
IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 5, NO. 4, OCTOBER 2020 6411

UFOMap: An Efficient Probabilistic 3D Mapping
Framework That Embraces the Unknown

Daniel Duberg and Patric Jensfelt

Abstract—3D models are an essential part of many robotic
applications. In applications where the environment is unknown
a-priori, or where only a part of the environment is known, it
is important that the 3D model can handle the unknown space
efficiently. Path planning, exploration, and reconstruction all fall
into this category. In this letter we present an extension to OctoMap
which we call UFOMap. UFOMap uses an explicit representation of
all three states in the map, i.e., unknown, free, and occupied. This
gives, surprisingly, a more memory efficient representation. We
provide methods that allow for significantly faster insertions into
the octree. Furthermore, UFOMap supports fast queries based on
occupancy state using so called indicators and based on location
by exploiting the octree structure and bounding volumes. This
enables real-time colored octree mapping at high resolution (below
1 cm). UFOMap is contributed as a C++ library that can be used
standalone but is also integrated into ROS.

Index Terms—Mapping, RGB-D perception, motion and path
planning.

I. INTRODUCTION

MANY robot tasks require a 3D model of the environment
to be completed. For navigation and manipulation tasks

the model is often used to calculate collision free paths and in
exploration to determine where new information can be found
and how to get to it. 3D SLAM updates the model and localizes
the robot using it.

A number of different methods for modeling 3D environments
exists: point clouds, elevation maps [1], multi-level surface
maps [2], octrees [3], and signed distance fields [4]. All of these
methods are able to represent occupied and free space. However,
only octrees and signed distance fields are able to represent the
unknown space. Moreover, point clouds, elevation maps, and
multi-level surface maps are not able to represent arbitrary 3D
environments.

OctoMap [5], one of the most popular mapping frameworks, is
based on octrees. It provides a readily available, reliable, and ef-
ficient 3D mapping framework. OctoMap provides researchers,
also those not focusing on mapping, an off the shelf solution for

Manuscript received February 24, 2020; accepted July 9, 2020. Date of
publication August 4, 2020; date of current version August 14, 2020. This letter
was recommended for publication by Associate Editor L. Paull and Editor S.
Behnke upon evaluation of the reviewers’ comments. This work was supported
in part by SSF FACT and in part by VR XPLORE3D. (Corresponding author:
Daniel Duberg.)

The authors are with the Division of Robotics, Perception and Learning
(RPL), KTH Royal Institute of Technology, Stockholm 114 28, Sweden (e-mail:
dduberg@kth.se; patric@kth.se).

Digital Object Identifier 10.1109/LRA.2020.3013861

Fig. 1. UFOMap representation of in-progress exploration of a power plant
from Gazebo model library (https://bitbucket.org/osrf/gazebo_models/src). The
colored voxels are occupied space. The black voxels are unknown space which
are represented explicitly in UFOMap.

mapping. While OctoMap excels in many use cases, there exist
certain areas where it can be improved. In this letter we focus
on two areas.

First, in OctoMap, unknown space is not modeled explictly
like occupied and free space are. In algorithms where the un-
known space is used extensively, OctoMap’s implicit represen-
tation of unknown space can be a bottleneck. Use cases where
this can be a problem are, for example, collision checking,
path planning where we want to know if it is possible for a
robot to move from one location to another and next-best view
exploration methods such as [6], [7], [8], and [9]. In the first
two cases the common workaround is to treat unknown space
as free space [10], [11]. This way, only occupied space has to
be considered in the collision checking. However, this increases
the probability of collisions. Regarding the third use case, [9]
states that “computing volumetric information gains can account
for up to 95% of a planners run-time.” The information gain
for a certain sensor/robot pose in an exploration scenario is
typically calculated as a function of the unknown space. In [7] the
information gain is approximated, leading to a reduced need to
access unknown space in the OctoMap and it is one of the major
contributing factors of the performance improvement over the
baseline [6].

Second, manipulating the content of an OctoMap is time
consuming and limited. For example, inserting a single point

2377-3766 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0003-4815-9689
https://orcid.org/0000-0002-1170-7162
mailto:dduberg@kth.se
mailto:patric@kth.se

6412 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 5, NO. 4, OCTOBER 2020

cloud takes on the order of a second. This means that real-
time mapping with an OctoMap is prohibitively slow in many
applications.

In this letter we present an extension to OctoMap taking these
shortcomings into account. The contributions of this work are
as follows:
� An explicit representation of unknown space.
� Indicator values for the inner nodes summarizing the state

of children for faster state based queries.
� A separate threshold for classifying space as free, allowing

for unknown space to be defined also based on the occu-
pancy value.

