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Autonomous Navigation in Inclement Weather Based
on a Localizing Ground Penetrating Radar

Teddy Ort , Igor Gilitschenski , and Daniela Rus

Abstract—Most autonomous driving solutions require some
method of localization within their environment. Typically, on-
board sensors are used to localize the vehicle precisely in a previ-
ously recorded map. However, these solutions are sensitive to am-
bient lighting conditions such as darkness and inclement weather.
Additionally, the maps can become outdated in a rapidly changing
environment and require continuous updating. While LiDAR sys-
tems don’t require visible light, they are sensitive to weather such as
fog or snow, which can interfere with localization. In this letter, we
utilize a Ground Penetrating Radar (GPR) to obtain precise vehicle
localization. By mapping and localizing using features beneath the
ground, we obtain features that are both stable over time, and
maintain their appearance during changing ambient weather and
lighting conditions. We incorporate this solution into a full-scale
autonomous vehicle and evaluate the performance on over 17 km
of testing data in a variety of challenging weather conditions. We
find that this novel sensing modality is capable of providing precise
localization for autonomous navigation without using cameras or
LiDAR sensors.

Index Terms—Autonomous vehicle navigation, field robots,
wheeled robots, intelligent transportation systems.

I. INTRODUCTION

ROBUST localization in diverse conditions is a key chal-
lenge to enable the widespread deployment of autonomous

vehicles. Since relying purely on a global navigation satellite
system (GNSS), such as the Global Positioning System (GPS)
does not provide sufficient precision, research and industry
efforts have focused primarily on utilizing cameras and laser
scanners for the navigation task. These systems typically use Si-
multaneous Localization and Mapping (SLAM) algorithms [1]
for creating and maintaining maps of the environment that allow
for highly precise localization and navigation.

Using vision and laser sensors as localization sources comes
with its own set of challenges. For instance, localization from
purely visual maps needs to account for the fact that, even in
the absence of occlusions, the appearance of the environment
strongly varies depending on weather, season, time of day, and
a potentially changing environment [2]. While laser scanners
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Fig. 1. Our LGPR based autonomous navigation system is capable of success-
fully localizing from a single map in different challenging weather and lighting
conditions including snow, rain, and darkness.

do not suffer from changing illumination conditions, they are
still highly affected by weather, occlusions, and environment
dynamics.

Recently, the use of a Ground Penetrating Radar (GPR) was
proposed for localization [3]. Similar to the aforementioned
approaches, this Localizing Ground Penetrating Radar (LGPR)
can be combined with GPS to constrain the search space. The
main advantages of using GPRs for the localization task is
their robustness to dynamic surface environments, illumination
changes, and visibility conditions. This is made possible by a
ground facing sensor array that creates maps of the underlying
structure of the soil and uses these maps for subsequent local-
ization. However, the LGPR system has never been evaluated
on an autonomous vehicle in adverse weather conditions which
include some of the key applications for this technology.

In this work, we deploy the LGPR on a full-scale autonomous
Toyota Prius (as shown in Fig. 1). We describe its incorporation
into a novel autonomous driving pipeline and justify all of our
design choices. Through extensive evaluations, we demonstrate
the practical capability of LGPR to enable an autonomous ve-
hicle to drive without relying on any visual or surface features.
For this reason, the method works even when the driving surface
is covered with rain or snow. While the LGPR performs vehicle
localization, it does not enable dynamic obstacle detection in
inclement weather. However, in this letter we focus on the
localization problem and leave the detection of dynamic ob-
stacles in challenging weather conditions for future work.
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Overall, our contributions can be summarized as follows:
� Design of a new autonomous driving pipeline based on

LGPR.
� Demonstrate mapping, localization, planning, and control

of an autonomous vehicle without relying on any visible
surface features.

� Extensive evaluation of our system localizing on the same
map in a variety of weather conditions including clear
weather, rain, and snow.

II. RELATED WORK

Radar-Based Perception. Radars serve as a key component
for advanced driver assistance systems and autonomous vehi-
cles [4]. Past research in that space focused on fusing radar
data with various other sensor types particularly Lidars [5] and
cameras [6] for applications such as pedestrian detection [7] and
tracking [8]. Radar-based SLAM approaches [9] usually model
structural features in the surrounding environment and have also
been investigated in the context of vehicle self-localization [10],
[11]. However, these approaches may fail without special con-
siderations to account for dynamic objects and changing sur-
roundings.

