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Composing an Assistive Control Strategy Based on
Linear Bellman Combination From Estimated

User’s Motor Goal
Jun-ichiro Furukawa , Member, IEEE, and Jun Morimoto, Member, IEEE

Abstract—In assistive control strategies, we must estimate the
user’s movement intentions. In previous studies, such intended
motions were inferred by linearly converting muscle activities to the
joint torques of an assistive robot or classifying muscle activities to
identify the most likely movement from pre-designed robot motion
classes. However, the assistive performances of these approaches
are limited in terms of accuracy and flexibility. In this study, we
propose an optimal assistive control strategy that uses estimated
user movement intentions as the terminal cost function not only
for generating movements for different task goals but to precisely
enhance the motion with an exoskeleton robot. The optimal assistive
policy is derived by blending the pre-computed optimal control
laws based on the linear Bellman combination method. Coefficients
that determine how to blend the control laws are derived based on
low-dimensional feature values that represent the user’s movement
intention. To validate our proposed method, we conducted an as-
sisted basketball-throwing task and showed that the performances
of our subjects significantly improved.

Index Terms—Human performance augmentation, physically
assistive devices, optimization and optimal control.

I. INTRODUCTION

DUE to the recent progress in robotics technologies, such
wearable robots as exoskeleton robots are expected to

physically contact and assist humans in a myriad of activities.
As a proof-of-principle, a hand exoskeleton [1], [2] and upper-
and lower-body exoskeleton robots [3]–[5] have been studied.
For these applications, surface electromyography (EMG) is a
candidate approach to intuitively control the robots by estimating
the user movement intentions [6], [7].
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Using a linearly scaled EMG to derive the joint torques of an
assistive device is a standard approach for exoskeleton robot
control. However, to accomplish a given task based on this
simple EMG-based control strategy, human users must generate
highly tuned EMG signal patterns by themselves. Therefore, this
standard approach imposes the computational burden on user’s
nervous system [8]. Consequently, the motion precision depends
on the user’s ability. Another common approach to estimate
human movement intention is applying a classification method
that estimates associated movements for the observed EMG
signals. In this case, EMG is only used for initiating pre-designed
movements. Therefore, users do not need to carefully control
exoskeleton robots by themselves. However, we can only use
this approach for a limited number of discrete task goals since all
the assistive controllers, which are associated with those goals,
need to be pre-computed.

In this study, we develop an assistive control method that
exploits the above two standard approaches. In our proposed
method, we estimate movement intentions by observing the
initiation of the motions with muscle activities for a very short
period of time. We assume that a discrete number of optimal
control laws, which are associated to different task goals, are
pre-computed. Then we derive the optimal assistive policy for
the estimated movement intention by blending the pre-computed
optimal control laws based on the linear Bellman combination
method (Fig. 1). To validate our proposed method, we conducted
an assisted basketball-throwing task with using an upper-limb
exoskeleton robot. In these experiments, subjects shot a basket-
ball at the center of a target on a board at different distances.
The distances from the throwing point to the current task goal
were estimated as the user’s movement intention and the optimal
control policies were derived using our proposed method. Com-
pared with a baseline method that used a classification method,
our results showed that the shooting accuracy was significantly
improved.

The following are the contributions of our study:
1) Task goals were estimated from EMG signals monitored

within very limited amount of time period through finding
low-dimensional task-related feature space.

2) Optimal assistive policy to cope with continuous change
of the task goal was derived by blending pre-computed
optimal control laws based on linear Bellman combination
method.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-4067-1602
mailto:junichiro.furukawa@riken.jp
mailto:xmorimo@atr.jp
https://doi.org/10.1109/LRA.2021.3051562


1052 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 6, NO. 2, 2021

Fig. 1. Schematic illustration of conventional approaches and our approach:
Motion precision depends on user’s ability in regression approach, and classifi-
cation approach can only be used for limited number of discrete task goals. In
our approach, optimal assistive policy to cope with continuous change of task
goal is derived by blending pre-computed optimal control laws based on the
linear Bellman combination method. How to blend control laws is determined
from estimated user’s movement intentions.

