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Soft-Grasping With an Anthropomorphic Robotic
Hand Using Spiking Neurons

J. Camilo Vasquez Tieck , Katharina Secker, Jacques Kaiser , Arne Roennau, and Rüdiger Dillmann

Abstract—Evolution gave humans advanced grasping capabili-
ties combining an adaptive hand with efficient control. Grasping
motions can quickly be adapted if the object moves or deforms.
Soft-grasping with an anthropomorphic hand is a great capability
for robots interacting with objects shaped for humans. Neverthe-
less, most robotic applications use vacuum, 2-finger or custom made
grippers. We present a biologically inspired spiking neural network
(SNN) for soft-grasping to control a robotic hand. Two control
loops are combined, one from motor primitives and one from a
compliant controller activated by a reflex. The finger primitives
represent synergies between joints and hand primitives represent
different affordances. Contact is detected with a mechanism based
on inter-neuron circuits in the spinal cord to trigger reflexes. A
Schunk SVH 5-finger hand was used to grasp objects with different
shapes, stiffness and sizes. The SNN adapted the grasping motions
without knowing the exact properties of the objects. The compliant
controller with online learning proved to be sensitive, allowing even
the grasping of balloons. In contrast to deep learning approaches,
our SNN requires one example of each grasping motion to train
the primitives. Computation of the inverse kinematics or complex
contact point planning is not required. This approach simplifies
the control and can be used on different robots providing similar
adaptive features as a human hand. A physical imitation of a
biological system implemented completely with SNN and a robotic
hand can provide new insights into grasping mechanisms.

Index Terms—Learning systems, robot learning, neural
networks, biological neural networks, learning (artificial
intelligence), force feedback, grasping, robot programming,
robot control, robot motion, cognitive robotics, humanoid robots,
manipulators, robot learning, robot sensing systems, service
robots.

I. INTRODUCTION

W ITH evolution humans developed advanced and flexible
grasping capabilities thanks to a combination of an
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Fig. 1. General view of the closed-loop architecture with SNN for soft-
grasping using motor primitives and reflexes.

adaptive hand and efficient control. Humans do not plan a
gasping motion and execute it, there is actually a combination of
control loops working together to grasp an object. Based on sen-
sor feedback, the hand can adapt its motion if the object moves
or deforms. This is called soft-grasping [1], [2]. Soft-grasping
with a anthropomorphic hand (as in Fig. 1) is an important
capability for robots interacting in an environment with objects
shaped for humans. Nevertheless, most robotic applications use
vacuum, 2-finger or custom grippers [3] which are fine for
production applications, but lack adaptability grasping objects
without knowing their exact properties.

There are studies on human motor control providing insights
about the grasping mechanisms. In this work focuses on the
biological principles for motion representation using motor
primitives, adaptive and compliant control, and event-based
computation [4] with spiking neural networks (SNN) [5]. SNN
model closer the characteristics of real neurons, which enables
research on learning mechanisms and information representa-
tion in the brain. An accepted hypothesis is that the central
nervous system uses a small number of muscle synergies that
are combined to produce motions [6], [7]. The activation of the
synergies can change based on sensor feedback. A motion can be
decomposed with neurons sensitive to different parts of it [8].
These insights have been successfully applied in robotics, for
example with the dynamic movement primitives [9] and the
eigengrasps [10]. Studies show evidence of muscle synergies
for grasping [11], the relation between human responses and the
stiffness regulation in the hand [12], the classification of grasping
motions [13], and the generalization of muscle patterns as build-
ing blocks for grasping [14]. An anthropomorphic robotic hand
enables further investigation of the neural response of grasping
motions [15], or evaluation of the different affordances [16], or
the use of synergies from human demonstration for grasping
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Fig. 2. Detailed view of the closed-loop architecture for soft-grasping with SNN. In motor commands, a population of neurons generate joint positions for each
joint. The finger primitives represent joint synergies. The hand primitives represent different grasping motions. In reflexes, a mechanism for contact detection
triggers reflexes to inhibit the motion of the fingers and activate the compliant controller. The affordance activation provides continuous activation signals for the
hand primitives.

control [17]. Other approaches explore human-like grasping
using deep learning (DL) to create representations using au-
toencoders [18], for extensive training in simulation for in-hand
manipulation [19], or with a combination of an object classifier
with reactive and anticipatory motor primitives [20]. But despite
recent successes, DL also has some drawbacks. To train a system
based on DL, a lot of data and simulation time is required.
In [21], 800,000 samples were collected to train a robotic arm to
perform reaching and grasping. Compliant control with a robotic
hand can be performed with soft [22] or flexible hardware [2] or
with software using sensor feedback [1]. Different approaches
use software compliant control using a torque sensor with a
robust modelling [23], or using online learning for adaptive
control [24], or using cerebellar principles [25], or combining
reflexes with predictive control [26]. Although, there are other
approaches using SNN for motion control using force feedback,
to the best of our knowledge, there is no implementation of an
SNN for soft grasping with a 5-finger anthropomorphic hand
performing compliant control without force sensors using the
standart joint interface.

