True Negative,
FP – for False Positive and FN – for False Negative. Negative
class here is for the collided postures, and positive class means
the robot configuration has no self-collisions. A high TPR
(low FN) avoids classifying free configurations as collided and
does not remove valid configurations from feasible space. On
the other hand, a high TNR (low FP), will avoid labeling
collided configurations as free. This is the most critical metric
to be maximized, as we wish to avoid classifying self-collided
configuration as feasible.

1) SVM Performance Evaluation: The trained models per-
formance is provided in Table IV. Submodels distinguish col-
lided and uncollided configurations with an average accuracy of
96.0%. TNR is above 94.5% for every submodel, while lowest
value for TPR is 91%. At the same time, the full-body model
with 29 DoF has relatively low accuracy (∼86%) even with a
training dataset of one million entries.

Learned SVM models have total support vector count Nsv =
236797 (incl. symmetrical). To evaluate each model for a single
query point, it is required to compute the squared euclidean
distance from each support vector and calculate the sum of
resulting RBF kernels (as in (1) and (2)). By means of optimized
C and CUDA code, we can perform all computations efficiently
and fast enough to be used online. The computations are easy
to parallelize, so we compare the performance of single- and
multithreaded CPU implementation, as well as GPU variant.
The average time needed to evaluate one random query posture
in three various ways – CPU sequential, CPU parallel, GPU –
is 7.74 ms, 2.55 ms, and 1.38 ms respectively.

2) Sparse SVM (CPSP) Performance Evaluation: The pre-
vious sub-section demonstrated that it is possible to learn the
self-collision boundary in the robot’s 29-dimensional joint space
with kernel-based SVM. We also showed that, in order to achieve
real-time performance, it is required to utilize high-performance
CPU or even GPU. Often, the computational capabilities of
robots’ onboard computers are limited, and we cannot assume
access to GPU. It is hence important to investigate other learning
methods, which may result in self-collision models with fewer
parameters. We follow our previous approach [22] and apply
the CPSP method [23] that reformulates the SVM optimization
problem to put a strict upper bound on the number of support
vectors. A key difference between CPSP and classical SVM is
that support vectors qi are not necessarily points that were part
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TABLE IV
PERFORMANCE AND CONFUSION MATRIX ELEMENTS FOR SELF-COLLISION MODELS TRAINED WITH CLASSICAL KERNEL SVM. EACH SUBMODEL IS TRAINED ON

250000 POINTS DATASET AND TESTED ON 150000 UNSEEN DATA POINTS. FULL MODEL (0) IS TRAINED ON 1000000 (ONE MILLION) DATA SAMPLES. THE

ELEMENTS OF THE CONFUSION MATRIX ARE PRESENTED RELATIVELY TO TESTING DATASET SIZE, AND IN THE PERFECT SCENARIO TP = TN = 0.5, WHILE

FP = FN = 0. ALL VALUES (EXCEPT FOR COLUMNS 1-4) ARE AVERAGED BETWEEN FIVE TRAINING-VALIDATION RUNS. STANDARD DEVIATIONS

σ FOR EACH CELL IN COLUMNS 7-14 DO NOT EXCEED 0.001

TABLE V
PERFORMANCE AND CONFUSION MATRIX ELEMENTS FOR SELF-COLLISION MODELS TRAINED WITH CPSP METHOD. EACH SUBMODEL IS TRAINED ON 250000

POINTS DATASET AND TESTED ON 150000 UNSEEN DATA POINTS. FULL MODEL (0) IS TRAINED ON 1000000 (ONE MILLION) DATA SAMPLES. ALL VALUES

(EXCEPT FOR COLUMNS 1-5) ARE AVERAGED BETWEEN FIVE TRAINING-VALIDATION RUNS. STANDARD DEVIATIONS σ FOR EACH CELL

IN COLUMNS 7-14 DO NOT EXCEED 0.002

of the training dataset. However, the final expression for the
functions Γ(q),∇Γ(q) ((1) and (2)), and the hyperparameters
C and γ correspond to those of classical SVM. As in the SVM
model learning, we repeat training-validation process five times,
shuffling data between training and testing datasets.

To learn the sparse SVMs with CPSP optimization we use
the SVMperf library [23]. We set the support vector budget to
Nmax = 1000 for submodels, and Nmax = 10000 for the single
full-dimensional self-collision model (for evaluation purposes).
The resulting accuracy for self-collision detection in submodels
is 92.1% on average. FP do not surpass 4.6%, but FN reach
10% for some models. Full metrics for the performance of
learned models are provided in Table V. The sparse SVM method
results in fast optimization and a reduced number of model
parameters, yet with lower prediction accuracy compared to
the classical SVM. This could be alleviated by setting a higher
Nmax, however, at the expense of increased model complexity
and its computation time.