� Morton codes for faster traversal of the octree.
� A fast ray casting approach for integrating data into the

octree.
The remainder of this letter is organized as follows. Related

work is presented in Section II, while in Section III the UFOMap
mapping framework is presented. Implementation details are
given in Section IV, followed by an evaluation of the proposed
framework and case studies in Sections V and VI, respectively.
Finally, Section VII summarizes the letter.

II. RELATED WORK

This section gives a brief overview of different 3D map
representations used in robotics.

A popular approach to model 3D environments is to discretize
the world into equal sized cubic volumes [12], called voxels.
One of the major shortcomings of fixed grid structures is that
the size of the area to be mapped has to be known a-priori.
Memory requirements can also be a problem when mapping
large areas at a high resolution. Voxel hashing [13] is one
approach to overcome these shortcomings, where fixed sized
blocks are allocated on demand.

The mapping framework Voxblox [14] uses a signed distance
field [4] voxel grid, with voxel hashing for dynamic growth,
as representation. It was mainly developed for planning or
trajectory optimizations in the context of micro aerial vehicles
(MAVs). The signed distance field representation makes trajec-
tory optimizations faster by storing the distance to the closest
obstacle in each voxel. Voxblox builds on [13] where they use
a spatial hashing scheme and allocate blocks of fixed size when
needed. This means that the size of the area to be mapped does
not need to be known beforehand.

One of the most popular mapping frameworks is OctoMap [5].
OctoMap uses an octree-based data structure, as proposed in [3],
to do occupancy mapping. The octree structure allows for delay-
ing the initialization of the grid structure. It is also often more
memory efficient compared to Voxblox or a fixed grid structure
since the information can be stored at different resolutions in
the octree, without losing any precision. If the inner nodes of
the octree are updated correctly, it is possible to do queries
at different resolutions. This can be especially beneficial in
systems where multiple algorithms are using the same map
but have different computational and time requirements. These
are important properties and we will therefore use an octree
representation and build on OctoMap.

III. UFOMAP MAPPING FRAMEWORK

This section presents the UFOMap mapping framework,
which is based on OctoMap. We highlight the difference between
the two frameworks to make comparison easier.

UFOMap uses an octree data structure, just like OctoMap.
An octree is a tree data structure where each node represents
a cubic volume of the environment being mapped. A node can
recursively be split up into eight equal sized smaller nodes, until
a minimum size has been reached. The resolution of the octree
is the same as the minimum node size. A visual representation
of an octree can be seen in Fig. 2(b).

Each node has an occupancy value indicating if the cubic
volume represented by the node is occupied, free, or unknown.
A probabilistic occupancy value is used in order to better handle
sensor noise and dynamic environments. More specifically the
log-odds occupancy value is stored in the nodes. Sensor readings
can thus be fused in using only additions instead of multipli-
cations. The log-odds occupancy value is clamped to allow for
pruning the tree, as in OctoMap. Pruning can be applied when all
eight of a node’s children are the same. This leads to a smaller
tree, which is beneficial both in terms of memory usage and
efficiency when traversing the tree.

As mentioned in Section II, the octree data structure allows for
queries at different resolutions. This can speedup applications,
as well as allow for different applications that require different
resolutions to share the same map. As in OctoMap, a node is
defined to have the same occupancy value as the maximum
occupancy value of its children. Using the maximum value is
conservative and it enables doing path planning, or similar, at
whichever resolution without missing any obstacles.

The nodes in UFOMap store three indicators, if , iu, and ia,
which are not found in OctoMap. if and iu indicates if a node
contains free space or unknown space, respectively. No indicator
is needed for the occupied space, since the occupancy value of
a node is enough to tell if it contains occupied space. When
updating the octree the indicator values are propagated upwards
in the tree along with the occupancy values.

The third indicator, ia, indicates whether all of a node’s
children are the same. ia is useful in cases were automatic
pruning has been disabled, but you still want the same behaviour
as if it were enabled. Automatic pruning means that the octree
is automatically pruned when data is deleted or inserted into
the tree. The main reason for disabling automatic pruning is
for applications where you want to access and insert/delete data
concurrently. It is possible to manually specify when the pruning
should occur in this case. The indicators allow for increased
efficiency when traversing the tree, by allowing certain branches
to be ignored, for example, when only looking for unknown
space.

The state of a node, n, in OctoMap is determined by a
threshold, to:

state(n) =

⎧⎪⎨
⎪⎩

unknown if n is null pointer

occupied if to ≤ occ(n)

free else.