3) The derived policy based on the linear Bellman combina-
tion were successfully applied to an upper-limb exoskele-
ton robot to accomplish an assisted basketball-throwing
task.

The rest of this letter is organized as follows. In Section II,
we introduce related EMG-based control strategies for the ex-
oskeleton robot. In Section III, we explain our user’s goal
estimation-based optimal control approach. Section IV describes
our experimental setups. Section V describes our experimental
results. Finally, the conclusion is provided in Section VI.

II. RELATED WORKS

To intuitively control such assistive devices as exoskele-
ton robots, regression approaches are often used. In these ap-
proaches, robot motions are generated by using identified re-
lationships between EMG signals and joint torques [9]–[11].
In this method, the robot is continuously controlled by a user
through measured muscle activities. However, since fixed pa-
rameters are used in these regression methods, human users need
to carefully generate their own EMG signal patterns to cope
with changing task goals. The control performances of assisted
movements greatly depend on the skills of the users. Another
frequently adopted approach for estimating user’s movement
intentions is a classification method. For example, support vec-
tor machine (SVM) [12]–[15] or linear discriminant analysis
(LDA) [16]–[19] have been utilized to classify EMG signal pat-
terns detected from human users. The classification results were
used to select pre-designed control output associated with the
estimated motion labels. Since this approach can only generate
a limited number of pre-designed control output, these classifi-
cation approaches are unsuitable for generating movements for
novel task goals.

In this study, we take the advantages of these two approaches.
We first pre-compute optimal assistive control laws for multiple
task goals, then combine these control laws using the linear
Bellman combination method [20] to generate optimal control
output for a novel task goal that is estimated from an observed
user’s state. Therefore, human users do not need to carefully
generate their own EMG signals since our method derives an
optimal policy for the estimated task goal. In addition, the
number of motions is not limited to the number of pre-computed
control laws since the proposed method can cope with novel
task goals by combining these pre-computed controllers. Fur-
thermore, the proposed approach is computationally light and
can easily derive the controller in real-time because it does not
optimize a controller but combine pre-optimized controllers.

III. METHODS

This section introduces our approach for determining the
control policy to assist the user’s intended movements. In
Section III-A, we introduce how user’s motor goal is estimated
from measured sensor signals from a subject and an assistive
robot. Then, in Section III-B, the linear Bellman combina-
tion method is introduced to combine pre-optimized controllers
based on the estimated user’s motor goal.

A. User’s Motor Goal Estimation

To cope with the noisy inputs of the user’s EMG signals, we
first find low-dimensional feature space for robust extraction
of user’s motor goal. In this study, we used the partial least
squares (PLS) algorithm [21], [22] to find the task related
low-dimensional feature space. Since, by using PLS, the sub-
space is extracted in consideration with the covariance with the
motion labels, the low-dimensional features reflecting the label
information can be obtained.

We first monitor the user state ψ ∈ Rm for movement ini-
tiation period, then project the averaged user state ψ̄ over the
movement period onto the feature space:

μ = W�ψ̄, (1)

where μ ∈ Rl (l < m) is the extracted feature vector and
the projection matrix W ∈ Rm×l is derived before the actual
experiments with using pre-collected training data. We then
estimate the weight parameter ωi of the task goal for the i-th
pre-computed optimal policy by a regression method.

B. Optimal Control Based on Motion Intention

By combining the weighted task goals, we can derive a novel
optimal controller based on the pre-computed optimal policies
with the linear Bellman combination method. In this method,
the novel controller is represented as the combination of the
pre-computed optimal policies for pre-designed tasks:

π∗ = α1(x, k)π1(x, k) + · · ·+ αn(x, k)πn(x, k), (2)

where,x is the robot state,αi(x, k) is the mixing coefficient, and
πi indicates the optimal control policy for the i-th motor goal
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Fig. 2. Proposed method: Assistive control policy is derived by blending optimal control laws, where each controller was pre-computed using iterative LQG and
computed policies were combined based on linear Bellman combination method. Mixing coefficients that determine how to blend the control laws were derived
based on low-dimensional feature values extracted from measured user’s EMG signals, joint angles and angular velocities.

task obtained by minimizing the value function vi(·) as follows:

vπi (x, t) = gi(x(T )) +
T−1∑
k

l(x, π, k) (3)

πi ← argmin
π

vπi (4)

where, g(·) and l(·) indicate the terminal cost and instantaneous
cost, respectively.

