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Identifying Reflected Images From Object Detector
in Indoor Environment Utilizing Depth Information

Daehee Park , Member, IEEE, and Yong-Hwa Park , Member, IEEE

Abstract—We observed that mirror reflection severely degrades
person detection performance in an indoor environment, which
is an essential task for service robots. To address this problem,
we propose a new real-time method to identify reflected virtual
images in an indoor environment utilizing 3D depth information.
Images reflected by the mirror are similar to real objects, so it
is a non-trivial task to differentiate them. Conventional object
detectors, which do not deal with this problem, obviously recognize
reflected images as real objects. The proposed method compares
the geometric relationship between the 3D spatial information of
the detected object and its surrounding environment where the
object locates. It analyzes the layout of surrounding indoor space
utilizing semantic segmentation and plane detection method. With
the estimated layout of indoor space, detected object candidates
are examined whether they are real or reflected images utilizing 3D
depth information. To verify the proposed method, a large indoor
dataset was newly acquired and examined in a dedicated Living-lab
environment. The performance of the algorithm is verified by
comparing conventional detectors with the proposed method in the
acquired Living-lab dataset.

Index Terms—Deep learning for visual perception, human
detection and tracking, RGB-D perception, service robotics.

I. INTRODUCTION

IN THE past few years, there was a huge advance in object
detection attributed to the development of deep learning.

Detection algorithms such as Faster R-CNN [1], YOLO [2],
SSD [3], and various methodologies [4], [5] enabled object
detection to operate robustly and in real-time, so they are being
used in many real-world applications. However, when applying
these to actual robot systems, many false detections can occur.
One of its major reason is due to virtual object images reflected
on specular surfaces. From the perspective of a conventional
computer vision system that does not consider reflection, there
is no difference between reflected object image and real object
image. However, from the perspective of robot services, the
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Fig. 1. Examples of reflected images of humans by mirrors in an indoor
environment (dedicated Living-lab dataset).

reflected image is obviously not a real object. In other words,
errors by reflection can cause serious performance degradation
to overall robot services.

In the case of a service robot operating in an indoor envi-
ronment, it is particularly affected by mirror reflection. Service
robots need to figure out if there is a person in the image and
where he/she is. However, because mirrors are very common
objects in an indoor environment, reflected images of peo-
ple are very common in the images observed by robots. To
measure its effect, Living-lab dataset is acquired in real-world
indoor environments as shown in Fig 1. It is collected from
20 different elderly-living households, with a total playtime
of 183.4 hours. We manually annotated 9234 frames of total
dataset and performed person detection using YOLO v3 [6]
pre-trained on MS COCO dataset [7]. As results of detection,
optimal precision/recall are 0.725/0.940 at thIOU = 0.5 and
thconf = 0.5. The low precision value indicates that many false
positives errors occurred compared to few false negative errors.
There were 5258 times of detection errors among the annotated
frames and they were mainly caused by four reasons: reflection
by mirror, person in extreme poses, occlusion by clutters, and
person in similar color with the background. Among them,
mirror reflection accounted for 62%, and the number of frames
that persisted after once occurred was also very high.

This high rate of errors is regarded to be due to three main
reasons. First of all, there are actually a lot of mirror images in the
dataset. Mirrors exist in all 20 household environments where
the dataset was collected, and 17 of them generated reflected
virtual image of people. Secondly, the baseline detector works
with very high recall performance. In other words, conventional
deep learning-based object detectors are too good to detect
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almost every person images but even reflected person images.
Lastly, due to the nature of the dataset, it contains videos that
mainly captured from a fixed camera. Therefore, once a mirror is
detected, it tends to keep being detected for several ten seconds
at a time. As a result, it reveals that many errors would be caused
by mirror reflection when robots require to detect a person in an
indoor environment. The contribution of this letter is to propose a
method for discriminating mirror-reflected images from object
detection in an indoor scene and to verify the method in data
obtained in a real-world environment. The proposed method is a
hybrid of deep learning-based and analytical methods, which
does not require additional annotation of the mirror region
or reflected images. In addition, the proposed method has the
advantage of utilizing the excellent performance of the existing
deep learning-based object detectors. The effectiveness of the
proposed method was verified in the Living-lab dataset with a
noticeable improvement of detection performance.