Appearance and Persistence Modeling. Particularly for vi-
sual SLAM [1], [2], an extensive body of research explicitly
focuses on addressing these types of problems. The breadth
of approaches involves inpainting and removal of dynamic
objects [12], [13], selecting particularly persistent landmarks
for map storage [14], and selecting appearance specific land-
marks [15] or map segments [16]. We avoid the problems
addressed in this line of work altogether by using sub-surface
features that do not suffer from frequent appearance changes and
occlusions.

GPRs in Robotics. Sub-surface sensing tasks are usually
carried out using GPRs. So far, corresponding research work
mainly focused on applications such as measuring the makeup
and content of the soil [17], [18], locating underground struc-
tures [19], mapping archaeological features [20], or landmine
detection [21], [22]. Similarly, GPR deployment on robots
mainly focused on data collection tasks such as autonomous
surveys [23], [24], inspection [25], or lunar crust analysis [26].
Contrary to these approaches, we do not focus on classifying the
content in the GPR images but rather on using them to improve
the navigation capabilities of the autonomous system.

Only a limited number of works focuses on consideration of
occluded structures in radar-based SLAM such as [27]. The first
use of a GPR for localization was reported in [3] focusing on
describing the design of a low-profile low power GPR system
and first demonstrations of real-time localization. In contrast, the
present work demonstrates a fully-integrated LGPR system for
autonomous driving. Moreover, we establish and evaluate the
sensor’s suitability for successful localization across different
weather conditions even when using the same map.

III. SYSTEM OVERVIEW

An autonomous vehicle requires a large system architecture
to enable safe navigation. The key components of this system
include: mapping, localization, planning, and control. Fig. 2

Fig. 2. The autonomous navigation system architecture showing the key
system components: Mapping, Localization, Planning, and Control. The LGPR
system used as the primary localization sensor is outlined in red.

shows a diagram of the various system components. In the
following subsections, we describe the function of these com-
ponents with an emphasis on how the design differs in an LGPR
system.

A. Mapping

During the mapping phase, the vehicle is driven by a human
operator and the data from the vehicle’s sensors is recorded.
Once this step is completed, the saved map enables the vehicle
to localize in that area. There are two key differences between the
dense 3D maps required in typical vision or LiDAR systems, and
those created using an LGPR sensor. Firstly, because vision and
LiDAR maps record surface features, they require maintenance
when any of those features change which can result in burden-
some repeated map updates. LGPR maps on the contrary, record
subsurface features which are unlikely to change frequently.
Secondly, dense sensor maps typically take up large amounts
of space which makes them difficult to store and transmit. For
example, [28] compares the size of a typical (20,000 mile)
topological map such as OpenStreetMap with that of a highly
compressed 2D sensor map of the same area. The topological
map only requires 3 GB while the sensor map requires about
200 GB of storage space. However, the topological map does
not contain enough information for precise localization. To
store an LGPR map of the same area we require approximately
160 GB. The data structure used to store the LGPR maps is
described in Sec IV-B2. Intuitively, these are smaller because
the sensor measures only a thin slice directly below the vehicle,
while typical 3D maps contain a detailed view of the entire
environment including surrounding buildings and vegetation.
Thus, LGPR maps can provide precise localization in changing
surface conditions without requiring as much storage space.

B. Localization

During operation, the autonomous vehicle must have precise
localization information in order to ensure that it closely follows
the desired path. Standard freeway lane-widths in the United
States are 3.6 m [29] while the width of a typical passenger
vehicle is 1.7 m. This gives only about 1m of clearance on each
side which is beyond the accuracy of GPS systems even when
augmented with wheel odometers [30]. LiDAR or vision based
maps provide localization with sufficient accuracy. However,
they are susceptible to ambient lighting conditions and fail if
road surface features such as lane markings are obscured by
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rain or snow. The LGPR sensor provides precise localization
to the vehicle by matching the sensor data during operation to
that stored during the mapping phase. Finally, this localization
update is then probabilistically fused with the onboard propri-
oceptive sensors including the wheel odometry and the Inertial
Measurement Unit (IMU). These are combined to provide a
robust and precise localization estimate at a rate of 40 Hz. Note
that distance travelled during a single cycle is given by d = v/f
where v is the vehicle velocity and f is the loop frequency.
Therefore, f = 40 Hz is enough to ensure that even at highway
speeds of 30 m/s the vehicle would travel <1 m before receiving
a new localization estimate.