We can model a system using SNN for soft-grasping us-
ing an anthropomorphic robotic hand taking inspiration from
biology and using the principles presented in previous work
for a hierarchy of motor primitives with SNN to model the
hand [27], to model finger reflexes [28], to coordinate multiple
primitives [29], and to combine activation modalities [30].

The main components are presented in Fig. 1, from right
to left the layers have an increasing level of abstraction. In
motor control there are the finger primitives, in low-level con-
trol the hand primitives and the reflexes, in high-level control
the affordance activation mechanisms, and in higher brain ar-
eas the activation signals. Two control loops are combined,
one is based on the motor primitives and the other one is a

compliant controller activated by a reflex. The motions are mod-
elled with motor primitives in a hierarchy with finger primitives
representing synergies between joints and with hand primitives
representing different affordances coordinating the fingers. The
reflex is triggered by a contact detection mechanism modelled as
the circuits of inter-neurons in the spinal cord. This modelling
simplifies the control of the hand and generalizes each grasp
for different objects. Objects with different shapes, stiffness and
sizes are graspable without knowing their exact properties. The
hand fits the grasping motions to the different objects using the
compliant controller. It is not necessary to compute the inverse
kinematics or to calculate complex contact point planning.

II. APPROACH

In this work, we present an approach for soft-grasping with
objects of different shapes, stiffness and sizes using a SNN to
control an anthropomorphic robotic hand. Motions are repre-
sented with a hierarchy of motor primitives that allow a reduction
of the control parameters. The network combines two control
loops to generate a complex grasping behaviour. The first one is
reactive, generated by the trajectory control from the primitives,
to close the hand using human affordances [13]. The second one
is adaptive, generated by the compliant control triggered with a
reflex using the motor currents.

The detailed architecture for the SNN is presented in Fig. 2.
There are four main components of the network: finger primi-
tives, hand primitives, affordance activation and reflexes. Each
oval is a sub-network. The connection between compliance and
the joints is simplified, it is also all to all. The finger primitives
represent the joint synergies in a finger for a closing motion.
The hand primitives represent different affordances coordinating
the fingers. The affordance activation mechanism creates the
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activation patterns for the hand primitives. There are two types
of reflexes activated by contact, one inhibits the movement of the
fingers and the other activates the compliant controller. Contact
detection is modelled as the circuits of inter-neurons in the spinal
cord. The compliant controller uses the efforts from the motors
to control the force the finger can apply.

The SNN is developed using the Neural Engineering Frame-
work (NEF) [31] which allows the generation of large-scale
SNN.First, the model is divided into vectors, functions, and
differential equations. The connections between sub-networks
compute the functions. The connection weights for each sub-
network are optimized separately, and then combined together
into one large neural network. By changing the connection
weights, we change the function being computed. Finding con-
nection weights locally means we can generate large systems
without using the traditional neural network approach of opti-
mizing over huge amounts of training data. The trade-off is that
we need expert knowledge to define what each sub-part of the
model is doing. This principles are used to implement a SNN
for soft-grasping.

A. Finger Primitives and Robot Kinematics

For each finger there is a motor primitive that represents the
joint synergies between the joints of the finger during a closing
motion. The principles to model the finger primitives are based
on [28], [30]. In addition to the five fingers, we extended the
modelling with two more degrees of freedom – thumb opposition
and finger spread. There are seven finger primitives – thumb,
thumb opposition, index, middle, ring, pinky and finger spread
– as illustrated in Fig. 2.

A finger primitive is defined with the min initial and max
final values of each active joint for one trajectory. It is modelled
as a mapping of an activation parameter u ∈ [0, 1] to a sequence
of joint activations during the execution of the motion. The
activation function f : [0, 1] → [0, 1] is defined as

f(u) =
sin(u · π − π

2 )

2
+

1

2
. (1)

It is important for f(u) to have smooth initial and final phases
to prevent wear in the motors and transmissions of the real
robot. This type of functions are commonly used in robotics
for interpolation. Then the activation function has to be mapped
to the robot kinematics. A mapping g : [0, 1] → Rn is defined
as

g(f(u)) = f(u) · (θmax − θmin) + θmin, (2)

to generate appropriate motor commands. Which means, scaling
f(u) to the motion interval (θmax − θmin) with offset θmin of
the joint θ.

