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Using Human Gaze to Improve Robustness Against
Irrelevant Objects in Robot Manipulation Tasks

Heecheol Kim , Yoshiyuki Ohmura, and Yasuo Kuniyoshi

Abstract—Deep imitation learning enables the learning of com-
plex visuomotor skills from raw pixel inputs. However, this ap-
proach suffers from the problem of overfitting to the training
images. The neural network can easily be distracted by task-
irrelevant objects. In this letter, we use the human gaze measured
by a head-mounted eye tracking device to discard task-irrelevant
visual distractions. We propose a mixture density network-based
behavior cloning method that learns to imitate the human gaze.
The model predicts gaze positions from raw pixel images and crops
images around the predicted gazes. Only these cropped images are
used to compute the output action. This cropping procedure can
remove visual distractions because the gaze is rarely fixated on
task-irrelevant objects. This robustness against irrelevant objects
can improve the manipulation performance of robots in scenarios
where task-irrelevant objects are present. We evaluated our model
on four manipulation tasks designed to test the robustness of the
model to irrelevant objects. The results indicate that the proposed
model can predict the locations of task-relevant objects from gaze
positions, is robust to task-irrelevant objects, and exhibits impres-
sive manipulation performance especially in multi-object handling.

Index Terms—Deep learning in grasping and manipulation,
learning from demonstration, telerobotics and teleoperation, visual
servoing, computer vision for automation.

I. INTRODUCTION

IMITATION learning involves learning a policy by observing
expert demonstrations. One application of imitation learning

is in robotics (e.g., [1]–[4]), because this method offers potential
for learning complex policies. Imitation learning does not re-
quire further exploration, unlike reinforcement learning, which
requires implausible amounts of interactions to train robots [5].
By using teleoperation systems, high-quality demonstration data
for manipulation tasks become easily available [6].

Deep learning has been used to solve high-dimensional com-
puter vision tasks, such as classification, object detection, and
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Fig. 1. MDN architecture can infer multiple gazes (1c) from a single gaze
(Fig. 1a, 1b) by a human operator.

semantic segmentation (e.g., [7]–[10]). Learning robot manipu-
lation from raw pixel images has been studied because there is no
need to manually define the state space from high-dimensional
image inputs (e.g., [11]–[15]). However, direct mapping from
the images to the action output suffers from overfitting to the
training images. In case there are changes in the background (i.e.,
the advent of task-irrelevant objects), they change the network’s
policy output. This is because the mapping of the output action
from visual features relies on fully connected layers. Changes of
features due to the advent of objects affect the output of matrix
multiplication in the fully connected layers.

Human gazes at task-relevant object positions [16], [17].
Therefore, we can remove information about task-irrelevant
objects by measuring the gaze of a human operator using a
head-mounted eye tracking device while teleoperating with
a robot. The acquired gaze position as well as state-action
demonstration pairs are used to learn manipulation tasks. As
this method discards out-of-gaze objects to change the policy,
the policy is robust to such visual distractions as the advent of
unseen and new objects. Robustness against visual distractions
also improves generalization on tasks involving multiple objects.
In such tasks, all other objects that are irrelevant to the given
manipulation sub-task (i.e., all objects that are not manipulated,
where usually one target can be manipulated at one time) become
visual distractions.

People can gaze at different positions in similar situations; i.e.,
when completing a task involving two objects, a person can gaze
at one object at time step t and the other at time step t+ 1. In this
case, gaze labels are assigned to different objects on very similar
input images (e.g., Fig. 1a and 1b). When such prediction of the
gaze is considered to be object localization (i.e., regression),
the problem is intractable because the object regression model
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tries to fit one output coordinate to two gaze positions from
two similar input images. Therefore, we consider gaze position
prediction to be a problem of probability estimation. The Mix-
ture Density Network (MDN) [18] estimates parameters of the
Gaussian Mixture Model (GMM) from the given target and can
reconstruct the probability distribution of gaze positions. Thus,
the MDN can infer multiple object locations simultaneously,
even though it is trained using only one gaze point at each time
step (Fig. 1 c).