II. RELATED WORKS

There are few previous works that dealt with errors caused by
mirror reflection in SLAM or finding mirror regions in images.
Yang and Wang [8] and Koch et al. [9] utilized SONAR and
a multi-echo laser scanner to identify pixels obtained from
reflective surfaces during SLAM process. [10] tried to search
mirror region in a single RGB image by detecting symmetric
constraint caused by mirror. There are some methods which
deal with reflected region with depth information [11], [12].
They observed that the mirror generates depth discontinuity on
its boundary. [11] assumed that the dimension of all existing
mirrors are known in advance. They extracted jumping edges
from depth image and searched mirror boundary that matches
the known mirror dimensions. [12] predicted mirror region if two
adjacent scanning points have depth gap and searched symmetric
correspondence in 2D LiDAR sensing.

A reflected image by a mirror is almost indistinguishable in
the image domain, so previous methods mainly utilized physical
or geometrical characteristics of mirror reflection. However, it
is difficult to apply these methods in real-world applications.
Previous methods need sensors that are very expensive or limited
in use [8], [9], and based on 2D scanning image so hard to
apply in object detection system [12]. Other approaches need
non-general assumptions to be adopted. The dimension of mir-
rors should be known [11] or mirror should be large enough
because sufficient corresponding features must be detected [10].
Moreover, corresponding features are not detected if the mirror
is facing camera, so this method fails in such a general condition.

Most recently, several deep learning-based methods were pro-
posed which used a segmentation approach to identify mirror-
reflected person images or mirror region [13]–[15]. Panoptic
segmentation that fuses semantic and instance segmentation is
used in [13]. At the previous step of instance segmentation, se-
mantic segmentation finds the area of the person image reflected
by the mirror. [14] improved semantic segmentation approach
more precisely. They designed a semantic segmentation net-
work with stacking multi-scale feature extraction modules. Its
modules detect multi-level contextual discontinuities between

Fig. 2. Mirror segmentation result of deep learning-based works: (a) input
image, (b) ground truth, (c) result of [14], and (d) result of [15]. Deep learning-
based segmentation approaches often over-estimate or estimate a framed object
as a mirror region while fale to detect an actual mirror.

inside and outside of mirrors. Edge detection and fusion module
are additionally utilized in [15] to segment mirror region. They
extracted mirror maps from contextual-contrasted features fol-
lowing [14] and refined it with mirror boundary map from edge
information. However, the above methods need an appropriate
annotation to train the segmentation network. Besides, they
find a reflected area by comparing contextual information, not
physical property. These methods can easily fail when target
data has a different distribution, with challenging light condition,
framed object, or with little contextual different cases as depicted
in Fig. 2.

Our problem definition is to find out which object is reflected
by the mirror in the object detection system. The previous meth-
ods tried to find the mirror region itself in the image to solve the
problem. However, as can be seen from the failure cases in Fig. 2,
finding a mirror region is a very challenging problem. On the
other hand, in the proposed method it is not necessary to detect
the mirror region itself to recognize whether the detected object
in the indoor environment is a reflective image or not. Instead, the
proposed method compares the geometric relationship between
the detected object and the layout of the surrounding indoor
environment. In other words, the proposed method reformulates
the problem of discriminating the mirror reflection image as
the problem of detecting interior layout, not the problem of
finding the mirror region by utilizing 3D depth information to
detect the interior layout. The feature of the mirror in the RGB
image (context discontinuity) is likely to be dataset biased, and
its robustness is not guaranteed because it is sensitive to various
external disturbances. On the other hand, in the 3D depth image,
the characteristics of the interior layout are more obvious. In a 3D
point cloud, the layout consists of a plane, so its pixels have the
same normal vector on a single plane, and neighboring planes
are orthogonal to each other. This approach using geometric
information helps our method robustly handle reflection images.
Depth image acquisition is now commercially available from
various 3D cameras, such as stereo cameras, structured patterned
light camera, and time-of-flight cameras like Intel Real-sense or
Microsoft Kinect V2. In addition, with the advance of monocular
depth estimation [16]–[19], we can apply our method with a
relatively little additional resource.
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Fig. 3. Top view of reflected virtual object image by a planar reflective surface.