B. Hand Primitives and Hierarchy

The motion of the hand is also modelled with a motor prim-
itive, but instead of controlling joints, it controls the activation
parameters of the finger primitives. The hand primitives are
organized in a hierarchy coordinating the finger primitives as
in [27], [29]. The hand primitives represent different grasping

affordances — sphere, cylinder and pinch according to [13]
and rest position. This reflects the muscle synergies of human
grasping [14]. The network does not learn individual objects, it
learns different affordances for different object types. By using
motor primitives for grasping motions, the complexity of the
hand control is reduced to one activation parameter for each
affordance.

A hand primitive is modelled as a mapping of u to a sequence
of activations of the finger primitives during the execution of
the motion. The initial grasping pose (pre-shaping) and the final
pose with the hand closed, define the primitive with theminopen
and max closed activation parameters for the finger primitives.
Each hand primitive is connected to all finger primitives. There
are four hand primitives as illustrated in Fig. 2. To learn a new
affordance, a sub-network in hand primitives is required, and
the initial and final positions of the joints to define the primitive
(see table in Fig. 8). The rest of the SNN can be reused and the
compliant controller adapts the motions online to the shape of
the objects.

C. Affordance Activation Mechanisms

The affordance activation generate the activation patterns for
the hand primitives. An external activation signal is used to
activate the hand primitives. A population of neurons generates
neural activity for the duration of the grasping motion. This is an
oscillator that oscillates only once ([28], [30]), and the activity
for the activation parameter u is decoded as

u = −1

2
cos

(
t · 2π

T

)
+

1

2
. (3)

D. Reflexes and Contact Detection

The reflexes and the circuit for contact detection are the
parts that provide the adaptation and flexibility to the grasping
motions, required for soft-grasping. The modelling is taken
from [30], with additions to activate the compliant controller
and to change the activation parameters from the SNN. The
flexion is not being measured, only the currents of the motors are
used to detect contact. The contact detection circuit is modelled
as an alternative selection mechanism as the networks with
inter-neurons in the spinal cord [32]. It combines inhibitory and
excitatory connections, as illustrated in Fig. 3(a). The propri-
oception is used to calculate ΔΘ as the change in time of the
joint, using the current joint position Θt and the previous joint
position Θt−1 provided by a delayed recurrent connection. The
interneuron, is excited by the effort feedback from the motor and
inhibited by ΔΘ. This ensures that the interneuron only detects
contact if the effort increases and the corresponding joint is not
moving, and thus ignores changes in the effort caused by the non
linearity of the robot dynamics. There are two types of reflexes
that are triggered with contact. The first type provides inhibition
and stops the motion. When contact is detected in one finger,
the reflex inhibits the respective primitive and the contact joint
position is mapped as the new target position. The second type of
reflex mechanism activates a compliant controller for that finger.
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Fig. 3. (a) Contact detection circuit (adapted from [30]). (b) Cascaded com-
pliant controller for each finger. (c) Adaptive part with online learning, reflex PI
in (b).

E. Compliant Controller and Adaptation

The control schema is a cascaded impedance setup of two
controllers, the motor primitives and the compliant controller
(see Fig. 3(b)). The two controllers are combined based on the
feedback from the motors. With the measurement of the motor
current, an effort of each joint can be estimated. The compliant
controller uses the effort feedback as control parameter to control
the force a finger can apply. It is activated with contact, and
inhibited if no contact is detected or if the hand is opening.
Target efforts can be set to each joint individually to determine
the force and sensibility of the grasp. The target values for the
effort controller can be changed on-the-fly by the network for
each finger, which provides flexibility.