The main contributions of this paper are as follows:
1) To the best of our knowledge, this research is the first to use

the human gaze to improve imitation learning performance
for robot manipulation tasks.

2) We propose using the MDN to predict the human gaze.
3) We empirically show that gaze prediction makes the learn-

ing policy more robust to visual distractions and improves
multi-object manipulation performance.

II. RELATED WORK

Imitation learning includes inverse reinforcement learning
and behavior cloning. Inverse reinforcement learns the reward
function from the trajectories of demonstrations [19]–[22]. Ad-
versarial optimization [23] has been recently applied to inverse
reinforcement learning [24], [25]. However, these adversarial
training-based methods require a large number of interactions
with the environment, which is unfeasible when training robots.

Behavior cloning involves learning direct mapping from the
input state to the output action using the given expert demon-
stration. The successful applications of behavior cloning to
robotics include [6], [13], [26], [27]. In [6], a teleoperation
system integrated with virtual reality is proposed to make natural
human-robot operating interface and showed that end-to-end
learning of neural network by behavior cloning can accomplish
manipulation tasks. However, no research was done for applying
visual attention mechanism for robustness to task-irrelevant
objects.

Predicting the location at which the gaze is fixed (i.e., saliency
map) is an important task in computer vision that aims to
describe visual attention. Many recent studies have investigated
predicting the saliency map [28]–[33]. Even though impressive
results have been reported, they are not applicable to robot
control, because the saliency map is high dimensional. Our
proposed method does not output the saliency map directly
but generates low-dimensional mean gaze positions therefore
its output can easily guide policy.

Eye tracking has been studied in robotics for many pur-
poses, such as utilizing gaze information as a control signal to
robots [34]–[36] and human–robot communication [37], [38].
To the best of our knowledge, no study has addressed improving
the imitation learning performance of robots by using gaze
information.

There is a research to use gaze prediction for imitation learn-
ing in Atari games [39]. But our research goal is to address
improving the manipulation performance of real robots by using
human gaze information. In such a situation, the human gaze is
highly correlated to handling objects [17], and human rarely

gazes at task-irrelevant positions [16]. This correlation between
gaze and task-relevant objects grants validity to our approach to
discard visual information that is not the focus of the gaze. But,
in Atari games, such correlation is currently unknown.

III. ROBOT SYSTEM WITH EYE TRACKING

A. Hardware

Our robot teleoperation system was composed of two UR5
robot arms, a stereo camera on the robot, two robot controllers,
and a head-mounted display with an eye tracker on it. To generate
demonstration data, a human operator operated the UR5 robots
through robot controllers while wearing a head-mounted display
(HMD) that showed images from the stereo camera.

The ZED Mini stereo camera developed by Stereo Labs was
mounted between the UR5 robot arms, providing stereo RGB
images to the operator. The frame rate of this stereo camera was
35 Hz, sufficiently smooth for precise operation. A Tobii Pro VR
Integration is the integration of an HTC Vive HMD and a Tobii
Pro eye tracking device. The Tobii Pro VR Integration provides
stereo video images to the human operator and measures the
gazes of both the left and right eyes simultaneously.

We built two controllers that were kinematically equivalent to
two UR5 robots developed by Universal Robots. The controllers
were implemented with 6 + 1 (DoF of UR5 robot+DoF of
gripper) encoders that measured the angles of the joints of
each DoF. The UR5 robots were operated at 100 Hz with the
measured joint angle signal. The human operator could operate
the robots naturally and accurately with these controllers. In the
experiments, only the right UR5 robot and controller were used.

The neural networks were trained using Intel Xeon CPU E5-
2698 v4 and single NVIDIA Tesla V100. Intel CPU Core i7-
8700K was used for inference.

B. Data Processing

We measured gaze information when the human operator
conducted all tasks. The measured time-series of human gaze
is used to train the MDN model. On test, gaze is inferenced
from camera input by using the trained model.