DUBERG AND JENSFELT: UFOMap: AN EFFICIENT PROBABILISTIC 3D MAPPING FRAMEWORK THAT EMBRACES THE UNKNOWN 6413

Fig. 2. Example of an octree. The OctoMap tree representation is shown in (a) and the corresponding tree representation in UFOMap is displayed in (b). Black
indicates occupied space, white free space, and grey unknown space. Circles means that it is an inner node, square an inner leaf node, and triangle a leaf node.
Note that OctoMap does not make a distinction between leaf nodes types. (c) shows how UFOMap stores that octree in memory.

Fig. 3. Bit string representation of Morton code used in UFOMap.

where occ(n) is the occupancy value of the node n. In UFOMap
this has been expanded to include a threshold, tf , for when a
node is free as well:

state(n) =

⎧⎪⎨
⎪⎩

unknown if tf ≤ occ(n) ≤ to

occupied if to < occ(n)

free if tf > occ(n),

these two thresholds together can be useful in certain appli-
cations. In OctoMap’s case any part of space that has ever
been observed is forced to be classified as either occupied or
free, unless you explicitly delete a node to restore the null
pointer. By setting tf = 0.1 and to = 0.9 in exploration and
reconstruction, the nodes stay in the unknown state until they
have high confidence that they are either occupied or free. This
can simplify the reconstruction or exploration algorithm since
only unknown nodes have to be considered and these can be
accessed fast with the help of the indicators.

Alternatively, if you use tf = 0.5 and to = 0.9, the explo-
ration algorithm would focus its attention on the occupied space,
meaning you would target higher certainty about the occupied
space. This can be convenient in applications requiring recon-
struction. Note that you do not have to change anything in the
exploration method, and instead use these parameters to modify
the exploration behaviour.

Finally, Morton codes [15] are used to speedup traversal of the
octree. To generate a Morton code, we first convert the cartesian
coordinate c = (cx, cy, cz) ∈ R3 to the octree node index tuple
k = (kx, ky, kz) ∈ N3

0 that c falls into kj =
⌊ cj

res

⌋
+ 2dmax−1

where dmax is the depth of the octree. By interleaving the bits
representing kj as shown in Fig. 3, the Morton code m is created
for c. From the root node it is then possible to traverse down to
the node by simply looking at the three bits ofm that correspond
to the depth of the child and moving to that child.

The Morton code generation has been accelerated by using
integer dilation and contraction [16].

IV. IMPLEMENTATION DETAILS

This section covers implementation details and highlights
differences compared to OctoMap.

A. Nodes

UFOMap has three different types of nodes; inner nodes, inner
leaf nodes, and leaf nodes. In contrast, OctoMap has only what
corresponds to the inner nodes and inner leaf nodes.

1) Inner Nodes: The inner nodes are all the nodes that have
children. An inner node contains a log-odds occupancy value,
the three indicators mentioned in Section III, and a pointer to an
array of its children. In UFOMap the children are stored directly
in the array, instead of the array holding pointers to the children
like in OctoMap. This way, 64 bytes are saved for an inner node
with 8 children in UFOMap compared to OctoMap. However,
this also means that a node in UFOMap either must have no
children or 8 children.

2) Inner Leaf Nodes: Inner leaf nodes are exactly the same as
the inner nodes. The only distinction is that the inner leaf nodes
have no children, meaning the child pointer is a null pointer.
Once an inner leaf node gets a child it is considered an inner
node. In OctoMap this is the only kind of leaf node that exist.

3) Leaf Nodes: The leaf nodes are more simplistic. Only
the log-odds occupancy value is stored. Compared to an inner
leaf node, it is not possible for a leaf node to have children. In
OctoMap the corresponding node is the inner leaf node.

The three kinds of nodes can be seen in Fig. 2(c). The nodes
which have an occupancy value, indicators, and a child pointer
are inner nodes. Nodes where the child pointer is empty are inner
leaf nodes. The nodes with only an occupancy value are the leaf
nodes.

As stated in [5], and also seen in Table I, 80-85% of the octree
nodes are (inner) leaf nodes in OctoMap. In UFOMap, where
a distinction is made between inner lead nodes and leaf nodes,
this value drops to 71-81%. This highlights that the majority
of the nodes in the tree are leaf nodes. Therefore, having the
dedicated leaf node data structures and by storing the children
of an inner node directly in an array in UFOMap significantly
reduces the memory usage over OctoMap, by a factor of 3,
even though the total amount of nodes in the tree increases
(see Table I).