The controller was initially modelled a classical PI controller
implemented with SNN. The I part was divided in two parts
with different parameters to reduce oscillation. A fast reacting I
part with an offset to compensate the delayed system answer.
This prevents the system for overshooting while the system
recovers from a delayed response. A slow reacting I part is
adjusted by the system delay and produces less oscillation. It is
worth mentioning, that no D part was used because the current
measurements from the motors are very noisy. A digital I part
can be described as

I(k) = kI ·
∑

ediff,(k·Δt) ·Δt (4)

where kI is the factor of the I part and ediff is the control error
between the target value and the actual measured value. This can
be converted into the difference equation with the additional P

component for the controller output yk as

yk = yk−1 + kI · uk ·Δt. (5)

Due to the interaction between the fingers and the object, the
initial contact points have to change if the object moves or
deforms. Ideally, there is a part in the controller that can learn
online to compensate for these changes without calculating the
exact contact points or the inverse kinematics. For this, we
propose an adaptive control schema (see Fig. 3(c)). Therefore,
the adaptive part works as an additional I part of the controller
with dynamic parameters. For the online adaptive part (green
connections), the prescribed error sensitivity (PES) rule is used
as implemented in NEF [33]. The number of neurons and the
learning rate determine the factor of the adaptive control, and
define how fast the adjustments are made. PES adjusts the
decoders Δdi of a connection to minimize an error signal. The
change in weights wij , is given by

Δwij = Δdi · ejαj (6)

Δdi = −κ

n
· ξai, (7)

where αj is the gain, κ the global learning rate, n the number
of neurons, ξ the error signal, ej the encoder of the postsynaptic
neuron and ai the presynaptic activity. The pre-synaptic popu-
lation is indexed by i and j indexes the post-synaptic population.
The resulting connection Δu is added to control signal and it is
defined as

Δu(t) =
n∑

i=0

di · ai(x(t)), (8)

where ai(x(t)) is the activity of neuron i given the input x(t).
The error signal ξ is given by the PI part and the correction by
Δu is affected by the learning rule adapting di.

III. RESULTS

An anthropomorphic Schunk SVH 5-finger hand was used
to evaluate the SNN for soft-grasping. For the experiments, the
hand was mounted in a test base as well as in a robotic arm.
We modelled three types of grasping motions — sphere, pinch
and cylinder. The affordances were activated with an external
signal to trigger the motion. The activation of the different motor
primitives was evaluated to test how the affordances adapted to
different objects. Then, the sensibility of the compliant con-
troller and its activation was evaluated. Finally, we evaluated
how the adaptive controller can learn online and how it compares
to the PI controller.

A. Motor Primitives Activation and Affordance Evaluation

A grasping motion showing the activation of the motor prim-
itives, is presented in Fig. 4(a). The plots show the activation
signal and the individual activations of the hand and finger layers.
Observe in output finger layer that the network generates a
smooth trajectory with stable final states for each parameter. The
hierarchy of the primitives is shown on the right as a tree color
coded with the plot lines and the resulting grasping motion as a
frame sequence on the bottom. To evaluate how the affordances
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Fig. 4. (a) Affordance activation, network output of the hand and finger
primitives, and a frame sequence of a grasp. (b) Experiments with different
objects.

adapted, we used objects with different shapes, stiffness and
sizes. Among them: a plastic bottle, a soft ball, a tennis ball,
a sponge, a rubber duck, different balloons, a pen, and a tissue
pack (see Fig. 4(b)).

B. Compliant Controller Evaluation

The effort threshold controls the force that a finger can apply to
the object being grasped. The robot drivers have the option to set
a safety maximum value for the allowed effort. The driver clips
the control to protect the robot, which causes crucial deviations
of the control error and results in delays at the start of the control.
But changing this on-the-fly is problematic as the configuration
of driver has to be reloaded. With our SNN, it is possible to
change the effort threshold on-the-fly, which provides flexibility
and another degree of freedom for the control. The compliant
controller proved to be sensitive and the threshold could be set to
be very low allowing the manipulation of balloons (see Fig. 5).
In Fig. 5(a) the hand is pressing hard using the maximum effort
threshold, whereas in Fig. 5(b) it is pressing soft using the effort
threshold. In Fig. 5(c) the effort plot for the thumb finger for
the maximum and minimum effort. Notice that the maximum is
clipped by the driver. This maximum value is actually as low as
the driver can go, because the effort caused by the non-linearities

Fig. 5. Compliant control with (a) high and (b) low effort thresholds. (c) Effort
plot for both cases.

of the robot dynamics will be higher and the driver will not move
the robot. The internal driver defines maximum efforts for each
joint as: thumb flexion 6; index proximal 5.5; index distal 4.1;
middle distal 4.1; middle proximal 5.5; ring 2; and pinky 1.6.
Our controller is able to go below these values and maintain
the effort between −0.5 and +0.5 around the target value. The
minimum effort we can achieve depends on the joint and it is
between−1.5 and 1.0 thanks to the contact detection mechanism
(see Sec. II-D).