Fig. 4. A situation where a reflected image of a person (red boxes) and a real
image of a person (green boxes) is detected by a conventional detector (YOLO
v3): (a) color image, (b) depth image, and (c) point cloud image (right view).

III. METHOD

A problematic reflective surface that causes error in the object
detection is planar in most cases (e.g. mirrors) because only
a planar reflective surface generates an image similar to the
actual object. Curvature of the reflective surfaces can make
error cases depending on the scene, definitely. However, in this
work, reflective surface of interest is assumed to be planar for
clarity of the problem definition. We focus on a clue in 3D depth
information to solve the problem. The situation in which an
object is being reflected by a planar reflecting surface is depicted
in Fig 3. Virtual object image reflected by the mirror reaches the
camera through the light path reflected by the mirror (C-B-D).
The camera regards the object as being located on a straight line
(A-B-D), so it appears as if it is behind a mirror. The depth image
of the scene makes this point more apparent. Distance between
virtual object image and camera (AD) is farther than distance
between reflective surface and camera (BD). Therefore, if we
can find a reference surface to which the planar reflecting surface
belongs, we can distinguish actual and reflected images by
examining whether the object’s 3D coordinate is behind or in
front of the reference surface.

Mirrored images can be processed in the same way in an
indoor environment as Fig. 4. It shows the situation in which a
person image is reflected by a mirror in an indoor environment.

The real image of the person is marked with a green box, and
the virtual image reflected by the mirror is marked with a red
box. In the most indoor environment, the mirror is hanging on
or located near a wall. Then the wall of the indoor environment
becomes a reference surface in our methodology. In the point
cloud in Fig. 4(c), reflected image of person is located virtually
behind the wall. In this manner, the reflected image can be
filtered by detecting a wall that is a reference surface of the
indoor environment and determining whether the image’s 3D
coordinate is behind or in front of the wall.

The proposed algorithm is composed of the following orders.
First, bounding boxes of objects (person in our experiment)
are detected from color images by a conventional detector.
Coordinates of bounding boxes are then converted from color
image coordinates into depth camera world coordinates provided
with depth information. It is then used to compare positional
relationship with reference surface in world coordinate. Second
(part A: Layout Estimation), walls are found, that is a layout
of an indoor scene from a depth image. Geometric information
is easily extracted from depth images, which helps to get the
layout of an indoor scene. Once the scene layout is obtained,
planes corresponding to the wall can be obtained as well as
normal vector and center point. The final step (part B: Removal
of Reflected Images) is comparing extracted plane parameters
of detected walls with 3D coordinates of the bounding box of
person candidates. Space between the detected wall plane and
camera can be regarded as interior space. As a result, bounding
boxes locate outside this interior space can be considered as
reflected virtual images.

A. Layout Estimation

We estimated the layout of indoor space using semantic seg-
mentation and plane detection algorithms. To detect indoor lay-
out, which is composed of planar surfaces, we find planes from
input images. Hierarchical agglomerative clustering (HAC) [20]
is used to detect plane segments in a 3D point cloud generated
from a depth image. This method utilizes the local feature of
planes. However, simply applying these plane detection algo-
rithms also detect planes that do not come from the layout.
Clutters such as furniture also have planar surfaces, so they can
be detected as shown in Fig 5(c). The red and yellow planes are
from furniture and TV, and the cyan plane is from the door. In
the proposed algorithm, planes close to the wall, such as the red
and yellow planes, do not make an error because these planes
are located close to the wall. However, planes protrudent from
the wall, such as the cyan plane (door) can cause an error. That
is because, if a person stands behind this plane, the algorithm
regards the person as a reflected image, resulting in false negative
detection errors. To address this issue, it is necessary to detect
only the planes corresponding to the wall, not coming from
clutters. Therefore, we proposed a layout estimation method
that understands semantic information as well as local features
of the whole image as follows.