C. Planning

The planning component determines the path the vehicle is
required to take to safely navigate to its destination. It begins
by determining the current location of the vehicle which it
receives from the localization system see Sec III-B. Next, it
uses the LGPR-map from Sec III-A to determine which roads
must be traversed, and dynamic obstacle detection systems to
plan a collision free path toward the goal. Choosing which
roads to take is performed using a shortest-path algorithm such
as Dijkstra [31] and is similar to that performed on standard
vehicle navigation devices thus we will not expound on it here.
However, autonomously following the desired path is not trivial.
To do so, we utilize a pure pursuit controller see Sec. V-A for
details. This algorithm is capable of planning paths that follow a
reference trajectory even when the vehicle cannot exactly follow
the reference as is typical in real-world scenarios. This algorithm
is a challenging test for the LGPR localization system, which
in previous work [3] was only evaluated while being manually
driven exactly over the same path as that in the map.

D. Control

The control component is required to determine the actual
control values to transmit to the vehicle, including accelerator,
brake, and steering wheel angle. These values are computed in
order to ensure that the vehicle will follow the planned trajectory.
In our system, we utilize two PID controllers to obtain the
necessary control values. One of these controls the accelerator
and the brake, while the other controls the steering. The gains
were tuned to allow the vehicle to quickly achieve a desired
configuration while avoiding any instabilities due to lag in the
system.

IV. A LOCALIZING GROUND PENETRATING RADAR

In this section, we describe how the LGPR sensor is used both
to build maps during the mapping phase, as well as to provide lo-
calization during autonomous operation (see Fig. 4). The LGPR
sensor uses electromagnetic radiation in the 100–400 MHz range
which is much lower than typical (1–3 GHz) GPR devices used
for surveying [32]. This allows the sensor to resolve subsurface
geological features in the 20–30 cm range with the additional
benefit of improving the penetration depth. The shallow pene-
tration depth of higher frequency sensors would not penetrate
below the road as necessary for observing unique underground

Fig. 3. The LGPR sensor mounted on the rear of the autonomous vehicle.
The main components include the 11 element radar array and the switch matrix
which collected the signals from the array. The processing chassis contains the
onboard computer for the sensor data processing, and the GPS unit used for
labeling the prior maps and initializing the search window for localization.

features. In general, the penetration depth is dependent on the rel-
ative permeability of the soil [3]. In our testing region, (Devens,
Massachusetts) skin depths of D ≈ 100 cm are typical leading
to penetration depths in the 2–3 m range. Road materials and soil
are transparent to radar signals at these frequencies. However,
changes in the dielectric properties of the subsurface geology
due to variations in soil type and density, rocks, roots, or layer
boundaries cause the signals to be reflected back to the LGPR
sensor. During each element pulse, the neighboring element is
used to measure the intensity of the reflected signal and record
an “image” of the subterranean content beneath the element at
the time the pulse occurred. In the following subsections we
describe the key features of A) the LGPR sensor utilized, and
B) the localization algorithm used both to record the prior map,
as well as to localize a new scan.

A. LGPR Sensor

The LGPR sensor used in this work was custom designed
by MIT Lincoln Laboratory for the purpose of localization.
Fig. 3 shows the key sensor hardware components. The sensor
measures 152 cm × 61 cm × 7.6 cm which requires it to be
mounted outside the vehicle. Because the measurement range
resolution depends on the width of the array, the sensor cannot
be easily miniaturized. Therefore, the sensor was mounted on the
rear of the test vehicle at 32 cm above the ground (See Fig. 1).
This distance was chosen because it is close to the ground -
ensuring a greater penetration depth - while still remaining high
enough for adequate road clearance. Note that in [3] the sensor
was able to be lowered to 15.24 cm which may have an effect on
our results. Furthermore, we believe the placement on the rear
of the vehicle is most stable since the vehicle begins to depart
from the recorded path front first. This ensures the localization
estimates will be available as long as possible to correct for any
departures. However, due to hardware limitations, the sensor
location remained fixed so we cannot know empirically how
strong these effects are.