6414 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 5, NO. 4, OCTOBER 2020

TABLE I
MEMORY CONSUMPTION AND NUMBER OF NODES COMPARISON BETWEEN UFOMAP AND OCTOMAP ON THE OCTOMAP 3D SCAN DATASET

B. Integrating Point Cloud Sensor Measurements

Ray casting is used to integrate point cloud sensor measure-
ments. When integrating a point cloud it is important that points
that should be occupied gets an increased occupany value and
that all points between the sensor origin and each point of the
point cloud gets a lower occupancy value. In UFOMap there are
three methods for this, each faster than the previous but with less
accurate results:

1) Simple Integrator: For each point in the point cloud we
trace a ray, using [17], and decrease the occupancy value for all
nodes from origin to the point. The occupancy value for the node
in which the point lies is increased. Same as in OctoMap.

2) Discrete Integrator: By discretizing the point cloud first it
is possible to utilize that a number of points in the point cloud fall
inside the same node. The ray casting is only done once for each
node the points fall into. The ray casting is performed towards
the center of the node which means the result may vary compared
to the simple integration. However, this is significantly faster for
large point clouds with many points falling into the same node.
This also exists in OctoMap.

3) Fast Discrete Integrator: In the fast discrete integrator, the
ray casting and discretization is performed at multiple different
depths of the octree. First, a simple ray marching algorithm with
a fixed step size equal to the resolution corresponding to depth
d is applied. Ray marching is performed until n nodes, at that
resolution, away from the end node. From that node we perform
a new ray marching at lower depth until we reach depth 0 (leaf
node depth) where we perform the same ray casting as in the
discrete integration. The parameters n and d allow us to trade
speed against accuracy. The special case d = 0 corresponds to
the discrete integrator above. In the special case n = 0, space is
cleared only at depth d and thus some space behind the occupied
space is cleared (see Fig. 4(f)).

To compensate for the larger surface1 where the occupancy
value is decreased in the fast discrete integrator; the clearing is
reduced by a factor 1

2d+1 . The fast discrete integrator enables
mapping applications requiring higher resolution and/or update
rate such as exploration and reconstruction (see Section V-B).

The occupied nodes are updated at the highest resolution in
all three integrators. Thus, the occupied space will look mostly
the same for all three methods.

A comparison of the integrators can be seen in Fig. 4. The
effect of them is evaluated in Section V-F.

1Boundary surface for the volume spanned by the point cloud. See Fig. 4.

Fig. 4. Comparison of the integrators, mentioned in Section IV-B, for a single
ray (top) and a point cloud sensor measurement (bottom). The sensor is located to
the left (the circle). The lines are the lines being traced, from sensor to obstacle.
The violet and orange cells will be marked free or occupied by the integrator,
respectively. (left) Simple/discrete integrator. (middle) Fast discrete integrator
with d = 1 and n = 2. (right) Fast discrete integrator with d = 1 and n = 0.
Note that the occupancy values of the end points will be both reduced, at a lower
resolution, and increased, at the leaf level.

C. Accessing Data

To access the data in UFOMap, iterators are used. They are
fast and they can be used to specify axis-aligned bounding
boxes (AABBs), oriented bounding boxes (OBBs), bounding
spheres, bounding frustums, or any combination of them. Only
AABBs are available in OctoMap. Only the nodes that in-
tersects the bounding volume specified will be retrieved. It-
erators can also specify the type of nodes that should be re-
trieved, e.g., only leaves, occupied, free, unknown, contains oc-
cupied/free/unknown, or a combination of them. In comparison,
OctoMap always retrieves both free and occupied nodes. It is
not possible to get the unknown nodes, and it is not possible to
get only occupied or only free nodes, in OctoMap.

Both the bounding volumes and indicators significantly in-
creases the performance of the iterators since whole branches of
the octree can be ignored. This is shown in Section V-D.

D. Availability

UFOMap is available as a self-contained C++ library at
https://github.com/UnknownFreeOccupied/UFOMap. Packag-
es for integration with the Robot Operation System (ROS) [18]
are also available. There are functions for reading and writing
OctoMap files and converting between UFOMap and OctoMap.
This facilitates the transition from OctoMap to UFOMap in
an already existing system, and allows to utilize both mapping
frameworks for different parts of the same system.

https://github.com/UnknownFreeOccupied/UFOMap

DUBERG AND JENSFELT: UFOMap: AN EFFICIENT PROBABILISTIC 3D MAPPING FRAMEWORK THAT EMBRACES THE UNKNOWN 6415

TABLE II
INSERTION TIMINGS ON THE COW DATASET3

V. EVALUATION

We compare our proposed mapping framework, UFOMap,
against OctoMap when it comes to memory consumption, in-
sertion time, and in three different use cases. The impact of the
indicators, if and iu, the thresholds, tf and to, and the accuracy
of the different integrators are also evaluated.

