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PointNetKL: Deep Inference for GICP Covariance
Estimation in Bathymetric SLAM

Ignacio Torroba, Christopher Iliffe Sprague , Nils Bore , and John Folkesson

Abstract—Registration methods for point clouds have become a
key component of many SLAM systems on autonomous vehicles.
However, an accurate estimate of the uncertainty of such regis-
tration is a key requirement to a consistent fusion of this kind of
measurements in a SLAM filter. This estimate, which is normally
given as a covariance in the transformation computed between
point cloud reference frames, has been modelled following different
approaches, among which the most accurate is considered to be the
Monte Carlo method. However, a Monte Carlo approximation is
cumbersome to use inside a time-critical application such as online
SLAM. Efforts have been made to estimate this covariance via
machine learning using carefully designed features to abstract the
raw point clouds [1]. However, the performance of this approach
is sensitive to the features chosen. We argue that it is possible to
learn the features along with the covariance by working with the
raw data and thus we propose a new approach based on PointNet
[2]. In this work, we train this network using the KL divergence
between the learned uncertainty distribution and one computed by
the Monte Carlo method as the loss. We test the performance of
the general model presented applying it to our target use-case of
SLAM with an autonomous underwater vehicle (AUV) restricted
to the 2-dimensional registration of 3D bathymetric point clouds.

Index Terms—SLAM, novel deep learning methods, marine
robotics, simultaneous localization and mapping, robot learning,
unmanned underwater vehicles.

I. INTRODUCTION

OVER the last few years, sensors capable of providing
dense representations of 3D environments as raw data,

such as RGB-D cameras, LiDAR or multibeam sonar, have
become popular in the SLAM community. These sensors provide
accurate models of the geometry of a scene in the form of sets
of points, which allows for a dense representation of maps easy
to visualise and render. The wide use of these sensors has given
rise to the need for point cloud registration algorithms in the
robotics and computer vision fields. For instance, the core of
well-established SLAM frameworks for ground and underwater
robots, such as [3] and [4], relies upon point cloud registration
methods, such as the iterative closest point (ICP) [5], to provide
measurement updates from dense 3D raw input.
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While well rooted in indoor and outdoor robotics, SLAM has
not yet gained widespread use for AUVs. However, the need for
SLAM is greater underwater, as navigation is extremely chal-
lenging. Over long distances, sonar is the only viable sensor to
correct dead-reckoning estimates. Of the various types of sonar,
multibeam echo sounders (MBES) provide the most suitable
type of raw data for SLAM methods. This data is essentially a
point cloud sampled from the bathymetric surface, and applying
registration methods to these measurements is a well-studied
problem [6]. However, when fusing the output of the registration
into the Bayesian estimate of the AUV state, the uncertainty of
the transform must be modelled, since it represents the weight
of the measurement. Despite its importance in every SLAM
domain, few works have addressed the problem of estimating
this uncertainty accurately and efficiently, usually in the form of
a covariance matrix. We argue that these two requirements are
vital in our setting and need to be addressed simultaneously and
onboard an AUV, with limited computational resources. While
there have been recent attempts to derive the covariance of the
registration process analytically, these approaches were limited
either by the reliability of the estimation or its complexity. The
latest and most successful techniques, however, have aimed at
learning such a model. [1] is an example of this approach applied
to constraints created from point clouds registrations with ICP.
However, although successful, it is limited by the need to reduce
the input point clouds to hand-crafted feature descriptors, whose
design can be a non-trivial, task-dependent challenge. Hence, we
motivate our work with the goal to circumvent the need to design
such descriptors, and to instead learn the features directly from
the underlying raw data. We accomplish this with the use of the
relatively recent artificial neural network (ANN) architecture,
PointNet [2]. We combine PointNet and a parameterisation of
a Cholesky decomposition of the covariance of the objective
function into a single model, named PointNetKL, which is
invariant to permutations of its input. In this work, we use this
architecture to estimate the Generalised-ICP (GICP) [7] uncer-
tainty distributions directly from raw data and test the learned
model in a real underwater SLAM scenario. Our contributions
are listed as follows:
� We present PointNetKL, a new learning architecture built

upon PointNet, for learning multivariate probability distri-
butions from unordered sets of V -dimensional points.