The RGB image was resized to 256× 256× 3 to train the pro-
posed neural network model. Between the left and right camera
images, the side of the operator’s dominant eye (throughout this
research, left) was chosen. Although the ZED Mini can generate
a depth image from stereo images, we did not use it because our
experiments which were always performed on the same flat table
do not require 3D information.

The angles of the joints of the right UR5 robot were converted
into the position of the end-effector [x, y, z] and orientation
represented by the Euler angle [α, β, γ]. The angles of the
gripper were binarized into gt ∈ {0, 1} which represented the
opening/closing of the gripper. The position and orientation of
the end-effector represented by the Euler angle were concate-
nated in pt ∈ R6. st ∈ R7 is the concatenation of pt and gt, and
represents the state of the robot’s arm including the gripper.

The input to the neural network model was It = (ot, st−4:t),
where ot ∈ R256×256×3 was the resized RGB image and st−4:t ∈
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Fig. 2. Architecture of our neural network model. The mixture density network (blue) predicts gazes from an input RGB image, and 40× 40 cropped images
around the predicted gaze positions are used to predict the action output of the next step (green).

R7×5 were the five most recent steps of the states of the end-
effector (see [6]). The target Ot = (ut, gt+1, et) included (1)
the end-effector’s action command ut = pt+1 − pt ∈ R6, (2)
the gripper’s command gt+1 ∈ R1, and (3) the dominant gaze
position et ∈ R2.

IV. BEHAVIOR CLONING WITH GAZE PREDICTION

The proposed model aims to learn the mapping from input
pixels and states for action outputs through behavior cloning.
Unlike conventional behavior cloning, the proposed model does
not directly map the input image to the output. It first trains the
MDN to learn the gaze positions, and cropped images around
the predicted gaze positions are directly mapped to the output
action. The proposed model architecture is based on the baseline
method [6] which studied the behavior cloning of manipulation
tasks using teleoperation demonstration data (see Appendix B
for details).

A. Mixture Density Network

The MDN [18] is a neural network that learns the probability
distribution of given target data from the input by assuming that
the data probability is a mixture of Gaussian distributions. To
focus on learning not temporal but spatial property of gazes,
we used MDN without any recurrent structure. As the output
of the MDN can generate multiple gazes, unlike humans, the
gazes directed at two objects can be generated simultaneously
while the human needs to temporarily switch gaze between task-
relevant objects.

Without the recurrent layer, the outputs of the MDN
μn
t , σ

n
t , ρ

n
t , and pnt depend only on the given input image ot:

μn
t = πμ(ot) (1)

σn
t = exp(πσ(ot)) (2)

ρnt = tanh(πρ(ot)) (3)

pnt = softmax(πp(ot)) (4)

where μn
t , σn

t , and ρnt refer to the mean, standard deviation, and
correlation of 2D gazes of the nth Gaussian distribution at time
step t, and pnt indicates the weight of the nth Gaussian distri-
bution. πμ, πσ , πρ, and πp refer to neural network architecture
that computes μ, σ, ρ, and p respectively. The probability of the
given gaze position et under the MDN model is estimated by
N (et;μ

n
t , σ

n
t
2, ρnt ), and the weighted sum of probabilities with

weight pnt is maximized by using the negative log-likelihood
loss:

Lgaze = −log

(
N∑
i=1

pnt N (et;μ
n
t , σ

n
t
2, ρnt )

)
(5)

B. Model Architecture

The architecture of our neural network is illustrated in Fig. 2.
The input image is convolved using five convolutional layers [7]
with eight channels, and a spatial softmax layer [11], [12] is used
to compute spatial feature points from pixels (see [12] for detail).
These points are then passed to two fully connected layers to
learn μn

t , σn
t , ρnt , and pnt . we used two Gaussian distributions.

The policy network learns visuomotor policy from cropped
images around the predicted gaze positions. We cropped a 40×
40 area around the predicted gaze position. This network was
composed of two sub-modules of five convolutional layers with
spatial softmax and three fully connected layers. The output
of spatial softmax was added to the gaze position μ to acquire
the absolute position of the feature point on the image. The
concatenation of the five most recent end-effector states st−4:t ∈
R7×5, probability of each Gaussian pnt , and the output of spatial
softmax of all sub-modules constituted the input to the three
fully connected layers that output the action.