A. Memory Consumption and Node Count

In the first experiment, we compare the memory consumption
between UFOMap and OctoMap on the OctoMap 3D scan
dataset.2 We analyze the memory usage when the tree has been
pruned. Table I shows that UFOMap is around 38% of the size of
OctoMap, even though UFOMap contains more nodes in total,
as seen in the same table. The increase in the number of nodes
is a result of the unknown space being explicitly represented,
meaning an inner node must have either 0 or 8 children. The
decrease in memory usage is because of i) the smaller data
structures for the leaf nodes mentioned in Section IV-A and
ii) storing the child nodes directly in the child array of the inner
nodes, instead of storing pointers to the children as in OctoMap.

B. Insertion

A point cloud integration time comparison between UFOMap
and OctoMap is shown in Table II, using the cow dataset.3 For
both UFOMap and OctoMap the discrete integrator (see Sec-
tion IV-B2) is used. UFOMap� uses the fast discrete integrator
(see Section IV-B3) with n = 2 and d corresponding to the
depth of the voxels at 16 cm voxel size. UFOMap† uses the fast
integrator with n = 0 and again d corresponding to the depth of
the voxels at 16 cm voxel size.

The total time represents the average time for a single point
cloud to be integrated. Ray casting shows the average time
per point cloud for doing the ray casting part of the insertion.

2[Online]. Available: http://ais.informatik.uni-freiburg.de/projects/datasets/
octomap

3[Online]. Available: https://projects.asl.ethz.ch/datasets/doku.php?id=
iros2017

TABLE III
TIME TO DO COLLISION CHECKING FOR UFOMAP AND OCTOMAP

Insertion shows the average time per point cloud for integrating
the points calculated from the ray casting step into the octree.
The standard deviation is included for all.

When only looking at the discrete integrator for UFOMap, we
see that it is about two times faster at the insertion part of the
integration compared to OctoMap. The ray casting is between
1 to 2 times faster in UFOMap, which is, most likely, due to
different implementation factors since both utilize the same
algorithm. As the voxel size decreases, the difference between
the two frameworks increases, in favour of UFOMap. At a
voxel size of 4 cm and below, the need for the faster integrators
becomes very apparent.

UFOMap� and UFOMap† provides just that, fast integration
while still clearing free space. With UFOMap† scaling a lot better
with the resolution and being 26 times faster than OctoMap at
2 cm voxel size.

C. Collision Checking

In the first of the use cases we check if the robot, can safely
be at a certain position in the map. We thus check that there is no
occupied or unknown space in that region. This is an operation
that is heavily used in sampling-based motion planners, such as
RRTs. By not allowing any unknown space in this region we are
more conservative and safe. We sampled 1000000 poses where
at least the center of the pose was in free space. For each of the
samples we check for collisions in a radius of 25 cm. On average
around 50% of the sampled poses were in collision. The results
are presented in Table III. We can see that UFOMap allows for
faster collision checking than OctoMap in all cases but the ones
with large voxels. This is most likely because of the overhead
for constructing the iterators in UFOMap in these cases. The
last column, UFOMapocto, shows the result when traversing the
octree for collisions as in OctoMap in UFOMap. We see that
this is faster than OctoMap for all resolutions. However, it is
significantly slower than the default method in UFOMap, which
better exploits the octree structure, for the higher resolutions.

The time for collision checking changes only marginally with
voxel size for UFOMap compared to OctoMap. This can be
because of the indicators if and iu (see Section III) together
with the iterators (see Section IV-C). Specifying the bounding
sphere and that only occupied and unknown voxels should be
retrieved, UFOMap can directly move to a octree node that is
either occupied or unknown inside the radius.

To check the speedup from explicitly representing unknown
space, we also tested against only occupied space. The result for
UFOMap was largely unchanged. OctoMap was significantly

http://ais.informatik.uni-freiburg.de/projects/datasets/octomap
https://projects.asl.ethz.ch/datasets/doku.php{?}id$=$iros2017

6416 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 5, NO. 4, OCTOBER 2020

TABLE IV
TIME TO DO COLLISION CHECKING ALONG A LINE SEGMENT

TABLE V
SAME AS TABLE IV EXCEPT ONLY W.R.T. OCCUPIED SPACE

faster, still always slower than UFOMap, but now at most a
factor of 2.4 (compare to Table III).

D. Collision Checking Along a Line Segment

In the second use case we perform collision checking along a
line to see if a robot can move from one position to another.
For simple RRT path planning, the operations described in
Sections V-C and V-D are combined.

As in Section V-C, we are conservative and require that there
is no occupied or unknown space along the line. The line is
defined by two randomly sampled points, 4m apart. A check is
first performed to see if the robot can be at these two points using
the method mentioned in Section V-C. If not, two new points are
sampled.