� We apply this general architecture to the restricted case of
learning 2D covariances from the constrained GICP reg-
istration of real 3D bathymetric point clouds from several
underwater environments.
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� We assess the performance and generalisation of our archi-
tecture in both the regression and SLAM tasks.

II. FORMAL MOTIVATION

A point cloud registration algorithm can be defined as an
optimisation problem aimed at minimising the distance between
corresponding points from two partially overlapping sets of
points, Si and Sj , with rigidly attached reference frames Ti and
Tj . In the general case, a point cloud Pi = {Si, Ti} consists of
an unordered set of V -dimensional points Si while a reference
frame Ti ∈ SE(3) represents a 6-DOF pose. According to this,
an unbiased registration process can be modelled as a function
h of the form

Tij = T−1
i Tj = h(Pi, Pj), (1)

where h(Pi, Pj) is the true relative rigid transformation between
the two frames. This transformation is estimated to minimise the
alignment error to Sj when applied to Si. However, it is well
known that due to the fact that point cloud registration locally
optimises over a non-convex function, its solution is sensitive to
convergence towards local minima and so its performance relies
crucially on the initial relative transformation between the point
clouds, computed as T̂−1

i T̂j . Where the hat denotes the current
best estimate of the pose.

The uncertainty in the estimate of the true transformation can
be represented within a SLAM framework as follows. Given
an autonomous mobile robot whose state over time is given by
xi ∈ RN and with a dead reckoning (DR) system that follows a
transition equation 2, we can model a measurement update based
on point cloud registration through Eq. 3, where zij ∈ RM with
M ≤ N .

xi = g(xi−1, ui) + εi (2)

zij = h(Pi, Pj) + δij . (3)

εi and δij model the error in the DR and in the registration
respectively. Approximating the noise in the DR and measure-
ment models as white Gaussian with covariances R ∈ RN×N

andQ ∈ RM×M , respectively, both xi and zij will follow prob-
ability distributions given by

xi ∼ N (g(xi−1, ui), Ri) (4)

zij ∼ N (h(Pi, Pj), Qij) (5)

With zij being measurements of the transform between point
clouds from the registration algorithm and the true transform
h(Pi, Pj) being given by the Ti and Tj . The Bayesian estimate
that results from this model is generally analytically intractable
due to the nonlinear terms, but iterative maximum likelihood
estimates (MLE) are possible. Such an iterative SLAM estimate
requires a reliable approximation of the probability distribution
of the registration error δij ∼ N (0, Qij). This is because Q−1

ij

represents the weight or “certainty” of the measurement zij
when being added to the state estimate, which is a critical step in
any state-of-the-art SLAM solution. However, this covariance
is not available and research has focused on deriving both
analytical and data-driven methods to estimate it. Over the next

section, we revisit the most relevant of these methods and the
previous work upon which our approach builds.

III. RELATED WORK

As introduced above, the need of SLAM systems for a reliable
approximation of the error distribution of point cloud registration
processes has motivated a prolific body of work in this topic.
Among the numerous existing registration techniques, the ICP
algorithm and its variants, such as GICP, are the most widely
used in the SLAM community. The methods to estimate the
uncertainty of the solution of ICP-based techniques are tradition-
ally divided into two categories: analytic and data-driven. Ana-
lytical solutions based on the Hessian of the objective function,
such as [8], have yielded successful results on the 2D case thanks
to its capacity to model the sensor noise. However, [9] shows
that its extension to 3D contexts results in overly optimistic
results, which do not reflect the original distribution. Another set
of approaches, such as [10], consists in developing estimation
models for specific sensors. Although more accurate, this kind of
method suffers in its inability to generalise to different sensors.