1) Per-Pixel Layout Estimation: The layout of an indoor
environment is a set of planar elements such as wall, floor,
and ceiling in low-level feature space. This feature appears in
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Fig. 5. An example of plane detection result in Living-lab dataset: (a) color
image, (b) depth image, and (c) extracted plane segments.

Fig. 6. Examples of NYU Depth dataset V2 and generated training images: (a)
color images, (b) depth images, (c) wall masks, (d) floor masks, and (e) ceiling
masks.

relation to surrounding pixels in a depth image. If a pixel is on
the plane, the pixel has a depth value monotonically increasing
or decreasing with a uniform difference with surrounding pixels.
In high-level feature space, meanwhile, the layout of the indoor
environment has specific characteristics as well. Ceiling and
floor are generally located at the interior space composed of
wall planes. If a ceiling or floor is stretched out across a specific
plane, it is proper to consider the plane as clutter rather than
a wall. These geometric features can be easily obtained from
depth images, so we constructed deep learning-based semantic
segmentation algorithm with depth images to utilize both low-
level and high-level features. Among various segmentation al-
gorithms, U-net [21] which is suitable for real-time applications
and modeling both local and context information, is used as the
baseline network. The network takes depth image as input and
generates three-channel outputs for walls, floors, and ceilings.
NYU Depth Dataset V2 [17] is used to train the network. It
includes color, depth images taken with Microsoft Kinect, and a
per-pixel segmentation label. Masks for each wall, floor, ceiling
are created as shown in Fig 6. In the training stage, depth images
and generated mask images are fed to the network as input
and label, respectively. In the inference stage, for a given input
image, per-pixel heat maps (probability map) for each layout are
obtained as shown on the right-hand side of Fig 7.

2) Improvement of Network: When we examined a single U-
Net to segment indoor layout, floor and ceiling were segmented
well, but walls were relatively poor. It stands for extracting wall
is more complicated than floor or ceiling. Floor and ceiling have
relatively clear features than a wall. They are mainly located top
or bottom of an input image. Both correspond to planes and there
are no depth pixels located above or below them. Wall planes, on
the other hand, are more difficult to detect than the others. Walls
can be located at any part on images, and can also be confused
with planar clutters such as furniture. Layout extraction result
with a single U-Net is shown in Fig 7. Red-dot circled part on

Fig. 7. Layout extraction result with single U-Net trained on the dataset
generated from NYU dataset V2. (1st row: wall, 2nd row: floor, 3 rd row: ceiling).

Fig. 8. Overall structure of the proposed method for 3D wall parameter
estimation.

wall mask at the top-right figure shows that plane of clutter is also
recognized as a wall, which is obviously an error. Therefore, we
designed an improved network structure such that information
of other layouts (ceiling and floor) is used for wall detection. It
is based on the fact that each layout, wall, floor, and ceiling are
highly related to each other. For example, their normal vectors
are orthogonal to each other. In addition, as aforementioned,
ceiling and floor are located at the interior space composed of
walls.

We designed a new network composed of two stages to utilize
these properties. In the first stage, the network gets heat maps
of the ceiling and floor from the single segmentation network.
In the second stage, obtained heat maps of floor and ceiling are
concatenated with the depth image and fed to another segmenta-
tion network. The second segmentation network generates a heat
map of walls from the depth image and the concatenated heat
maps of floor and ceiling. The overall structure of the proposing
network is shown in Fig 9. This network solves the problem of
not distinguishing the plane of the clutter and the wall which was
the problem of a single U-Net. This structure has an advantage in
utilizing additional information from the floor and ceiling than
inferring walls with the depth images only. In other words, the
second segmentation network is induced to learn considering
context-level features. As a result, the proposed network is able
to distinguish clutter planes and walls better than the baseline
network. Examples of improved layout estimation result are
shown in Fig 10.