Assuming the multiple optimal control problems that share
all setting except the terminal cost gi(x(T )) of (3), the linear
Bellman combination approach [20], [23] can be used, and the
mixing coefficient can be written as follows:

αi(x, k) =
ωizi(x, k)∑n

j=1 ωjzj(x, k)
. (5)

where, zi(x, k) = exp(−vi(x, k)) indicates the feasibility of
the policy for the current state. The value function for the
i-th optimal control problem vi(x, k) = vπi(x, k) is derived by
using the iterative linear-quadratic-Gaussian (iLQG) [24].

By using iLQG method, a quadratic approximation of value
function for i-th movement trajectory can be computed:

vi(x, k) = vi(k) + Δx�(k)si(k)

+
1

2
Δx�(k)Si(k)Δx(k), (6)

where si(k) and Si(k) are the parameter of the quadratic value
function model. These parameters can be acquired in the cal-
culation process of iLQG. The actual control law can also be
acquired as follows:

πi(x, k) = u∗i (k) + Li(k)Δxi(k), (7)

where Δxi(k) = x(k)− x∗i (k). x
∗
i (k) and u∗i (k) are the opti-

mized open loop state and the control output of the derived i-th

optimal controller, respectively. Time-dependent local feedback
gain Li(k) is also acquired.

Figure 2 and Algorithm below summarize our proposed
method.

Algorithm
Require: User state ψ, Projection matrix W,
Pre-computed value functions vi(·),
Pre-computed policies πi(·), (i = 1, . . . , n),
Task horizon length T
μ = W�ψ
ωi← TaskGoalEstimation (μ)
for k = 1 : T do

for i = 1 : n do
zi(x, k) = exp(−vi(x, k))
αi(x, k) =

ωizi(x,k)∑n
j=1 ωjzj(x,k)

endfor
π∗(x, k) = α1(x, k)π1(x, k) + · · ·+ αn(x, k)πn(x, k)

endfor

IV. EXPERIMENTAL SETUPS

In this study, as depicted in Fig. 3, we conducted the basketball
throw task to evaluate our assistive control strategy. We use
our four-joint upper limb exoskeleton robot (Fig. 4) [25] for
this assisted basketball-throwing task. We compared online as-
sist control performances among a baseline classification-based
method, no assist and the proposed method, where the details of
the baseline method is introduced in Appendix.

A. Upper Limb Exoskeleton Robot Control

In this study, the optimal policies were derived to control
shoulder extension/flexion and elbow extension/flexion joints.
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Fig. 3. Basketball throwing task. Subjects throw basketball with underhand
posture towards center of target on board. Distance to target was changed as
1 m, 1.5 m, 2 m, 2.5 m and 3 m.

Fig. 4. Upper-limb exoskeleton robot. Shoulder extension/flexion and elbow
extension/flexion are actuated by pneumatic artificial muscles (PAMs). In our
experiment, shoulder abduction/adduction and wrist extension/flexion joints
were not actuated and behaved as free joints.

Each joint is actuated by a pneumatic artificial muscle (PAM).
The joint torques are generated by a PAM as follows:

τpam = rfpam (8)

where, r is the pulley radius and fpam is the PAM force gen-
erated by the path contraction of the spiral fibers embedded
in a pneumatic bladder. The details of the mechanical design
and the pressure-force model were introduced in our previous
studies [10], [25], [26].

In this study, we used two-link robot model as the physical
constraint for iLQG calculations. The link parameters were
determined with considering the CAD data of the robot and
estimated body parameters of each subject [27]. The state
of the robot was defined by the joint angle θ, angular ve-
locity θ̇, and measured inner pressure of PAM P as x =
[θs, θe, θ̇s, θ̇e, Ps, Pe]

�, where the subscripts s and e represent
the shoulder and elbow joints, respectively. The control output
u was the desired pressure inputs for pneumatic actuators:
u = [P d

s , P
d
e ]
�. We modeled the dynamics of the inner pressure

state of PAM as Ṗ = 1
tc
(P d − P ), where tc is the time constant

of the PAM [26].