There is a large body of work on non-parametric approaches to
estimating probability distributions, e.g. [1], [11], [12]. In [11],
Iversen et al. apply a Monte-Carlo (MC) approach to estimate
the value of the covariance of ICP on synthetic depth images.
Although accurate, this approach cannot be applied online due
to its computation time. In [12], a general non-parametric noise
model was proposed; however, its performance is adversely
affected by scaling with higher-dimensional features. Landry
et al. introduce, in [1], the use of the CELLO architecture for
ICP covariance estimation. This method proves to be a reliable
estimation framework but it is limited by the need to create
hand-crafted features from the raw 3D point clouds. As argued
in [13], designing these features for a given task is still an open
issue and so the success of CELLO is highly dependant on the
chosen features.

Going beyond hand-crafted features, a number of works have
addressed the problem of learning feature representations from
unordered sets such as point clouds; however, these approaches
do not capture spatial structure. As a result, there have been
a number of point cloud representations developed through
multi-view [14] and volumetric approaches [15]. Unfortunately,
multi-view representations are not amenable to open-scene un-
derstanding, and volumetric representations are limited by data
resolution and the computational cost of convolution.

The work in [16] presents an inference framework based on a
deep ANN, DICE, that can be trained on raw images. This work,
to the best of our knowledge, represents the first instance of the
use of a ANN to infer the uncertainty of a measurement model
in a similar approach to ours. However, their network is limited
to camera input and they require ground truth measurements to
construct the training set, a commodity often hard to afford.

To counteract the need to preprocess the input point clouds
as in [1] while being able to apply deep learning techniques
as in [16], we have turned to the seminal work PointNet [2] for
our method. When choosing between learning architectures, e.g.
[17], [18], we choose PointNet for its simplicity. This being the
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first use of ANNs for bathymetric GICP covariance estimation,
our results can serve as a first baseline.

PointNet employs a relatively simple ANN architecture,
that achieves striking performance in both classification and
segmentation tasks upon raw point cloud data. It relies on
the principle of composing an input-invariant function through
the composition of symmetric functions, producing an input-
invariant feature vector for a given point cloud.

While the PointNet architecture was originally intended for
classification and segmentation, the internally generated feature
vectors have been used for other purposes, such as point cloud
registration [19] and computation of point cloud saliency maps
[20]. Similarly to these works, we seek to employ PointNet for
a different purpose, namely for the estimation of multivariate
probability distributions.

IV. APPROACH

Our goal is to estimate, for each pair of overlapping bathy-
metric point clouds Pi, Pj , a covariance Qij that is as close
as possible to modelling the actual uncertainty of their GICP
registration in underwater SLAM, given by δij ∼ N (0, Qij).
Learning these covariances entails the use of datasets with large
amounts of overlapping point clouds with accurate associated
positions, such as the one used in [1]. However, an equivalent
dataset does not exist in the underwater robotics literature, due
to the nature of bathymetric surveys with a MBES pointing
downwards, where the consecutive MBES pings within swaths
do not contain overlap.

In order to overcome this problem, we look into sources of
uncertainty in the registration of bathymetric point clouds. In
general Qij is a function of the amount of sensor noise, the
statistics over the initial starting point for the iterative MLE, and
the features in the overlapping sections of the two point clouds.
If we assume thatSi has uniform terrain characteristics, i.e. there
is not a small rocky corner on an otherwise flat point cloud, we
can expect that Qi does not vary much with the specific region
of overlap as long as that region is above a certain percentage
of the whole point cloud. This allows us to attribute an intrinsic
covariance to each point cloud independent of the actual overlap,
i.e. Qij becomes Qi (which is also approximately Qj). The
validity of this is based on the fact that it is possible to aggregate
raw sonar data on fairly uniform point clouds with the submaps
approach used in [21], for example.