3) 3D Layout Plane Estimation: We need plane parameters
of the wall to consider the relationship between the location of
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Fig. 9. Overall structure of the proposed network for per-pixel layout estima-
tion.

Fig. 10. Performance improvement of proposed per-pixel layout estimation
network: (a) color images, (b) ground truth mask images, (c) outputs of baseline
U-Net, and (d) outputs of the proposed network.

the detected person and segmented layout planes. Since obtained
per-pixel layout estimation does not include plane parameters,
we perform plane detection from a depth image. This procedure
is depicted in Fig 8. At the plane detection stage, the heat map
of a wall obtained from the per-pixel layout estimation is used.
By thresholding this heat map with thp, we get a mask for
each layout. Multiplying the depth image by its layout mask
leaves only the pixels corresponding to layouts. HAC [20] is then
performed to detect plane on the masked depth image. There are
two advantages in performing plane detection on this masking
process than on the original depth image. The first is excluding
clutters with planes from the wall candidates. If the non-wall
planes such as furniture or doors are recognized as a wall,
the proposed algorithm does not work properly. By excluding
depth pixels corresponding to clutters with masking, only planes
corresponding to the wall can be detected. The second is a shorter
execution time. Plane detection is usually a time-consuming
task. Plane detection on depth image includes converting the
depth image into a point cloud, and operation for each point
of point cloud pixels. If only pixels corresponding to the wall
are obtained by multiplying mask, we can neglect other pixels
and get the benefit of computation time. In our implementation,

the plane detection algorithm has a computational complexity
of O(nlogn) for pixel number n. Meanwhile, the mask of the
layout of Living-lab dataset corresponds to a ratio of 0.125 ±
0.068 of total pixel number. In the case of mask of the wall,
the ratio is 0.063 ± 0.051. This can reduce execution time by
89.61% (when detecting the entire layout), or 95.12% (when
detecting walls only) when performed on a depth image of
512 × 424 resolution taken by Microsoft Kinect V2. Planes are
then detected with HAC from the layout masked depth image.
After this step, parameters of 3D planes corresponding to walls
can be obtained.

B. Removal of Reflected Images

The result of object detection is bounding boxes in a color
image. Bounding boxes consist of coordinates on the color
image. It is converted to the depth camera world coordinates.
Plane parameters obtained from the layout plane estimation
stage are also converted to the same coordinates. Converted wall
plane and its 3D point cloud are as shown in the bottom-right of
Fig 8. The ith layout plane, Playout,i can be represented as:

Playout,i (XD) = nT
i · (XD − ci) = 0 (1)

where XD is a point represented in depth camera world coordi-
nates, ni and ci are a normal vector and center point of the plane
obtained from the layout plane estimation. We set the directions
of normal vectors in all towards the camera by applying equation
(2):

ni =

{
ni, if dot (ni, ci) ≤ 0
−ni, otherwise

(2)

After setting directions of normal vectors towards the camera,
a spatial point between the plane Pi and camera in 3D space
can be defined as a set of points {XD ∈ R3 | Pi(XD) > 0},
where the corresponding value of the plane equation is positive.
Therefore, we can determine whether a person is in front of or
behind the plane by substituting the spatial coordinates of the
detected person into the plane equation of the wall. A negative
value of Playout,i(XD,person) denotes that the detected person
is behind Playout,i. If it is positive, the person is located in front
of Playout,i, i.e. between the wall and camera. The algorithm
for discriminating the image reflected on the mirror operates by
determining whether all the layout plane equations are positive
for each detected person.

IV. EXPERIMENT

The proposed method is implemented in Python/C++ on
Ubuntu 18.04 with a 3.60 GHz CPU, RAM of 16 GB, and
Nvidia GTX 1080Ti. U-net for per-pixel layout estimation is
trained on processed NYU Depth V2 dataset. The training and
validation dataset contain 1159 and 290 images. Our method is
validated on the Living-lab dataset which contains 9234 RGB
images, depth images collected from Kinect V2, and annotation
on human regions. RGB and depth images are acquired with the
resolution of 1920× 1080 and 512× 424, respectively. Because
the Living-lab dataset has annotations of only humans, not other
objetcs, we performed experiment only on person class objects.
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Fig. 11. Procedure of proposed method: (a) candidates of detected people
from a conventional detector, (b) estimated layout planes, and (c) reconstructed
layout planes in 3D space.