A detailed grasp with the adjusted parameters is shown in
Fig. 6. The output of the effort control is converted to a joint
position and is added to the finger layer output. When contact
is detected, the switch activates the controller and the measured
position is affected by the effort controller.

C. Adaptive Control With Online Learning Evaluation

The network for the classical PI control is larger than for
the adaptive controller (see Fig. 8). The parameters for the PI
controller are presented in Fig. 8 (bottom). The initial controller
parameters are calculated with the Ziegler Nichols method [34].
Then they are manually tuned to the system to avoid noise and
oscillations. To compensate the delay between contact detection
and reflex activation, an offset was aded to the controller. To
use the adaptive control loop, the learning rate and the number
of neurons had to be adjusted doing a manual parameter search.
With higher learning rates, the system reached the desired efforts
a faster but also oscillated. This effect was caused by the latency
of the system, caused through the filters to reduce the noise of
the spiking neurons. With the addition of an adaptive I part,
the controller is reduced to a P controller, which is easier to
parameterize.

With online learning, the controller can adapt and learn over
multiple grasps. In Fig. 7, four consecutive grasps of the same
object are shown. The first diagram shows the activation of the
control triggered by the contact detection. If a contact is detected,
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Fig. 6. Activation of the effort controller, output of the reflexes network and
measured effort.

Fig. 7. The adaptive controller learns after multiple grasps.

the inhibitory neurons are inhibited (selective desinhibition [35])
and the control is activated. The plot u_correction is the signal
added by the adaptive control to the PI control. The plot con-
trol_error shows the control error of four joints that are related
by synergies – distal and proximal joints of the index and middle
finger. In the fourth attempt, the control error is controlled faster
than at the beginning. The delay is compensated and the gripping
force is maintained to a constant value. The PI controller needs
5 s on average to minimize the control error into a range of 0.05.
With the adaptive controller, this effect can be minimized to a
delay of 3 s, after 5 grasps in average. As the repetition of a

Fig. 8. Parameter tables for the finger primitives, the hand primitives and the
compliant controller.

grasp with the robot can not be the same every time, some joints
need more grasps to be adapted. The signal of the middle finger
proximal (dark blue) is overshooting in the second and fourth
grasps. This is caused by the adjustment of the middle finger
distal (light blue), nevertheless, after a period of time it stabilizes.

D. SNN Implementation and Parameters

The SNN is implemented with the neurosimulator Nengo [36]
with leaky integrate and fire spiking neurons. The optimizer
for the network connections is a least squares method defined
in NEF [31]. The motor primitives are represented with 22
ensembles and 4400 spiking neurons, based on the modelling
of the fingers in [28]. The motor primitives have a mathematical
description that can be reused and parameterized ([30]), which
allows further extension of the network. The reflexes with the
classical PI compliant controller are represented with 36 en-
sembles and 20700 neurons, and with the adaptive compliant
controller with 21 ensembles and 7350 neurons. The number
of ensembles depends on the functions being modelled, and it
is not a hyper parameter that was optimized. It also depends
on the amount of inputs and outputs of each sub-network. The
number of neurons is manually adjusted depending on the noise
and the precision. The basic process is to start with 200 neurons
for each ensemble, then depending on the noise and the required
precision we increase the number of neurons and do a manual
binary search. Additionally, to use the SNN for robot control, it
is necessary to filter the network output to reduce noise from the
spikes. This leads to a delay in the control. To keep this delay
small, the number of neurons has to be increased (better fit of
the function and less noise). Heuristic strategies were used to
adjust the number of neurons to fit the chosen filter.
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The Schunk SVH 5-finger hand has 9 active degrees of free-
dom – thumb distal, thumb opposition, index distal and prox-
imal, middle distal and proximal, ring distal, pinky distal, and
finger spread. We use the Robot Operating System (ROS) [37]
as a communication layer with the official ROS driver for the
hand [38]. The selected affordances are based on [13] with the
parameters based on [14]. The primitives are defined with the
presented functions, and the mapping to the robot is defined
by moving the robot to the desired positions once, and then
reading out the joint configuration. We only need one example
motion for each affordance, from which we take the start and end
configuration in joint space. The parameters for the finger and
hand primitives, and for the compliant controller are presented
in Fig. 8. In the (top) the corresponding Θmin and Θmax of
each joint to define the finger primitives. In the (middle) the
corresponding min and max values for the cylinder, pinch and
sphere primitives – for the rest primitive themin andmaxvalues
are set to zero. In the (bottom) the parameters for the PI, offset
and adaptive P parts for each finger.