Here we will describe the key features of the sensor, see [3] for
more detailed specifications. The LGPR array is composed of
12 radar elements. During a single sensor sweep, each element
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Fig. 4. The autonomous navigation pipeline which processed sensor inputs from the wheel odometry, and LGPR sensor, and computed steering and speed
commands to send to the vehicle to autonomously drive the vehicle along the goal path.

Fig. 5. LGPR data collected from a single radar element as the vehicle was
driven over a path. The colors indicate the intensity of the reflected signal at
each depth and the high degree of structure in the data allows the subterranean
geological features to be coherently measured using this method.

transmits for a fixed period while its neighboring element re-
ceives the reflected signal. Thus, although there are 12 elements
only 11 channels of data are returned. The data is then passed
through a number of post-processing steps including an Infinite
Impulse Response filter, online calibration, as well as factory
measured calibration corrections to ensure the data is free of
noise and sensor biases. The resulting measurement from each
channel is an array of 369 bytes representing the relative inten-
sities of the reflections at each depth. Each channel pulses for
8 ms which gives a maximum sensor rate of 126 Hz. Thus, a
complete sweep of the sensor can be considered an image of
single-byte pixels with dimension 11 × 369 where each pixel
color gives the intensity of the reflected wave at a particular
location. Fig. 5 shows an example of the values of a single
element taken as the vehicle moved along a path. The coherent
structures in these images provide a picture of the content of the
subterranean environment measured by the sensor.

B. Localization Algorithm

The onboard computer in the processing chassis receives the
sensor data from the switch matrix, which collects the signals
from each of the 12 radar elements. The sensor has three modes
of operation: 1) Calibration, 2) Map Creation, and 3) Localiza-
tion.

1) Calibration: During sensor calibration, each element is
pulsed for a short period and the mean values are recorded
to ensure the resulting signals are mean centered at 0 and to

compensate for variations in temperature. The calibration rou-
tine is fully automated, only takes a few seconds, and [3] found
that it allowed the sensor to operate robustly at temperatures
ranging from −5 ◦C to 50 ◦C. In our experiments, we recalibrate
daily, which is necessary to compensate for thermal expansion of
the sensor components. However, since the recalibration always
zeros the mean of the signal, we found it does not preclude
localizing to a prior map created with a prior calibration.

2) Map Creation: During the map creation phase, a human
driver operates the vehicle and each scan from the sensor
is recorded in sequence building a 3D tunnel of dimension
11× 369×N for the 11 channels, 369 discrete depth bins,
and N sensor sweeps. Additionally, the GPS coordinates of
the vehicle are collected and associated with each scan. It is
important to notice that a standard GPS device could be used for
this labeling process, and in fact, the LGPR localization would
still outperform even the GPS device that was used in the making
of the map itself. Consider that the key information the LGPR
sensor must provide during localization is the pose of the vehicle
with respect to the original data. There is no real requirement to
use GPS coordinates at all when labeling the scans. While it is
convenient to use GPS coordinates in order to allow the sensor
localization results to have some real-world meaning, even if
the mapping GPS is not accurate to the “true” GPS coordinates,
the vehicle will still be able to follow the desired path. For this
reason, the extrinsic calibration between the GPS and LGPR is
also not needed. Since the GPS is only being used for labeling,
a fixed offset will not affect system performance. We will call
these coordinates LGPR-GPS coordinates to differentiate them
from the true GPS coordinates that are fixed to the earth frame.