C. Self-Collision Boundary Learning Via Neural Networks

Since we learn the SCA boundary functions as a classification
problem, we also explore the use of Neural Networks (NN).
By altering the depth (number of layers) and width (maximal
number of nodes in a layer) of a NN, we can control the number
of weight coefficients in the model, therefore controlling its size
and evaluation time. The difficulty, however, lies in finding the
optimal depth and width that will yield the best trade-off between
computational efficiency and prediction accuracy. To ensure the
necessary continuity properties for Γ(.); i.e., that it should be
C1, we can use continuous activation functions, such as sigmoid
or hyperbolic tangent. Through empirical evaluation we found

Fig. 4. NN layers used to learn self-collision boundary function.

that a NN with 50− 30− 10 hidden layer structure and tanh
activation function (see Fig. 4) is the optimal architecture to learn
submodels. Several network architectures with various depths
and widths were evaluated. The proposed architecture is the
most computationally efficient that provides better prediction
accuracy than the SVM counterparts. The NN parameters are
weight matrices W i and bias vectors bi, i = 1, . . ., 4, their
dimensions vary depending on the amount of neurons on i-th
layer and dimensionality of state q across various submodels.
For a given posture q, the NN outputs a pair of real numbers
(p1, p2):

[p1(q), p2(q)]
T = b4 +W 4 tanh (b3 +W 3·

tanh (b2 + W 2 tanh (b1 +W 1q))) ,
(4)

that represent respective probabilities of belonging to two classes
(free or collided) after normalization. As we are interested in a
single-valued output for our self-collision boundary function,
we set Γ(q) = p2 − p1, so that Γ(q) = 0 when p1 = p2, this
i.e. posture belongs to the self-collision boundary. For collided
postures Γ(q) < 0, and for feasible postures Γ(q) > 0, as in
previously learned SVM models. Without affecting boundary
detection, we may also skip the normalization step, so that Γ(q)
is not bounded. The gradient of SCA function is derived as
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TABLE VI
PERFORMANCE AND CONFUSION MATRIX ELEMENTS FOR SELF-COLLISION MODELS TRAINED WITH NNS. SUBMODELS ARE TRAINED ON 900000 POINTS

DATASET AND TESTED ON 100000 UNSEEN DATA POINTS. FULL MODEL (0) IS TRAINED ON 2500000 POINTS, AND HAS THE SAME FEED-FORWARD

ARCHITECTURE WITH THREE HIDDEN LAYERS, BUT WITH 250 NEURONS ON EACH LAYER. ALL VALUES (EXCEPT FOR COLUMNS 1-3) ARE AVERAGED BETWEEN

FIVE TRAINING-VALIDATION RUNS. STANDARD DEVIATIONS σ FOR EACH CELL IN COLUMNS 5-12 DO NOT EXCEED 0.001

∇Γ(q) =
∂p2
∂q

− ∂p1
∂q

, where

[
∂p1(q)

∂q
,
∂p2(q)

∂q

]T

= −W 1W 2W 3W 4

(
tanh (b1 +W 1q)

2 − 1
)

·
(
tanh (b2 +W 2 tanh (b1 +W 1q))

2 − 1
)

·
(
tanh (b3+W 3 tanh (b2 +W 2 tanh (b1 +W 1q)))

2−1
)
.

(5)
In (4) and (5) the hyperbolic tangent functions are applied
element-wise for a vector input. We use the PyTorch library
to learn the weights of the NNs by optimizing the negative log
likelihood loss with RMSProp running for 2000 epochs. We train
six NNs to cover self-collisions for all submodels from Table I.
As training time is significantly lower than in SVM models, and
the model size does not increase when a larger dataset of training
points is used, we train each submodel with 900000 postures
to achieve better accuracy, and validate using 100000 unseen
points. We repeat train-test procedure five times, shuffling data
between training and testing datasets. For the trained models,
the mean accuracy is 99.0%, and the FNR is 0.08% on average.
Full results for training and validation are provided in Table VI.
NNs outperform SVMs in terms of accuracy, learning speed
and evaluation time. Computation of values and gradients of
function Γ(.) learned via NNs requires ∼0.11 ms on 4.2 GHz
Intel i7-7700 K. This includes 15 consecutive evaluations of ten
submodels from Table I (our IK algorithm requires at least 15
iterations to converge). We can compare our method with [20],
where the Vector Field Inequalities approach is used to compute
the distance function and its gradient to avoid collisions. In
their approach, the single evaluation of Jacobian constraint takes
∼5.2 ms with comparable CPU.