B. Motion Task

In the assisted basketball-throwing task, the subjects threw a
basketball with underhand posture towards the center of a target
on a board while sitting on a chair. Distance to the target was
changed as 1 m, 1.5 m, 2 m, 2.5 m and 3 m. The subjects threw the
ball five times at each distance in test experiments. The trial order

Fig. 5. EMG channel location. We used eight EMG channels to estimate user’s
motor goal.

of the proposed, baseline, and no assist conditions was randomly
changed for each subject. The subjects were given enough time
to rest between the trials. To measure release timing of the ball,
a tactile sensor was attached to the tip of the subject’s middle
finger.

The terminal cost gi(·) for minimization was set as follows:

Ea
i (T ) =

∥∥θ(T )− θtargeti (T )
∥∥2 ,

Ev
i (T ) =

∥∥∥θ̇(T )− θ̇targeti (T )
∥∥∥2 ,

gi(x(T )) = CaE
a
i + CvE

v
i ,

(9)

where, T is the terminal time, θtargeti is the target angles, and
θ̇targeti is the target angular velocities at the point of release of
the ball for i-th task goal. These desired states were calculated
according to the i-th target distance, taking into account the
dynamics of the ball movement. In this study, we pre-computed
the optimal policies for the distances of 1 m and 3 m by defining
the terminal cost g1(·) and g2(·), and tested the final control
policies for five basketball shooting distances by blending them.

The instantaneous cost l(·) was set as

l(x, π, k) = Cp||u||2 + Cpd||u̇||2. (10)

where, Ca, Cv, Cp, Cpd were manually selected as in most op-
timal control studies.

We conducted the experiments with ten healthy right handed
subjects (seven females with 21–38 and three males with age
23–39), after obtaining informed consent from them. The human
research ethics committee of Advanced Telecommunications
Research Institute International approved the experiment.

C. Feature Extraction

In order to estimate the user’s motor goal from an initial
motion, the rectified and filtered EMG signals: e, angles and
angular velocities of the shoulder and the elbow joints were
used as the user state: ψ = [e1, . . . , e8, θs, θe, θ̇s, θ̇e]

� ∈ R12.
The EMG signals were measured from the right arms. Figure 5
shows the EMG channel locations probed to measure the muscle
activities using eight sensor channels. We used Ag/AgCl bipolar
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Fig. 6. Simulation results. Optimized trajectories for 1 m, 2 m and 3 m
are plotted with dashed lines with blue, green, and red colors, respectively.
Purple solid line shows generated trajectory by blending two optimal policies
for distances of 1 m and 3 m with coefficients of ω1 = 0.5 and ω2 = 0.5.
Results show that similar movement trajectory can be generated by blending
pre-computed policies for novel task goal with target at 2 m.

Fig. 7. Relationships between feature values obtained by PLS and correspond-
ing user’s motor goals.

surface EMG electrodes. Using the encoders of the upper-limb
exoskeleton robot system, we simultaneously obtained the an-
gles of the shoulder and the elbow joints. The angular velocities
were derived by numerical differentiation of the measured joint
angles.

During the basketball throwing motion, the point when the
angular velocity of the shoulder joint exceeds a threshold was
defined as the actuation starting point. Through our preliminary
trials, the threshold was set to 0.2 rad/sec. We then averaged
the user state ψ for tens of milliseconds before the detected
actuation stating point to derive the averaged state ψ.

In this study, the training data were acquired when the ex-
oskeleton robot assisted the shooting motion towards the center
of the target at distances of 1 m and 3 m. Concretely, subjects
threw the ball ten times at each distance condition in this training
data acquisition phase before the actual test experiments. We
collected user’s EMG signals, joint angles, and angular veloc-
ities data for each distance and stored with the output values

Fig. 8. Average of the ten user’s motor goal estimation results. Weight pa-
rameter of one target was obtained by averaging five times throwing, and we
measured the weights in each distance for each subject.