A. Learning Architecture

In this section we present a general approach to the problem
of learning our target GICP covariance Qi from a set of points
Si. Formally, we consider the problem of learning a function
πθ(Si), parameterised by a set of learnable parameters θ, that
maps a point cloud of U points Pi = {Si ∈ RU×V , Ti ∈ RM}
to a multivariate Gaussian probability distribution N (μi,Σi) :
μi ∈ RM ,Σi ∈ RM×M , where Σi is strictly positive-definite.
We solve this problem by optimisingπθ’s parameters θ to regress
a dataset of the form

D = {(S0, μ0,Σ0) , . . . , (SK , μK ,ΣK)} , (6)

Fig. 1. Depiction of the architecture of PointNetKL. From left to right: a
submap is fed into PointNetKL to produce a global feature vector that is
then fed into a multilayer perceptron to produce the parameters of a Cholesky
decomposition and construct a positive-definite covariance matrix.

consisting of K point clouds and their associated distributions.
To tackle this problem we consider the PointNet architecture

[2] in order to work directly with the raw point clouds. We
denote PointNet as function φ(Si) : RU×V �→ RZ that maps Si

to a Z-dimensional vector-descriptor ζi ∈ RZ , describing the
features of Si. Using ζi we seek to learn a further mapping to the
distribution N (μi,Σi). Given the invariance of ζi, we postulate
that the further abstraction to defining a probability distribution
can be achieved by a simple MLP, denoted hereafter as ψ(ζi).

In order to define our target distribution δi, we taskψ to output
a covariance matrix Σi = Qi and set μi equal to the null vector.
We describe this model collectively as

πθ(Si) = ψ (φ (Si)) : RU×V �→ RM×M , (7)

where θ is the collective set of learnable parameters. Hereafter,
we denote πθ as π for brevity.

We leave the architecture of φ as originally described in [2],
removing the segmentation and classification modules. For the
hidden model of ψ we consider a fully connected feed-forward
architecture of arbitrarily many layers and nodes per layer.
For each layer we sequentially apply the following standard
machine learning operations: linear transformation, 1D batch
normalisation, dropout, and rectified linear units, as indicated in
Fig. 1. This characterisation ofψ produces outputs in R≥0, which
are transformed into desired ranges in the following section.

B. Covariance Matrix Composition

In order to map the outputs of ψ to a valid estimation of Σi

we must enforce positive-definiteness. Following [16], we task
ψ to produce the (M2 −M)/2 +M parameters of a Cholesky
composition of the form

Σi = L(li)D(di)L(li)
ᵀ : li ∈ R(M2−M)/2, di ∈ RM

>0, (8)

where L(li) is a lower unitriangular matrix,D(di) is a diagonal
matrix with strictly positive values, and [li, di] are the parameters
to be produced by ψ. It is important to note that the strict
positiveness of D(di)’s elements enforces the uniqueness of
the decomposition and thus that of the probability distribution
being estimated. Using a linear transformation layer, we map
the penultimate outputs of ψ to (M2 −M)/2 +M values de-
scribing the elements of li and di. To enforce the positivity
of di, we simply apply the exponential function such that the
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Fig. 2. 500 × 40 meters (approx.) sample of a swath of bathymetry from the
Baltic dataset.

decomposition becomes Σi = L(li)D(exp(di))L(li)ᵀ. We then
use Σi to fully characterise δi.

C. Loss Function

To train π, we must compare its predicted distributions with
the true ones in order to compute its loss. For this purpose we
use the Kullback-Leibler (KL) divergence

DKL (N||Nπ) =
1

2

(
tr
(
Σ−1

π Σ
)
+ (μπ − μ)ᵀ Σ−1

π

× (μπ − μ)−M + ln

(
det(Σπ)

det(Σ)

))
, (9)

where tr(·) and det(·) are the trace and determinant matrix
operations, respectively. This gives us the distance between the
distributionN (μπ,Σπ)predicted byπ and the target distribution
N (μ,Σ). We optimise π to minimise DKL, hence we coin
its name, PointNetKL. As explained in IV-A, in our specific
application μ = 0 and so the variable μ will be omitted for
brevity from here on.