However, please note that our method is class-independent, so
it can be expanded to the objects of other categories.

As we mentioned early, with the baseline U-Net the wall,
ceiling, and floor layouts are well-segmented excepting planes
from clutter such as bookshelves and drawer of a desk. Outputs
from the baseline U-Net and the proposed network are compared
in Fig 10. Red circles with dotted line indicate clutter regions.
In the case of baseline U-net, the planar parts of the clutters
are detected as a wall. On the other hand, the network with the
proposed structure does not recognize these as wall layout even
though a part of the clutters consists of planes.

In addition, we also dealt with the shape of estimated layout
masks. Masks obtained from the proposed network have very
scattered shapes. In other words, the mask images tentatively
have a complex topology of curvilinear structure. This is because
conventional segmentation networks are trained with only pixel-
wise loss. On the other hand, walls in the actual environment
have simple shapes like a combination of rectangles, so it is
necessary to simplify its topology to obtain solid mask images.
We solved this problem by adding topology-aware loss [22] to
the loss term. The network is trained for 95 epochs when the
loss is calculated as equation (3). It is trained with weights of
loss of βbce = 0.3, βdice = 0.7, and βtop = 0.1 and topology-
aware loss Ltop is defined as equation (6). In the equation, lmn
stands for the feature map from the m-th channel and the n-th
layer. Mn,Wn, Hn are the number, width, and height of the
feature map, where x, y, w are input, ground-truth, the weight
of network, respectively.

Lall(p, p̂) = βbceLbce + βdiceLdice + βtopLtop (3)

Lbce = p log(p̂) + (1− p) log(1− p̂) (4)

Ldice = 1− 2pp̂+ 1

p+ p+ 1
(5)

Ltop =
N∑

n=1

1

MnWnHn

Mn∑
m=1

‖lmn (y)− lmn (f(x,w))‖22 (6)

Faster R-CNN with FPN [23] and RetinaNet [24] with
ResNet-50-FPN backbone are used as baseline human detectors
to compare performance improvement by the proposed method.
An example of distinguishing mirror reflection image through all
the steps is shown in Fig 11. The green boxes are detected person
with the baseline human detector. Fig 11(b) shows estimated
layout plane by plane detection with HAC, and Fig 11(c) is
reconstructed layout plane in 3D space. The center point of the
real person is represented by a green point, and the center point

Fig. 12. Comparison of wall prediction results: (a) RGB image and prediction
result from the segmentation network that predicts (b) wall only, (c) wall, ceiling,
floor at the same time, (d) predicted floor heatmap, and (e) wall prediction
referring to floor heatmap (proposed).

Fig. 13. Average and standard deviation of the execution time of the proposed
method.

Fig. 14. Precision/recall curves of detection on Living-lab dataset of (a)
baseline Faster R-CNN and with and without the proposed method, and (b)
baseline RetinaNet and with and without the proposed method.

of the reflected person image is represented by a red point. In
the 3D reconstructed point cloud, the center point of the real
person (green point) is in front of the wall plane (purple plane).
In contrast, the center point of the reflected person image (red
point) lies behind the wall plane, which will be detected as a
false image as described in subsection B.

V. RESULT

The baseline human detectors, Faster R-CNN and RetinaNet,
are improved using the proposed method in precision with
significant increases over 30%. It should be noted that the pro-
posed method does not hurt the recall score while dramatically
increases precision. This suggests that the proposed method
operates with very high accuracy from the standpoint of filtering
among candidates of bounding boxes of person while producing
very few false negatives (wrongly filtered cases). F1 score rose
from 0.836 to 0.917 in Faster R-CNN and from 0.771 to 0.913 in
RetinaNet. These improvements correspond to 9.7%/18.4%
increases. Average precisions of baseline detectors are 0.740 and
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Fig. 15. Results of the proposed method on Living-lab dataset: (a) person detections with YOLO v3, (b) person detection results with the proposed method, (c)
input depth images, results of (d) per-pixel layout estimation, and (e) layout plane estimation.