C. Loss Function

The loss function of the policy network closely follows [6].
�1 loss, �2 loss, and directional alignment loss fit the output
πθ(ot, st) into the end-effector’s action command ut and the
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Fig. 3. Task setups.

gripper action command gt+1 for the next step. Lc encourages
learning directional alignment rather than the velocity of the
action because the latter does not affect performance in our task
setup:

L�2 = ||πθ(ot, st)− ut||22 (6)

L�1 = ||πθ(ot, st)− ut||1 (7)

Lc = arccos

(
uT
t πθ(ot, st)

||ut|| ||πθ(ot, st)||
)

(8)

Binary cross-entropy loss was used to predict the gripper’s
open/close status at the next time step gt+1 ∈ {0, 1} with the
network’s gripper output πg(ot, st):

Lg = gt+1 log πg(ot, st) + (1− gt+1) log (1− πg(ot, st))
(9)

MDN loss Lgaze was calculated as in (5). The weighted sum
of loss functions described above was used as the overall loss
function to update the network:

Ltotal = λ�2L�2 + λ�1L�1 + λcLc + λgLg + λgazeLgaze

(10)
The gradients of the policy loss functions (L�2, L�1, and Lc,

Lg) are not backpropagated to the MDN module because we
want the MDN to not be affected by policy updates.

V. EXPERIMENTS

A. Experimental Setup

Our experiments were designed to evaluate the ability of the
proposed model to learn robotic manipulation tasks as well as its
robustness against visual distractions.1 The manipulation tasks
were as follows: (1) Pick: picking a LEGO structure (Fig. 3a);
(2) Pick-2: picking a LEGO structure in the presence of another
LEGO structure (Fig. 3b); (3) Pick-and-place: picking a toy
apple and placing it in a bowl (Fig. 3c); (4) Pick-and-place×N :
picking and placing N multiple objects in order (Fig. 3d). In
Pick-and-place, the bowl was placed along the line on the left
side of the 25 cm × 25 cm area where the apple is placed on
(Fig. 3c).

(1) and (2) are designed to evaluate whether the proposed
method is robust to the appearance of a new object or the
absence of a known object. (3) is chosen to confirm the proposed
method is generally applicable to tasks that both picking and

1The supplementary video that describes the example behavior of the pro-
posed model on each task is available at http://ieeexplore.ieee.org. This video
is 48.5 MB in size.

Fig. 4. Sampled gaze saliency map for each method. Regression-MLP (Fig. 4c)
spreads its predictions between objects at which the human operator had mainly
gazed.

placing locations are arbitrary. The purpose of (4) is to evaluate
manipulation performance on multi-object tasks. We tested on
N = 2 (apple and orange) and N = 3 (apple, orange, and kiwi).
Details of task setups are provided in Appendix A.

B. Assessment of Performance in Terms of Predicting Gaze

Another option for gaze prediction is to treat it as a regression
problem. The output of the model is a single gaze coordinate
at each time step in this case. We propose two regression mod-
els for comparison: the feed-forward model (Regression-MLP)
and the recurrent model (Regression-LSTM). Regression-MLP
learns the gaze position from an image at a single time step,
and Regression-LSTM considers images of past steps. Both
models had the same convolutional layers and a spatial softmax
layer with our MDN. Two fully connected layers followed the
spatial softmax layer in Regression-MLP, whereas an LSTM
and a fully connected layer followed the spatial softmax layer
in Regression-LSTM.

Because the MDN learns multiple gazes from a single ground-
truth gaze, simply calculating the distance between the predicted
gaze and the ground truth was not appropriate.