D. Generation of Training Data

The datasets necessary to train, test and validate our ANN
have been generated following an approach similar to [11]. A
Monte Carlo approximation has been computed for every point
cloud Si as follows. Given a 3D point cloud Pi = {Si, Ti} and
a distribution O ∼ N (0,Σsample), we generate a second point
cloud Pj by perturbing Pi with a relative rigid transform Tj
drawn fromO. After the perturbation, Gaussian noise is applied
to Sj and the resulting point clouds are registered using GICP.
Given the fact that Pj is a perturbation of Pi, the error of the
GICP registration can be computed as the distance between the
obtained transformation T̂j and the perturbation originally ap-
pliedTj , as in Eq. 10, [22]. This error is then used to calculate the
covariance of the distribution δi for each point cloud following
Eq. 11.

el = log(exp(T̂j)
−1Tj) (10)

Qi =
1

(L− 1)

L∑
l=1

ele
T
l (11)

where L is the total number of MC iterations per point cloud.

V. EXPERIMENTS

In the remainder of this paper we apply the presented general
approach for learning Gaussian distributions from unordered
sets of points to the specific problem of bathymetric graph
SLAM with GICP registration as introduced in [21]. The reason
to focus on GICP as opposed to ICP is that this method works

Fig. 3. Depiction of the zero-meaned, normalised, and voxelised submaps
of two datasets. The dispersion of the points around the unit sphere indicate
diversity of the bathymetry.

better on the kind of bathymetric point clouds produced from
surveys of unstructured seabed, as discussed in [6].

The nomenclature used this far can be instantiated to this
specific context as follows. A point cloud Pi consists now of
a bathymetric submap in the form of a point cloud Si ∈ RU×3

and the estimates of the AUV pose while collecting the submap
are Ti = exp(xi) ∈ R6. In the case of the GICP registration,
the vehicles used to collect the data provided a good direct
measurement of the full orientation of the platform and the
depth underwater. Due to this, the dimension of the measurement
model zi in Eq. 12 has been reduced to m = 2, since it is only
the x and y coordinates that contain uncertainty. Consequently,
the GICP registration is constrained during the training data
generation to the dimensions x, y and therefore the covariances
of δi and of the prior O become R2 matrices.

A. The Training Datasets

To the best of our knowledge, no dataset like the one in Eq. 6
with bathymetric submaps exists and therefore a new one has
been created. When designing such a dataset several criteria
must be fulfilled for the training to be successful and having
generalisation of the results in mind: i) The success of GICP
will be, to a certain degree, linked to the features in the submap
being registered. In simple cases this can be easily interpreted
by looking at the resulting covariance. Intuitively, on a perfectly
flat submap, an elongated feature along the y direction will ease
the registration perpendicular to that axis, yielding low values
of the covariance for the x axis. Equivalently, the registration
along y will result in a bigger uncertainty since the submaps can
slide along the feature. Thus, given that π is learning a mapping
from geometric features to covariance values, it is important that
the dataset created contains enough variation in the bathymetry.
ii) It is not possible to collect and train on enough data for
π to be able to generalise successfully to the whole sea floor
worldwide. However, [23] proved that pieces of seabed can
be successfully modelled through Gaussian processes. Based
on this it can be assumed that with a large and varied enough
dataset, our model should be able to generalise to natural seabed
environments never seen before. This would help to circumvent
the fact that this kind of data is very scarce and difficult to obtain
in comparison to image or point cloud datasets. iii) Different
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TABLE I
DATASETS CHARACTERISTICS

vehicles are used to collect the data as to ease generalisation. iv)
Ground truth (GT) is not available.

In order to ensure a complete distribution of geometric fea-
tures within the dataset, we have analysed the spatial distribution
of the points within the dataset used, with special attention to
the dispersion in the z axis, given by the standard deviation
σz . Fig. 3 shows a canonical representation of the zero-meaned,
normalised, and voxelized submaps for two of the datasets used,
whose characteristics are given in Table I.