Fig. 9. Average of ball throwing accuracy for all subjects in each distance.
Data for each subject in this each distance condition was obtained by averaging
mean of the accuracy of five throws. Benjamini-Hochberg adjusted Wilcoxon
signed-rank test was applied to performances of three methods in each distance
condition.

of 1 and 3. Then, a projection matrix W for calculating the
one-dimensional feature μ ∈ R in (1) was derived by PLS.

We used a logistic regression to estimate the weight parameter
for i-th task goal:

ωi =
1

1 + exp(−aiμ− bi)
, (11)

where ai and bi are parameters for the i-th task goal and
determined by using the training data.

V. RESULTS

In this section, we first present the simulation results to show
how the linear Bellman combination strategy works to derive
throwing movements. We then show the comparisons of online
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Fig. 10. Control performance of ball throwing experiment with proposed and baseline methods.

Fig. 11. Average of ball throwing accuracy for all subjects. Data for each
subject in this figure was obtained by averaging mean of the accuracy of five
throws at each distance over entire distance. Benjamini-Hochberg adjusted
Wilcoxon signed-rank test was applied to three accuracy.

assist control performances among a baseline method, no assist
and the proposed method.

A. Simulation Results

Figure 6 shows the simulation results. Optimized trajectories
for 1 m, 2 m and 3 m are plotted with dashed lines with blue,
green, and red colors, respectively. These dashed lines in the
figure show how the pre-computed optimal policies work. The
purple solid line shows generated trajectory by blending the two
optimal policies for the distances of 1 m and 3 m with weight pa-
rameters of ω1 = 0.5 and ω2 = 0.5. These weight parameters in
this simulation results were fixed without being estimated from
the EMGs. Results show that the similar movement trajectory to
the trajectory generated by the optimized policy for the distance
at 2 m can be generated by blending pre-computed policies. Note
that since the corresponding terminal costs for the 2-m policy and
the blended policy are different, trajectories generated by two

policies are naturally different but very close. Here, with these
results, we tried to demonstrate the capability of the blending
approach to generate a movement trajectory for a novel task goal.

B. Feature Extraction

Here, we validated the relationships between feature values
obtained by PLS and corresponding user’s motor goals. The
user’s motor goal represents the aiming distance at which the
subjects tried to throw the ball. Figure 7 shows the relationships.
The parameters for PLS were trained by using the 1-m and 3-m
target shot data, and tested with the 2-m target shot data. In this
study, based on these results, we set the weight parameter for the
1-m target shot as ω1 = 1− ω2 while ω2 for the 3-m target shot
was derived as in (11). Figure 8 shows the average of ten user’s
estimated motor goals when throwing the ball with our proposed
method at each target distance in online control test. Note that
this weight (estimated user’s motor goal) is one of the parameter
to determine the mixing coefficient in equation (5). When the
target distance was close to 1 m, the weight parameter of ω1

increased and the weight parameter ofω2 decreased. Conversely,
when the target distance was close to 3 m, the weight parameter
of ω1 became smaller and the weight parameter of ω2 became
larger. In particular, the weight parameters at the intermediate
distance (2 m) are almost the same for ω1 and ω2, and are
similar to the weight parameters of the simulation result in Fig. 6.
These results show that the motor goals were properly estimated
according to each target distance.

C. Task Performances

Here, we show the experimental results of the assisted
basketball-throwing task with our proposed method, baseline
method and no-assist condition. Detailed implementation of the
baseline method is provided in Appendix. We show the evalu-
ation results of the control policies derived from our proposed
approach in terms of motion precision.