In the collision checking along the line UFOMap can specify
an OBB and use the indicators for traversing the octree. With
OctoMap, lacking an explicit representation of unknown space
and an efficient way to query cells in an OBB we have to query
the octree as if it was a fixed size grid instead. As seen in Table IV
UFOMap is between 88 to 1080 times faster than OctoMap. In
OctoMap simple, third column, we only check if the distance
between the node center of an occupied or unknown node and
the line segment is less than the size of the robot. This common
simplification speeds up the calculations but leads to around 5%
incorrect answers. In the last column of Table IV we performed
the same experiment but without the indicators in UFOMap. In
this case the indicators provides up to almost a factor of 2 in
speedup.

In Table V we present results from collision checking along
a line but only considering occupied space. This allows us
to isolate the influence of the OBB (see Section IV-C) from
the influence of the explicit representation of unknown space.
UFOMap is only slightly faster, compared to in Table IV, which
means that most of the gain comes from the OBB and the

TABLE VI
TIME TO COMPUTE INFORMATION GAIN AT A POSE

Morton codes. OctoMap shows a speedup of roughly an order
of magnitude but it is still more than an order of magnitude
slower than UFOMap. In OctoMap we must first use an AABB
to get all the leaf nodes and then check all of these against an
OBB. In OctoMap simple, the check against the OBB has been
replaced by a simpler check, as mentioned earlier. This shows
how substantial the OBB calculation is and the benefit of having
it directly integrated into the UFOMap framework.

E. Calculate Information Gain

In reconstruction and exploration applications, next-best-
view [19] planning is a popular approach. The next-best-view is
often obtained by calculating the information gain from being
at a specific pose in the map. The information gain is a measure
of how much new information can be collected from a certain
pose. In exploration, where the goal is to turn each voxel into
either occupied or free space, the information gain can simply
be how many unknown nodes can be seen from a certain pose. In
this experiment we compare the performance when calculating
the information gain in UFOMap compared to OctoMap. For
the sensor we use a horizontal field of view of 115◦ and vertical
field of view of 60◦. The minimum and maximum range of the
sensor were set to 0m and 6.5m, respectively.

The results from this experiment can be seen in Table VI.
OctoMap and UFOMapocto compute the information gain similar
to how it is done in [6]. Both not exploiting the octree structure.

For UFOMap we exploit the octree structure to quickly find
the unknown voxels inside the region of interest, using a frustum
bounding volume. For each node found we do ray casting from
the sensor to the node, at the same depth in the octree as the node.
If the node is not blocked by any occupied space we add it to
the total gain, otherwise we recurs down to the node’s children
and do the ray casting for each child at their depth instead. We
do this until the node is either not blocked by an occupied node
or until we are at the leaf depth.

UFOMapfast also exploits the octree structure. For each un-
known node found, we recurs down to the leaf nodes right away
and do the ray casting. Once a single of the children is not
blocked we assume that we can see all children and add all
of them to the total gain. Therefore, this approach gives more of
an approximate answer than the other.

As seen in Table VI the information gain computation is 1.5
to 15 faster with UFOMap compared to OctoMap, depending
on which UFOMap method is used.

F. Effect of Integrators on Mapping

In order to investigate the effect of the integrators, introduced
in Section IV-B, we created a Gazebo environment containing a

DUBERG AND JENSFELT: UFOMap: AN EFFICIENT PROBABILISTIC 3D MAPPING FRAMEWORK THAT EMBRACES THE UNKNOWN 6417

Fig. 5. Comparison of the integrators mentioned in Section IV-B. (a) Discrete
integrator. (b) Fast discrete integrator with d = 3 and n = 2. (c) Fast discrete
integrator with d = 3 and n = 0. (d) Gazebo environment. (e) and (f) shows
extra added free space and occupied space, respectively, in (g) compared to (h),
bounded around the house and car.

house and a car shown in Fig. 5(d). We let an unmanned aerial
vehicle with a RGB-D sensor fly around in the environment at
predefined setpoints to map the environment with the different
integrators. The final map produced with the discrete integrator is
seen in Fig. 5(a). Results with the fast discrete integrator for two
settings are shown in Fig. 5(b) (d = 3 and n = 2) and Fig. 5(c)
(d = 3 and n = 0).

Fig. 5(e) shows the free space that exists in Fig. 5(c) but not
in Fig. 5(a), i.e. the extra free space added by the fast discrete
integrator with n = 0. Since this integrator clears space behind
obstacles the outline of the house and car can be seen in the
additional free space. Fig. 5(f) shows the occupied space that
exists in Fig. 5(c) but not in Fig. 5(a). Since the clearing of free
space in scaled down in the fast discrete integrator it contains
additional occupied nodes around the surfaces.