Instead, we generated a saliency map for each demonstration
of the test set by concatenating all gazes in a demonstration
and considering them as a set of gazes for a single image.
The saliency map was computed by first setting the values of
the pixels at μn

t to pnt and applying Gaussian blur. pnt is the
weight of each Gaussian distribution directly generated from the
output of the MDN, or always pnt = 1 for Regression-MLP and
Regression-LSTM. Fig. 4 shows how each model predicted the
saliency map. Regression-LSTM failed to learn and Regression-
MLP often predicted the locations between task-relevant objects.
The MDN accurately imitated the ground truth.

We evaluated models to predict saliency maps using the
following multiple metrics because there is no established metric
[40], [41]: the area under the ROC curve proposed by Judd
(AUC-Judd) [42], Pearson’s correlation coefficient (CC), nor-
malized scanpath saliency (NSS) that computes the average of
the fixation locations along a subject’s scanpath [43], similarity
(SIM) which is the sum of the minimum values at each point
in the distributions that are scaled to sum to one [42], and the
Kullback–Leibler divergence (KL) [44]. The results indicate that
the MDN had the highest accuracy over all tasks (Table I and
Table VII).

http://ieeexplore.ieee.org
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TABLE I
AVERAGE AUC-JUDD SCORES OF GAZE PREDICTION METHODS

Fig. 5. Comparison of the methods in terms of the AUC-Judd score on Pick
and Pick-2. MDN delivered better performance than Regression-MLP, and the
Pick → Pick-2 prediction showed a more noticeable drop in score than Pick-2
→ Pick prediction.

TABLE II
TASK SUCCESS RATE OF MODELS TRAINED WITH PICK. TASK “PICK”

INDICATES THAT MODELS WERE TRAINED ON THE PICK DATASET AND TESTED

ON THE PICK SETUP (PICK → PICK). TASK “PICK-2” INDICATES THAT THE

MODELS WERE TESTED ON THE PICK-2 SETUP (PICK → PICK-2). THE

RESULTS ARE REPRESENTED IN TERMS OF MEAN (STANDARD DEVIATION)

Fig. 5 presents a comparison of the methods in terms of AUC-
Judd scores between tasks with visual distractions and tasks
without visual distractions. Fig. 5b shows the scores on the Pick-
2 → Pick-2 test (trained with the Pick-2 training set and tested
on the Pick-2 test set, blue tower block) and Pick → Pick-2
test (trained with the Pick training set and tested on the Pick-2
test set, orange tower block). Fig. 5a shows the scores on the
Pick → Pick test and Pick-2 → Pick. The results imply that (1)
MDN outperformed regression methods, and (2) predicting the
gaze position in Pick-2 using the model trained on Pick was
more difficult than predicting the gaze position in Pick using the
model trained on Pick-2.

C. Evaluating Performance on Manipulation Tasks

In this subsection, the comparison between the baseline and
the proposed method was conducted. We trained and tested both
models with four random seeds [0, 1, 2, 3]. For each random
seed, 9 test trials have been performed. Overall success rates of
the proposed method were significantly better than the baseline
(p < 1.74e−29, the chi-squared test. Tables II, III, IV, and V).

Tables II, III, and IV investigate the robustness of models
against visual distractions. Table II shows that the models were
trained on the Pick dataset and evaluated on the Pick setup
(Pick → Pick) or the Pick-2 setup (Pick → Pick-2). In Pick

TABLE III
TASK SUCCESS RATE OF MODELS TRAINED ON PICK-2. TASK “PICK-2”

INDICATES THAT THE MODELS WERE TRAINED ON THE PICK-2 DATASET AND

TESTED ON THE PICK-2 SETUP (PICK-2 → PICK-2). TASK “PICK” INDICATES

THAT THE MODELS WERE TESTED ON THE PICK SETUP (PICK-2 → PICK)

TABLE IV
TASK SUCCESS RATE OF MODELS TRAINED ON PICK-AND-PLACE. THIS SHOWS

THE SUCCESS RATES OF “PICKING” AND “PLACING” ON THE PICK-AND-PLACE

SETUP. TASKS “PICK W/ BANANA” AND “PLACE W/ BANANA” REFER TO THE

PICK-AND-PLACE SETUP WITH A TOY BANANA PLACED AS A NEW OBJECT

(SEE FIG. 6)