TABLE I
QUANTITATIVE EVALUATION OF THE PROPOSED METHOD ON ANNOTATED LIVING-LAB DATASET

0.864, respectively, and our method improved these to 0.798 and
0.932 corresponding to 7.8% and 7.9% improvement.

The reason why our method produces very few false negatives
is thanks to the proposed per-pixel layout estimation network.
The hard case that makes false negatives in the proposed scheme
is the situation when a person is standing behind a door or non-
cubic-like space as depicted in Fig. 12(a). With conventional
segmentation methods, these protrudent planes are estimated as
layout. Wall prediction masks from UNet that only predict wall
in 1 channel output and one that predicts wall, ceiling, floor at
the same time are depicted as Fig. 12(b),c. However, this is not
a proper estimation to apply our methodology. If these planes
are regarded as layouts, people in sample images are recognized
as reflected images because they stand behind extracted layout.
On the other hand, proposed per-pixel estimation network is
trained to refer the relationship between floor and wall planes.
As a result, the proposed network can precisely predict only
walls located outer than extracted floor as depicted in Fig. 12(e).
This approach could not be perfect in every case, but we verified
that it is an adequately valid approach in real-world data as it
only degrades 0.1% of recall score despite over 30% increase in
precision score.

The average execution time of the proposed algorithm is 74.20
± 8.42 ms, which can process as 13.47 fps. This is not optimized

value, so it will be allowed for sufficient real-time through further
optimization. In particular, the algorithm is implemented in both
Python and C++ environments and integrated through ctypes
library. It means that if this is resolved, faster execution times
will be possible. In the environment, it took 29.07 ms for real-
time object detector YOLO v2, 1.42 ms for per-pixel layout
estimation and 26.27 ms for layout plane estimation. In case
of per-pixel layout estimation, computation time is as small as
1.4 ms. In addition, it also makes the execution time of layout
plane estimation greatly reduced because it works as masking
to reduce the number of depth pixels to compute.

VI. CONCLUSION

We present an approach for improving the false detection
problem caused by reflected images in real indoor environment
with the following contributions:
� 3D layout extraction algorithm utilizing semantic segmen-

tation and plane detection is constructed.
� Conventional object detector is improved utilizing 3D

depth image by correcting false detection due to mirror
reflection.

� The proposed algorithm was validated with Living-lab data
obtained from the real indoor living environment.
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We defined our problem as discriminating reflected objects in
an object detection system that works in an indoor environment.
Therefore, unlike other methods that tried to detect the mirror
region itself, we reformulated our problem as extracting indoor
layouts problem. As a result, the proposed algorithm removed
a major portion of errors caused by mirror reflections in anno-
tated Living-lab dataset. This means that the layout estimating
algorithm worked well and the assumption we proposed which
person image behind the detected wall is a reflected image is
valid in an indoor environment. This assumption is based on the
fact that mirrors are attached to or located very close to the wall
in the indoor environment considered. The rationale behind this
assumption is that a mirror capable of generating a sufficient
size of reflected image to be detected as a person would be large
over a certain size. Such large-size mirrors are in most cases
very close to the wall in an indoor environment. On the other
hand, the mirrors not located close to the wall would be usually
small-size mirrors. These mirrors would not make errors in the
person detection system because they do not generate an image
large enough to be perceived as an actual person. The suggested
method was verified for the human detection problem, and the
general object detection in indoor and outdoor problems will be
remaining further works.

APPENDIX

Living-lab dataset is collected in the real elderly living envi-
ronment for the purpose of developing the Human-care Robot
Technology for Aging Society project (2017-2021). It will be
released in public at the end of 2020.
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