The comparisons above compared the integrators against
each other, but not against ground truth. The result of mapping
depends on, e.g., the sensor, sampled view points, sensor posi-
tioning accuracy and the state the of the world in unseen volumes.
Defining the ground truth for the map is thus not well-defined.
In this letter there is no sensor noise nor sensor positioning error.
The RGB-D point clouds themselves are thus as close to perfect
samples of the ground truth as we get. We build a ground truth
octree model by merging all point clouds using the ground truth
sensor positions. A voxel is classified as occupied if at least one
point falls in it.

For the discrete integrator 1698999 of the voxels matched as
being occupied, while 455068 voxels were misclassified as being
free. The corresponding values for the fast discrete integrator
with n = 2 were 1441556 and 712521 respectively. Lastly, the
fast discrete integrator with n = 0 resulted in 1746293 and
407784 respectively.

We can conclude that the fast discrete integrator with n = 0
performs similar to the discrete integrator, while being a lot
faster. Using the fast discrete integrator with something other
than n = 0 is discouraged, since it performed worse in ev-
ery situation tested. For these experiments we used the same

Fig. 6. Resulting map for different to, mentioned in Section III. For all three
cases tf was set to 0.5.

Fig. 7. UFOMap real-time volumetric color mapping at 4 mm voxel size.

parameter values for all methods. Some improvements forn �= 0
might be achievable by tuning.

G. Effect of the Additional Threshold tf

Lastly, the effect of the threshold tf is investigated. As men-
tioned in Section III the additional threshold allows for classify-
ing the occupancy value into unknown, free, and occupied. Fig. 6
illustrates that by increasing to, but keeping tf , constant we can
see which part of the environment needs to be further updated in
order to have a map with high probability in the occupied regions.
If the same change to to would have been done in OctoMap all
the nodes that disappear in Fig. 6(b) and Fig. 6(c) compared to
Fig. 6(a) would be classified as free. UFOMap classify them as
unknown, since tf has not changed.

VI. CASE STUDIES

A. Real-Time Volumetric Mapping

The first case compares the volumetric mapping performance
on the freiburg3_long_office_household sequence from [20], a
86 s office sequence with point cloud data at 2 Hz.

UFOMap managed to incorporate all point clouds and create
a 3D map with 4 mm voxel size with color information at
2 Hz, seen in Fig. 7. Without color, 2 mm voxel size without
missing any of the point clouds was the limit for UFOMap. In
both cases the fast discrete integrator was used, mentioned in
Section IV-B3, with n = 0 and d = 4. OctoMap was only able

6418 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 5, NO. 4, OCTOBER 2020

Fig. 8. Comparision of exploration progress between UFOMap and OctoMap
in the power plant scenario.

to process all point clouds with 3 cm voxel size and without
color.

B. Exploration

In the second case, we compare UFOMap with OctoMap
in a next-best-view exploration scenario. We have chosen this
scenario since it incorporates all of the above use cases in a
realistic setting. We have chosen to use the receding horizon
next-best-view exploration method, proposed in [6], for this
comparison. For each node that is being sampled for the RRT,
there is a check if the node is in free space. There is also a check
if the path between the newly sampled node and prospective
parent node is clear. Lastly, when selecting where to move next
we calculate a score for each node in the RRT. This score depends
on the distance and the information gain along the branch to the
node.

In UFOMap, as the exploration proceeds the benefit of the
proposed approach increases. As more of the space gets classi-
fied as free space, all of the above calculations are accelerated
in UFOMap compared to OctoMap. This means that when the
environment is almost fully explored you can discard nodes
that give very little new information quickly. This shows that
UFOMap is especially well suited for exploration, compared to
OctoMap where the necessary calculations are not affected to
the same degree by how much is explored.

The power plant scenario from the Gazebo model library was
used for the exploration test, seen in Fig. 1. 16 cm voxel size
was used. As can be seen in Fig. 8, switching from OctoMap
to UFOMap makes a significant difference to the exploration
rate. UFOMap managed to finish the exploration after around
650s, while OctoMap had completed 70% of the exploration
after 900s, which was the maximum allowed time.

VII. CONCLUSION

We present UFOMap, an open source framework for 3D map-
ping. UFOMap was built on OctoMap, which is one of the basic
building blocks in a number of different robotics applications.
Just like OctoMap, the underlying data structure is an octree.
OctoMap only explicitly models occupied and free space, while
UFOMap explicitly models unknown, free, and occupied space.
This representation, together with the fact that every node in
the octree stores indicators for what kind of space their children

contains, results in a significant performance boost compared
to OctoMap for use cases where unknown space is extensively
used.