One might wonder if a single large NN is capable of modeling
the SCA boundary as accurately as our decomposed SCA-NN
approach. In the first row of Table VI we include the evaluation
metrics of a single 29-dimensional NN model without submodel
decomposition. To find the optimal NN structure we performed
grid-search on combinations of depth and width sizes, with
ranges of 3-9 hidden layers and 50-250 neurons per layer.
By training the networks on a larger dataset (2.5 million) and
running it for 5000 epochs, we found a 4-layer (including output)
NN with 250 neurons on each layer to be the optimal choice.

Fig. 5. The robot is trying the object close to the ground without (a) and with
(b) proposed SCA constraints in the IK solver. Collided links are highlighted
red. Refer to https://youtu.be/u3lTwFZFicY for the full experiment.

However, the prediction accuracy of this model reaches at most
92–93%, which is not sufficient to justify the increase in model
complexity (∼130 k weights) and computation time.

D. Comparison Across Methods

In Tables IV, V and VI we provide all the performance metrics
for the three approaches, respectively. Further quantitative com-
parison of performance across is shown in Table II. As expected,
SVM provides better average accuracy as well as betterTPR and
TNR than CPSP, whereas CPSP model is significantly smaller
and offers faster evaluation. NN gives the overall best perfor-
mance with even fewer parameters and better accuracy, as well as
better TPR and TNR and the best training and evaluation time.
Of course, such comparison depends heavily on the efforts spent
on programming the techniques.2 To provide a fair comparison,
we used the most recent and efficient implementations offered
for SVM (ThunderSVM), CPSP (SVMperf), and NN (PyTorch).
In the simulations and experiments reported next, we used the
function Γ(.) learned via NNs, as it offers the best combination
of classification accuracy and evaluation times for querying
postures.

V. APPLICATION TO ONLINE IK SOLVER

We propose to use the learned self-collision models as
constraints for an online Inverse Kinematics solver. Taking

2The source code used in the paper is available at
https://github.com/epfl-lasa/Joint-Space-SCA
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Fig. 6. iCub is picking the box from the ground with SCA constraints proposed in the paper. Refer to https://youtu.be/u3lTwFZFicY for the full experiment.

inspiration from the work [21], we model the self-collision
boundary as a separation hyperplane and use it as a constraint for
convex QP problem that can be solved in real-time. Compared
to [21], our contribution is that we extend the method to the
humanoid robot and demonstrate multiple collision constraints.
We propose the following quadratic problem to solve the IK
(adapted from [3] and [21]):

min
Δq,δ

δTQδ +ΔqTRΔq

s.t.

⎧⎪⎪⎨
⎪⎪⎩
f(q) +

∂f(q)

∂q
Δq = x+ δ

q−i < qi +Δqi < q+i , i = 1..29

−∇Γi(q)Δq ≤ ln(Γi(q) + 1), i = 1..10.

(6)

where f(q) stands for the forward kinematics of the robot, R
is equivalent to the well-known damping term in least-squares
IK methods, and Q is a diagonal matrix that sets weights for
the Cartesian tasks vector x. Tasks include positions and ori-
entations of the feet, hands, and the center of mass. Constraints
in (6) represent a cartesian task x with slack δ, joint limits, and
self-collision avoidance respectively. The last constraint forces
the joint angles to move away from the self-collisions hyperplane
as they approach it. When the robot is far from the boundary and
Γi(q) > 0, values ln(Γi(q) + 1) are positive, which relaxes
the set of self-collision inequality constraints, i.e., the robot
accurately follows the desired end-effector trajectory. If i-th
submodel is close to self-collision, then ln(Γi(q) + 1) becomes
negative, and the IK solver is forced to align joint motion Δq
with corresponding gradient ∇Γi(q), thus moving the robot
configuration away from the collision boundary and satisfying
self-collision avoidance constraint. Recall that, due to symmetry,
only six submodels (out of ten) are learned. To calculate Γi for
symmetrical submodels (i = 5, 6, 7, 10), we mirror the torso
pitch and yaw joints: qpt → 1− qpt and qyt → 1− qyt , and invert
the sign for the corresponding coordinates of ∇Γi.