With the view on the criteria exposed above, four bathymetric
surveys have been included in the final dataset. They have been
collected in four different environments, namely: the south-east
Baltic sea, the Shetland Isles, Gullmarsfjorden near Bornö, and
underneath the Thwaites glacier in Antarctica. A sample of
bathymetry from the Baltic dataset can be seen in Fig. 2. For
the data collection, two state-of-the-art vehicles have been used.
A remotely operated vehicle (ROV) Surveyor Interceptor and
a Kongsberg Hugin AUV with an acoustic beacon Kongsberg
cNode Maxiboth deployed in the survey area. Both vehicles were
equipped with a MBES EM2040. With these four bathymetric
surveys, the training datasets of the form given in Eq. 6 have been
generated as explained in IV-D, with K = 9080 submaps and
L = 3000 MC iterations per submap. Following the reasoning
in [1], we have set Σsample = aI (where I ∈ R2) with a = 9 in
order to model a reasonable underwater SLAM scenario.

B. Training Implementation

In this work, we leave the internal architecture of PointNet
φ as it is in [2], outputting the vector-descriptor ζ ∈ R1024.
For the MLP, mapping ζ to the estimation of GICP covariance
Q, we consider an architecture of 4 hidden layers, each having
1000 nodes, using the sequential operations described at the end
of Section IV-A. A depiction of the final ANN can be seen in
Fig. 1.

To learn the mapping of submaps Si to covariances Qi, we
optimise the parameters of π to regress the dataset D under
the cost function DKL given in Eq. (9). We optimise these
parameters with stochastic gradient descent (SGD), using the
AMSGrad variant of the adaptive optimiser, Adam [24]. In order
to improve the generalisation of π to different environments, we
employ dropout [25] and weight decay [26].

For each training episode we sample a random subset (with
replacement) of both the training and validation datasets, using
the former for an optimisation iteration and the latter to evaluate
the generalisation error in order to employ early-stopping [27].
We employ random subset sampling in conjunction with SGD
in order to speed up training, as obtaining a gradient over the
whole dataset described in Table I is intractable.

Fig. 4. Evolution ofπ’s KL divergence loss on the training and validation sets.
Note the unity of the training and validation curves over episodes, indicating
generalisation. The jaggedness of the lines is a result of the stochasticity of the
gradient descent, due to random subset sampling and dropout.

The implemented training hyperparameters are:
1) learning rate = 1× 10−4,
2) L2 weight decay penalty = 1× 10−4,
3) dropout probability = 40%,
4) batch size = 500,
5) validation set proportion = 20%,
6) early stopping patience1 = 20.
Before the submaps are fed to network, they need to be

pre-processed. Each set Si is translated to be zero-mean, then
normalised to a sphere by the largest magnitude point therein,
and finally voxelised to obtain a uniform density grid sampling.
This ensures that the raw density of each set Si does not affect
the underlying relation that π seeks to learn. Note, we use vox-
elisation here merely as a means to downsample the point clouds
to lessen memory requirements. In principle, any downsampling
method (not necessarily ordered) or none at all could be used.

C. Testing of the Covariances in Underwater SLAM

The validity of the covariances predicted by the network has
been tested in the PoseSLAM framework in Eq. 12.

{x∗i} = argmin
x̂

NDR∑
i

||g(x̂i−1, ui)− x̂i||2Ri

+

NLC∑
{i,j}

||T̂−1(x̂i)T (x̂j)− zij ||2Qi
(12)

Where NDR and NLC are the number of dead reckoning
and loop closure (LC) constraints, respectively. Qi models the
weight of each LC edge added to the graph as a result of a
successful GICP registration of overlapping submapsPi, Pj and
as such it plays an important role in the optimisation.

For the tests, two underwater surveys outside the training
dataset of the network have been used, named Bornö 8 and
Thwaites 11. For the test on each scenario, a bathymetric pose
graph is created and optimised similarly to [21]. The graph opti-
misations have been run with three different sets of covariances:

1Number of iterations to wait after last validation loss improved.
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Fig. 5. Left to right: Bornö 8 and Thwaites 11 surveys. Example of corrupted graph for the later (RMSExyz 301.1 m) and its MC solution (RMSExyz

222.18 m).