Along with these improvements, we introduce new ways of
integrating data into the octree. We show that this leads to
significant reductions in the time to insert new measurement
data, such as point clouds, into the map.

The UFOMap mapping framework is freely available at
https://github.com/UnknownFreeOccupied/UFOMap and can
be easily integrated with robotics systems. It is written in C++
and can be run as a standalone package or integrated into
ROS [18].

REFERENCES

[1] M. Hebert, C. Caillas, E. Krotkov, I. S. Kweon, and T. Kanade, “Terrain
mapping for a roving planetary explorer,” in Proc. IEEE Int. Conf. Robot.
Autom., 1989, pp. 997–1002.

[2] R. Triebel, P. Pfaff, and W. Burgard, “Multi-level surface maps for outdoor
terrain mapping and loop closing,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst., 2006, pp. 2276–2282.

[3] D. Meagher, “Geometric modeling using octree encoding,” Comput.
Graph. Image Process., vol. 19, no. 2, pp. 129–147, 1982.

[4] H. Oleynikova, A. Millane, Z. Taylor, E. Galceran, J. Nieto, and R.
Siegwart, “Signed distance fields: A natural representation for both map-
ping and planning,” in Robot.: Sci. Syst., 2016.

[5] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard,
“OctoMap: An efficient probabilistic 3D mapping framework based on
octrees,” Auton. Robots, vol. 34, pp. 189–206, 2013.

[6] A. Bircher, M. Kamel, K. Alexis, H. Oleynikova, and R. Siegwart, “Re-
ceding horizon “Next-Best-View” planner for 3D exploration,” in Proc.
IEEE Int. Conf. Robot. Autom., 2016, pp. 1462–1468.

[7] M. Selin, M. Tiger, D. Duberg, F. Heintz, and P. Jensfelt, “Efficient
autonomous exploration planning of large-scale 3-D-environments,” IEEE
Robot. Autom. Lett., vol. 4, no. 2, pp. 1699–1706, Apr. 2019.

[8] F. S. Barbosa, D. Duberg, P. Jensfelt, and J. Tumova, “Guiding autonomous
exploration with signal temporal logic,” IEEE Robot. Autom. Lett., vol. 4,
no. 4, pp. 3332–3339, Oct. 2019.

[9] L. Schmid, M. Pantic, R. Khanna, L. Ott, R. Siegwart, and J. Nieto, “An
efficient sampling-based method for online informative path planning
in unknown environments,” IEEE Robot. Autom. Lett., vol. 5, no. 2,
pp. 1500–1507, Apr. 2020.

[10] M. Pivtoraiko, D. Mellinger, and V. Kumar, “Incremental micro-UAV
motion replanning for exploring unknown environments,” in Proc. IEEE
Int. Conf. Robot. Autom., 2013, pp. 2452–2458.

[11] J. Chen, T. Liu, and S. Shen, “Online generation of collision-free trajec-
tories for quadrotor flight in unknown cluttered environments,” in Proc.
IEEE Int. Conf. Robot. Autom., 2016, pp. 1476–1483.

[12] Y. Roth-Tabak and R. Jain, “Building an environment model using depth
information,” Comput., vol. 22, no. 6, pp. 85–90, 1989.

[13] M. Nießner, M. Zollhöfer, S. Izadi, and M. Stamminger, “Real-time 3D
reconstruction at scale using voxel hashing,” ACM Trans. Graph., vol. 32,
no. 6, pp. 169-1–169-11, 2013.

[14] H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart, and J. Nieto, “Voxblox:
Incremental 3D Euclidean signed distance fields for on-board MAV
planning,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2017,
pp. 1366–1373.

[15] G. M. Morton, “A computer oriented geodetic data base and a new
technique in file sequencing,” Ottawa, Canada: IBM Ltd., Tech. Rep.,
1966.

[16] L. Stocco and G. Schrack, “Integer dilation and contraction for quadtrees
and octrees,” in Proc. IEEE Pacific Rim Conf. Commun., Comput., Signal
Process., 1995, pp. 426–428.

[17] J. Amanatides and A. Woo, “A fast voxel traversal algorithm for ray
tracing,” in Eurographics, vol. 87, no. 3, pp. 3–10, 1987.

[18] M. Quigley et al., “ROS: An open-source robot operating system,” in Proc.
ICRA Workshop Open Source Softw., 2009, pp. 1–6.

[19] C. I. Connolly, “The determination of next best views,” in Proc. IEEE Int.
Conf. Robot. Autom., 1985, pp. 432–435.

[20] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A
benchmark for the evaluation of RGB-D SLAM systems,” in IEEE/RSJ
Int. Conf. Intell. Robots Syst., 2012, pp. 573–580.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