Figure 9 shows the ball throwing accuracy for each distance.
The accuracy was obtained by measuring the distance from the
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center of the board of the target to that of the ball when the
ball hit the board. The data for each subject in this each distance
condition was obtained by averaging the mean of the accuracy of
five throws. We applied Benjamini-Hochberg adjusted Wilcoxon
signed-rank test to three accuracy in each distance condition.
In every distance condition, significant differences were found
between our proposed approach and no-assist condition: 1-m
distance condition (p = 0.041), 1.5-m distance condition (p =
0.015), 2-m distance condition (p = 0.0066), 2.5-m distance
condition (p = 0.015), 3-m distance condition (p = 0.043). On
the other hand, no-significant differences were found between
the baseline method and no-assist condition except for 2.5-m dis-
tance and 3-m distance conditions: 2.5-m distance (p = 0.037),
3-m distance (p = 0.043). This was considered that the baseline
method was also showing the assist effect under the conditions
where the distance was long and the task difficulty rose. Next,
we compared our proposed method with the baseline method.
Although the proposed method had the highest accuracy, no-
significant differences were found between the accuracy under
the proposed and baseline methods when throwing the ball at
a distance of 1 m and 3 m. However, under these conditions,
there is no need to blend, which was a reasonable result. On
the other hand, at a distance between 1 m and 3 m, significant
differences were found between our proposed and baseline meth-
ods: 1.5-m distance (p = 0.019), 2-m distance (p = 0.0048),
2.5-m distance (p = 0.019). From these results, the effect of the
control policies derived by blending was clearly seen at distance
conditions between 1 m and 3 m (see also Fig. 10).

Here we also show the average of ball throwing accuracy for
entire distance in Fig. 11. The data for each subject in this figure
was obtained by averaging the mean of the accuracy of five
throws at each distance over the entire distance. We applied
the Benjamini-Hochberg adjusted Wilcoxon signed-rank test
to performances of three methods, and significant differences
are found between our proposed and baseline methods (p =
0.010), between our proposed method and no-assist condition
(p = 0.010), and between baseline method and no-assist condi-
tion (p = 0.022). From these results, it was clearly shown that
our proposed approach is effective in assisting the control for
dynamic motion that requires accuracy.

VI. CONCLUSION

Obtained results showed that the proposed approach for
controlling the assistive exoskeleton robot was successful in
the actual basketball throwing experiments. Furthermore, the
successful real-time online control performances clearly showed
the computational efficiency of our proposed approach. The
ball throwing accuracy with the proposed method was the
highest among all the conditions. These results showed that
our proposed approach effectively improved robot-assisted task
performances.

To further improve the throwing accuracy with our proposed
approach, it can be beneficial to explicitly take the control of
other joints, e.g., shoulder abduction/adduction, wrist joint, into
account.

TABLE I
SELECTION RATES OF EACH PRE-COMPUTED POLICY BY BASELINE METHOD

In this study, control policies were blended by using a linear
Bellman combination approach, where control policies for the
intermediate distance condition between 1 m and 3 m were
derived based on the optimal control policies for the 1 m and 3 m
conditions. In many tasks, adaptive change of the control output
is required to cope with the continuous change of the task goal
even in the same task context. In this study, we addressed this
issue rather than dealing with totally different tasks. Therefore,
the range of the task need to be predetermined. Our findings
suggest that this approach can be useful for the coordination of
new tasks within the expected range in assistive control contexts,
although further studies are required to generate wider variety
of movements with blending more pre-optimized polices. In
addition, using other user’s data for deriving the feature space to
reduce the data acquisition burden would be an interesting topic
as a future study [28], [29].

APPENDIX

Here, we introduce the baseline method. In the baseline
classification method, a standard soft margin SVM model was
derived and evaluated with using the same training and test data
as we used for our proposed method. The averaged user state ψ
was input and the output for the 1-m target shot data was labeled
as y = −1 and y = +1 for the 3-m. Hyper parameters of the
SVM model were searched with using 5-fold cross validation.
Then, the control policy πb of the baseline method for the test
trials was derived by selecting one of the pre-computed optimal
policies as the output of the SVM model:

πb ←
{
π1 if y = −1
π2 if y = +1

(12)

Table I shows the selection rates of each pre-computed policy
averaged over the ten subjects in the ball-throwing trials. When
the target distance was close to 1 m, the selection rate of using π1

increased and the rate of using π2 decreased. Conversely, when
the target distance was close to 3 m, the selection rate of using
π1 became smaller and that of using π2 became larger. These
results show that the SVM model was properly trained and the
baseline method reasonably selected pre-computed policies.
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