TABLE II
KL DIVERGENCE LOSS OF POINTNETKL π ON THE TRAINING AND

VALIDATION AND TESTING SETS

TABLE III
AVERAGE RUNTIME OF THE GENERATION METHODS

those obtained with our method, the ones approximated with
MC method and a constant covariance for each experiment. The
results of the optimisation processes have then been compared
based on two different error metrics, RMSExyz , [28] and the
map-to-map metric proposed in [29]:
� RMSExyz: measures the error in reconstructing the AUV

trajectory.
� The map-to-map error: measures the geometric consistency

of the final map on overlapping regions.
The aim of these tests is to assess the influence of the GICP

covariances on the quality of the PoseSLAM solution. To this
end, two modifications have been introduced in the construction
of the pose graph with respect to [21]:

1) The submaps created are all of roughly the same length.
2) The initial map and vehicle trajectory are optimised in our

graph SLAM framework using an estimate of the real R
from the vehicle and the MC estimated covariances for Q
in Eq. (12) and used in lieu of actual ground truth, ‘GT’.

This second point can be further motivated by: i) the relatively
high quality of the survey together with the absence of actual
GT; ii) we will be disrupting the vehicle trajectory by adding
Gaussian noise much greater than the navigation errors. Thus
comparing the different optimisation outputs with respect to
the undisrupted optimised estimate gives a valid comparison
of methods as long as estimates are sufficiently further from
the navigation than we believe the navigation is from the actual

ground truth. More to the point we do not intend to prove that
the MC method leads to a consistent estimate, for that we refer
to the [11]. Instead we wish to show that we can approximate
well the solution that the MC method gives with our method.

C. Appendix B

Algorithm 1 outlines the process followed to create the graphs
for the optimisation tests. As input it requires a ‘GT’ dataset,
which we approximate optimising the navigation estimate from
the vehicle DR as in [21] using the MC covariances computed.
Given the estimated GT dataset divided into a set ofN submaps
SNSNSN , a graph GGG is constructed in lines 2 to 12. The initial
bathymetry map from the undisrupted data can be seen in Figs. 5a
and 5b. In line 14 the output graph is corrupted with additive
Gaussian noise with covarianceRc. An instance of the resulting
bathymetry and graphs are shown in Figs. 5c and 5d respectively.
The arrows among consecutive submaps represent DR edges,
while the non-consecutive ones depict the LC constraints. The
noise has been added to the graph once built instead of to the
navigation data to ensure that the loop closure detections are
preserved disregarding of the noise factor used. However, an
extra step must be taken to ensure a registration consistent with
the assumptions on GICP initialisation as in Section IV-D. In the
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TABLE IV
GRAPH-SLAM RESULTS FOR THE FOUR SETS OF COVARIANCES USED IN THE OPTIMISATION OF THE TWO ‘CORRUPTED’ DATASETS. OBSERVE HOW ‘OUR’

METHOD APPROXIMATES WELL THE ‘MC’ RESULT FOR THWAITES 11 AND EVEN OUTPERFORMS IT FOR BORNÖ 8

case of a loop detection, the target submap Si is perturbed with
a transformation drawn from O before being registered against
the fused submaps inSLCSLCSLC . That is we assume that there is, along
with a good loop closure detection, an estimated starting point
for GICP as given by the distributionO. The coverage variable
determines how much overlap must exist between two submaps
for it to be considered a loop closure. It has been set to 60%
of Si.

VI. RESULTS

A. Assessment of the NN Predictions

We assess the performance of π on the training, validation,
and testing sets with the KL divergence loss described in Sec-
tion IV-C. In Fig. 4, the training and validation loss maintain a
strong coherence, indicating a good generalisation performance.
As indicated in Table II, π not only converges to low training and
validation values, it also generalises well to the unseen testing
sets. Understandably, the network performs quite well in the
Bornö 8 validation set, in comparison to Thwaites 11, because
the former is rather homogeneous in terms of feature types,
whereas the latter includes many severe features on a larger
scale.