IV. DISCUSSION

We presented a biologically inspired SNN to perform soft-
grasping with an anthropomorphic robotic hand. Soft-grasping is
mostly made with mechanical features and compliant hardware.
Indeed, most of the robots are not hardware compliant and do not
have force sensors, as the hand that was used. Nevertheless, with
the combined control loops and using the current of the motors,
it was possible to perform soft-grasping. The experiments
show that it is possible to grasp objects with different shapes,
stiffness and sizes without calculating the inverse kinematics or
complex contact point planning. The system is based on motor
primitives implemented with SNN organized in a hierarchy of
joints, fingers, reflexes and grasping affordances representing
the hand. Using separate primitives, it is possible to control
different combinations of joints and activate other primitives
with only one activation signal. The approach is flexible and
can be used on different robot hands and can also be extended to
incorporate signals from other networks. The compliant control
is implemented in the same SNN using a cascaded PI effort
controller that was extended with online learning for adaptive
control. The controller was able to adapt the grasping motions
to the different objects without knowing their exact properties.
We modelled three grasping types – sphere, cylinder and pinch
– but there is no limitation with this number and the SNN can
be extended with more motions. An important characteristic
of our approach is that the SNN requires one example or
mathematical description of each grasping motion to train the
primitives, and after learning, the SNN adapts the motion to
the different objects. This is a real advantage in comparison to
other bio-inspired grasping and manipulation approaches based
on deep learning [18], [19], because training data and extensive
datasets are expensive and not easily generated with real
robots.

The same affordances were tested on objects with different
sizes and stiffness. One of the experiments showed how the
same spherical grasp was adapted for a tennis ball and for a

balloon. The threshold for the effort controller can be changed
on-the-fly by the network for each finger, which provides even
more flexibility and another degree of freedom for the control.
The compliant controller proved to be sensitive, and the thresh-
old could be set as low as to allow even the manipulation of
balloons (see Fig. 5). Even with the intrinsic inaccuracy of the
current measurements and necessary filters, the efforts could be
maintained below the maximum limits, which means that the
compliant controller was actively controlling the joints. There
are still bottlenecks in the control pipeline and the control signal
has a delay. This is due to the different filters to get the informa-
tion without noise in and out of the SNN. As a consequence both
controllers present small oscillations. Parts of this problem could
be improved by the online learning capabilities of the adaptive
effort controller. The plot in Fig. 7 shows the online adaption of
the controller with every repetition of the same grasping motion.
Additionally, there are limitations with the internal controller of
the robot driver. The positions are converted into currents that
are cut off at a certain threshold for safety. In case of contact,
this has the consequence that the output of the SNN does not
control directly the joints, and the measured values do not match
the controller output. The controller experiences a kind of wind
up effect and the system oscillates when the threshold value
in the driver-side controller is reached. Due to the damping
properties of soft objects, the controller reacts without exceeding
the threshold of the driver. Nevertheless, it also works with with
stiff objects, as the force is controlled with the same threshold
for soft or hard objects. For example the marker or the bottle
were hard, and it had no problems with them.

The continuation of this work has three main directions:
improve the controller, incorporate visual information and in-
tegrate arm motion. To improve the controller, the network
parameters can be pre-trained with domain randomization in
simulation as in [19], [39] to fine tune the adaptive controller.
To increase the performance of the controller the SNN can be
executed with neuromorphic hardware such as SpiNNaker [40]
or Loihi [41] to take advantage of the efficient real time execution
of SNN [42].Neuromorphic hardware can also be used to directly
use the spike activity of the network to control the motors [43]
or by using event-based touch sensors [44] to further exploit
the characteristics of SNN in terms of energy consumption and
information processing [4]. To incorporate visual information,
we consider event-based cameras a natural match for SNN.
An stereo even-based camera setup [45] can be used to get
the target point is 3D space for pre-grasping [46] and use
micro-saccades [47] to detect the type of object and identify
which grasping affordance to use. To integrate arm motion,
an arm controller as in [48] can be incorporated to do visual
servoing, or as in [35] to have primitives reach different points
on a surface.The combination of visual information and arm
motion, together with soft-grasping can achieve a more natural
grasping process from recognition of the object to positioning
the arm to grasping. The whole system implemented completely
with SNN as physical imitation of a biological system and an
anthropomorphic robotic hand can be compared to brain neural
responses for the grasping process as shown by [15] and provide
new insights into its sub-processes.
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