TABLE V
TASK SUCCESS RATE OF MODELS TRAINED WITH PICK-AND-PLACE×2 AND

PICK-AND-PLACE×3. {APPLE, ORANGE, KIWI} REFER TO THE SUCCESS RATE

OF PICK-AND-PLACING EACH OBJECT ON A PLATE

→ Pick-2, the models needed to adapt to the appearance of an
unseen object. The models listed in Table III were trained on
the Pick-2 dataset. The proposed model showed higher success
rate than baseline on Pick → Pick (44.4% versus 22.2%) and
Pick-2 → Pick (61.1% versus 47.2%). Also, the comparison
between Pick → Pick and Pick → Pick-2 showed steep drop of
success rate (97.2% → 44.4%, 52.8% drop, proposed method),
while comparison between Pick-2 → Pick-2 and Pick-2 → Pick
showed more moderate drop of success rate (83.3% → 61.1%,
22.2% drop, proposed method) than models trained with Pick.
This implies that (1) the proposed model was in general more
robust to visual distractions because it prevented them from
changing the policy, and (2) the trained visuomotor policies
had poorer adaptation ability to visual distraction caused by the
appearance of new objects than that caused by the absence of
objects. Table IV presents the success rate on Pick-and-place.
The models were tested with (1) the Pick-and-place setup and
(2) the Pick-and-place-with-Banana setup, where a toy banana
was placed at a fixed location as a source of visual distraction.
The proposed method recorded higher mean success rate than
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Fig. 6. Example of successful trial of Pick-and-place w/ Banana.

Fig. 7. Example of successful trial of Pick-and-place×2 with the gazes plotted.

baseline on Pick-and-Place → Pick-and-Place w/ Banana. Fig. 6
depicts a successful trial example of Pick-and-Place w/ Banana.

The robustness against irrelevant objects improved ma-
nipulation performance on tasks involving multiple objects
(Table V). On tasks with multiple objects, the objects became
task-irrelevant visual distractions when they were not being
manipulated. For example, in Pick-and-place×2, the orange was
a visual distraction while picking and placing the apple. Let us
assume that the baseline was overfitted to the demonstrations,
including in a situation when the apple was placed at position
(x1, y1) and the orange at (x2, y2). In the test phase, when the
apple was placed in the same position (x1, y1) but the orange
was placed at a different position (x3, y3), the orange became the
visual distraction. Thus, the baseline model could not generalize
to manipulate the apple. To deal with this problem without gaze
prediction, a very large number of demonstrations are required
because the state space to learn expands exponentially according
to the number of objects. Cropping images by the predicted gaze
positions restricts information about task-irrelevant objects so
that a training policy with a feasible number of demonstrations
is possible. Fig. 7 shows that the task-irrelevant object (orange)
was not gazed at while manipulating the apple (0 s∼6.0 s), and
the gaze shifted to the orange as soon as manipulation of the
apple was finished (10.4 s∼22.9 s).

VI. DISCUSSION

In this paper, we proposed the use of eye tracking to improve
imitation learning by robots to perform manipulation tasks. An
MDN-based architecture was proposed to learn visual attention
and crop images around the predicted gazes to prevent a degra-
dation in performance owing to visual distractions. The MDN
exhibited higher accuracy of gaze prediction than other imple-
mentations, including Regression-MLP and Regression-LSTM,
because the proposed method learns the distribution of gazes
using a GMM rather than simply considering gaze prediction
to be a regression problem. The experimental results suggest
that the proposed model is more robust to irrelevant objects
and provides higher performance, especially on a multi-objects
manipulation task.

The results imply that the convolutional layers with a spatial
softmax layer, which was used in both the baseline and the

proposed model, was less affected by the absence of objects
that were always seen during training than the appearance of
task-irrelevant objects. One plausible explanation for this is that
the disappearance of objects merely rendered the values of the
corresponding feature map similar to the feature values of the
background (e.g., in Pick and Pick-2, the texture of the table).
Because the spatial softmax layer learned task-relevant locations
in feature map and ignored task-irrelevant known features, the
absence of the task-irrelevant objects had little impact on the
output of this layer. On the contrary, because the feature values
of unknown objects could not be removed completely due to the
infinite variability, the spatial softmax layer was relatively af-
fected by such unknown features. Consequently, our method was
more effective when task-irrelevant objects were constructed by
known features.