B. SLAM Results

The assessment of the covariances on an underwater SLAM
context has been carried out on the two subsets from the Antarc-
tica and Bornö datasets in Fig. 5. The results from the optimi-
sation of the graphs generated from Algorithm 1 can be seen in
Table IV. They have been averaged over 100 repetitions where
noise was added to the ‘GT’, which was then optimised. The
RMSExyz error under ‘Navigation’ indicates the correction
from the DR estimate of the navigation after optimising it. The
resulting trajectory and bathymetry have been then corrupted
with Gaussian noise parameterized by a covarianceR6x6

c whose
only non-null component is Rc(5, 5) = 0, 01, modelling the
noise added to the yaw of the vehicle. The average errors from
the corrupted graphs are given on the column “Corrupted”.
The next four columns contain the final errors after the op-
timisations carried out with the covariances generated with
the different methods tested. Our method has been compared
against the covariances generated from the MC approximation in
Section IV-D and against two baseline approaches. A vanilla
method consisting on approximating the information matrix of
GICP, so called here “Naïve GICP”, using the average of the
information matrix in Eq. 2 in the original paper [7], projected
onto the xy plane for the current experiments. This approxi-
mation doesn’t require any extra computation and can be run

during the mission, but is sensitive to the noise and sparsity of
the point clouds. For the second method, “Constant Q” as in [16],
all LC edges have the same Qi, which in our case is computed
a posteriori by averaging the MC solutions of all the submaps.

When looking at the Thwaites 11 results, considering the
‘MC’ method as the gold standard, it can be seen that it yields
the smallest RMSExyz error, as expected. Our method outputs
a slightly worse RMSExyz and similar Map-to-map error to
MC and is significantly better than the two baseline approaches.
However, in the Bornö 8 dataset our method’s RMSExyz

error is better than the ‘MC’ output and very similar to the
‘Naïve GICP’. This might be explained by the bathymetric data
itself. The submaps from Bornö contain far fewer features than
those from Thwaites, and usually on the edges. This makes the
submap’s terrain less homogeneous, violating our assumption on
Section IV. It is possible that the network had difficulty learning
these non-homogeneous cases and tended to treat mostly flat
submaps more like completely flat. Then in the actual estimation,
where the feature parts may not overlap at all, this resulted in
a better output of the optimisation. The covariances from the
‘Naïve GICP’ are generally flat for large, noisy bathymetric
point clouds. This explains why they have performed so well
in this dataset and so poorly in Thwaites 11, which contains
more features.

C. Runtime Comparison

The execution times of ‘MC’ and ‘Our’ method have been
compared on an Intel Core i7-7700HQ with 15,6 GiB RAM. The
average covariance generation time over 107 submaps of size
mean = 6552.75, std_dev = 766.00 can be seen in Table III,
supporting the claim that PointNetKL offers the best trade off
between accuracy and processing time to run SLAM online on
an AUV.

VII. CONCLUSIONS

We have presented PointNetKL, an ANN designed to learn the
uncertainty distribution of the GICP registration process from
unordered sets of multidimensional points. In order to train it
and test it, we have created a dataset consisting of bathymetric
point clouds and their associated registration uncertainties out of
underwater surveys, and we have demonstrated how the archi-
tecture presented is capable of learning the target distributions.
Furthermore, we have established the performance of our model
within a SLAM framework in two large missions outside the
training set.

The results presented indicate that PointNetKL is indeed able
to learn the GICP covariances directly from raw point clouds
and generalise to unknown environments. This motivates the
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possibility of using models trained in accessible environments,
such as the Baltic, to enhance SLAM in unexplored environ-
ments, e.g. Antarctica. Furthermore, the data generation process
introduced has proved to work well and alleviate the need for a
dataset with sequences of overlapping point clouds with ground
truth positioning associated, which are scarce in the underwater
domain. Further testing of the network on new graph-SLAM
optimisations is required to fully characterise its performance
and limitations, but the results presented support our thesis that
PointNetKL can be successfully applied in online SLAM with
AUVs.

The future extension of this work to the 3D domain will
focus on estimating the heading of the AUV together with its
[x, y] state. Our intuition on this is that the same features in
the submaps that anchor the registration in [x, y] would lead
the process if the GICP was unconstrained in the yaw as well.
This means that the features extracted by PointNetKL should,
in general, perform well in 3D.
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