Equation (6) is a convex QP problem with equality and
inequality constraints, hence, there is no closed-form solution
for it. To solve it, we utilize CVXGEN solver, which generates
C codes tailored for the specific formulation of the optimization
problem [31]. The proposed control scheme is for the position-
controlled robots, and after solving (6) the desired joint angles
for the next control iteration are computed as qnew = q +Δq.

VI. EXPERIMENTAL VALIDATION

In our experiment, we consider the picking-up scenario. The
robot is supposed to bend from the standing posture and reach
the object located on the ground. Without SCA constraints in
Inverse Kinematics, the robot tends to have a self-collision

Fig. 7. (a) - Area for random positions of the object in the benchmark.
(b)–(d) - Grasping posture of the robot for various box positions.

between the elbow and the knee (Fig. 5(a)). Not only this
self-collision prevents the robot from reaching the target, but
it is also harmful to the hardware, leading to torn cables and
plates bending. However, with the proposed SCA constraints in
the IK solver, the robot avoids that collision by shifting the hips
and straightening the knees to maximize the distance between
legs and arms links (Fig. 5(b)).

Figs. 5(a) and 5(b) are from simulated environment, as it is
easier to demonstrate self-collisions there. We also conducted
the experiment with picking-up scenario on the real robot, as
demonstrated in the video accompanying the paper. As expected,
iCub is able to pick up arbitrary positioned box avoiding self-
collisions. Snapshots of one full picking-up motion are demon-
strated in Fig. 6, while grasping postures for three different box
positions are shown in Figs. 7(b)–7(d).

To evaluate the proposed method’s performance in a general
picking-up scenario, we perform the following benchmark. The
box object is placed randomly in front of the robot (red area in
Fig. 7 a), and three different IK algorithms are used to generate
a grasping posture from a fixed initial state. IK methods include
(i) the proposed method (as in (6)), (ii) QP solver without SCA
constraint ((6) without last line), and (iii) the QP solver where
collision-avoidance is a task based on repulsion in Euclidean
space. For (iii), the QP problem (6) is modified to additionally
minimize σTSσ, where S is a diagonal weight matrix, and σ
is a slack variable:

JSCA
i (q)Δq = sv

rep
i + σ. (7)

vrep
i ∈R3 is a vector connecting two closest points of the bodies

in i-th submodel (i = 1. . .10) in task-space; i.e. vrep
i = p1−p2

||p1−p2||
where p1,p2∈R3 are the closest points on the robot body. s
is a scaling factor for vrep

i to match the magnitude of Δq. 7
replaces the proposed one (last line in (6)) with a traditional
repulsive force and constraints approaches, similar to [13],
[15], [17] and [16], [25], respectively. To speed-up the distance
computations, the geometry is approximated with convex hulls
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instead of precise meshes. We check the final posture for the
collision and calculate the error d= 1

2 (||pdl − psl ||+ ||pdr − psr||)
between the desired positions for left and right hands pd{l,r}, and
positions ps{l,r} given by the IK solvers. We run the simulation
1000 times and compare the collision rate rc, average hands
position error d, and evaluation time for IK; the results are
provided in Table III. The collision rate rc is lowest for the
proposed method, while evaluation time is almost unaffected
compared to basic IK without self-collision avoidance. At the
same time, to achieve similar performance (in terms of mean
task error d) with Jacobian-based SCA, it is necessary to perform
more iterations; combined with repetitive distance calculations,
that significantly slows down the computations.

VII. CONCLUSION

We propose a computationally efficient method to detect and
avoid self-collision for high-DoF robots, such as humanoids.
We treat self-collisions as constraints in the robot’s joint space,
allowing for direct use in the control scheme. Apart from the
demonstrated use in IK solver, the proposed self-collision avoid-
ance constraint can be used in other algorithms. For example, it
may act as collision detection in RRT-navigation methods [6],
additionally providing gradient to guide the sampling proce-
dure. To some extent, it can replace distance field computations
in [11]. Although our method may require extensive computa-
tions to learn a self-collision boundary, such computations are
performed only once. Further, it provides a model for reliable and
efficient self-collision detection, fitting the computation time
into real-time limitations.

Our method’s drawback is that it requires some heuristics,
such as model separation, to reduce the overall dimensionality
of a problem. However, the model separation strategy can be
applied to any other humanoid robot. It is of interest though,
to investigate how sophisticated sampling procedures (for ex-
ample, balancing the number of collisions between every link
pair) may help learn a single 29-dimensional model of feasible
postures. Additionally, it is possible to include other constraints,
such as static balance, in the classification, thus expanding
unfeasible class.
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