The main reason for most of the failure cases of the proposed
model was due to the failure of gaze prediction. Therefore,
improving gaze prediction may further improve the task success
rate. Further research on neural network design that is robust to
visual distractions is needed.

This research did not investigate the effect of the dynamics of
the human gaze on robot manipulation performance. While we
were mainly concerned with predicting the spatial properties of
gazes, a temporal shift in them might provide important clues
when solving more complex tasks. We defer this consideration
to future research.

APPENDIX

A. Task specification

• Pick: The purpose of this simple task was to pick a target
object. The target object was randomly placed in a 25 cm ×
25 cm area on the table. A successful trial was defined by
the robot picking the pillar or the top of the target object
with its fingertips such that it was lifted up from the table.

• Pick-2: This task setup was identical to Pick task except that
the orange tower block was placed to the left of the target
object. The orange tower block could be placed outside the
25 cm × 25 cm area it remained in the vicinity of the target
object.

• Pick-and-place: In this task, a toy apple was placed ran-
domly in the 25 cm × 25 cm area on the table, and a bowl
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TABLE VI
TRAINING SET STATISTICS WITH THE NUMBER OF DEMONSTRATIONS AND

TOTAL DEMONSTRATION TIME

was placed to the left of the area. A trial was considered
successful if the robot picked up the apple from the table
and dropped it into the bowl.

• Pick-and-place×2: A toy apple was placed in the bottom
half of the 25 cm × 25 cm area and an orange in its upper
half. All demonstrations first involved placing the apple on
the plate and then placing the orange on it. A successful
trial was defined by the robot properly picking and placing
both the apple and the orange on the plate.

• Pick-and-place×3: The toy apple was placed under the toy
orange and the toy orange was placed under the toy kiwi.
Other setups follow Pick-and-place×2.

The total dataset is divided into 90 % training set and 10 %
validation set. Table VI presents the statistics of the training set
of tasks. The demonstration was downsampled from 35 Hz to
5 Hz.

B. Model specifications

In our experiments, λ�1 = 0.1, λ�2 = 1.0, λc = 0.5, and
λgaze = 1.0 were used with a learning rate of 0.0001 and batch
size of 36. We used the Rectified Adam (RAdam) [45] optimizer,
a variant of the Adam optimizer.

We excluded the auxiliary prediction network described on [6]
from the baseline model for a fair comparison with the proposed
model. We adjusted the number of channels of the baseline so
that the total number of model parameters was similar to the
number of parameters of the proposed model (approx. 46,000).
The number of channels of the last convolutional layer was 32
so that the total number of extracted features was identical to
that of the proposed model. The last three fully connected layers
had the same number of parameters.

For Pick-and-place×3, we used MDN with 16 channels at
convolutional layers because the visual input contains more
information in this task. The total number of model parameters
was 59,500 and the size of the baseline network was adjusted to
follow the number of the parameters.

C. Evaluation procedure

When evaluating the models on a robot, the initial positions of
the objects were determined by participants who were not aware
of the model being tested. The participants were shown samples
of the initial images of each demonstration on the test set and
were asked to place them identically. Out of the four models
with random seeds, the one with the highest total success rate of
all tasks was selected as the best. Note that the success rate of
each task of the selected model is not always the best.

TABLE VII
GAZE PREDICTION COMPARISON WITH VARIOUS METRICS

D. Gaze prediction evaluation with various metrics

A comparison of the performance of the models for gaze
prediction in terms of the CC, NSS, SIM, and KL on all tasks are
shown in Table VII. The MDN outperformed Regression-MLP
and Regression-LSTM on all tasks and all evaluation metrics.
Lower values are better in KL.
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