3) Localization: During the localization phase, a single
sweep of the sensor is compared to the prior map database. In
order to keep memory costs constant, the map data is pulled from
the database in square grids in the local area where the vehicle
is operating. Next, for a given hypothetical pose for the current
scan in the map, the correlation is calculated as

rA,B =

∑
i,d

Ai,dBi,d

√∑
i,d

A2
i,dB

2
i,d

(1)
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whereA, andB represent the current scan, and the scan data from
the prior map respectively, i spans the number of channels, and d
spans the number of depth bins. Note, that rather than assuming
the vehicle sensor will directly overlap a previous scan, the scan
from the prior map is generated for any 5 degrees of freedom
(DOF) pose (x, y, roll, pitch, yaw) of the vehicle by interpolating
in the 3D tunnel from the dataset. (Even though the vehicle does
change altitude, since it’s height with respect to the map remains
constant the z value is unnecessary. However, the roll and pitch
are included because small variations in the orientation of the
sensor due to vehicle suspension could lead to large errors in the
position of underground features.) In this way, any hypothetical
pose that overlaps the data is considered. To find the optimal
match that maximizes rA,B in (1), a particle swarm optimization
is performed to balance the need for quickly finding solutions
when they exist in the expected location, with the ability to search
over a large area. As described in [3] the number of particles,
the size of the search region, and the number of iterations, are
tuned online to ensure fast operation when the correlations are
high, with a more exhaustive search if the correlations indicate
a poor match. Importantly, although the sensor itself, polls at a
constant 126 Hz, the particle swarm optimization can limit the
actual localization frequency. With the computational resources
available (see Sec. VI-A), we found that the localization results
could keep up with the sensor frequency only when the vehicle
was following closely to the path in the prior map. However,
when correlations were lower due to noise, or the sensor not
fully overlapping with the prior map, the localization frequency
would drop.

Each localization solution includes a 5 DOF pose composed
of LGPR-GPS coordinates and orientation, the correlation value
rA,B ∈ [−1, 1], and an overlap value uA,B ∈ [1..11] indicating
how many of the 11 channels overlapped with the prior map in
the optimal pose. In the next section, we detail how these local-
ization estimates were integrated into the autonomy pipeline.

C. Sensor Fusion

We utilize multiple instances of the Extended Kalman Filter
(EKF) algorithm for fusing the various sensors. One instance
fuses the wheel encoders and IMU sensor measurements to
obtain a filtered odometry estimate, and a second instance fuses
these with the LGPR measurements to obtain an estimate in
the LGPR-GPS reference frame. The motivation for using two
separate EKF instances is twofold. Firstly, the proprioceptive
sensors run at a consistently fast frequency while the LGPR
sensor is sometimes slower if the correlation quality is low.
Secondly, this gives access to a smooth position estimate in the
local frame of the robot, while the global estimate can have
discrete jumps if an LGPR correction comes in after a relatively
long pause. The EKF algorithm has been exhaustively explored
in the literature [33]–[35] so we will only cover the key parts
that are important for our implementation. We utilize the EKF
architecture as described in [36] for both instances. The state
vector is 8 dimensional containing the 3 DOF pose of the robot,
its velocities, and linear accelerations:

x =
[
x, y, θ, ẋ, ẏ, θ̇, ẍ, ÿ

]�

Fig. 6. The pure pursuit tracking algorithm was used to smoothly steer the
vehicle along the goal path (shown in green). The blue sphere shows the
lookahead distance and the blue curve shows the path the controller intends
to take. As expected, this path tends to deviate from the goal path in turns.

We utilize the wheel encoders only to measure the linear velocity
ẋ and the IMU to measure θ and θ̇. Note the IMU is paired with
a magnetometer giving it an absolute measurement of θ rather
than solely a relative one. We extrinsically calibrate the IMU
using the procedure described in [37]. Each LGPR measurement
contains

z =
[
latitude, longitude, θ

]�

which is transformed into the Universal Transverse Mercator
(UTM) frame using the transform in [38]. The process noise
covariance matrix w ∈ R8×8 was tuned in the field to match
observed uncertainties. It contains only diagonal entries with
the values:

diag(w) = [0.5, 0.5, 6, 2.5, 2.5, 2, 1, 1]× 10−2

Finally, since each of the sensors directly measures a state
variable, the associated observation matrix H (the jacobian of
the observation function) is all 0‘s except for 1’s in the diagonal
positions of the measured state variables.

V. PLANNING AND CONTROL PIPELINE

A. Pure Pursuit Controller

The pure pursuit controller [39] is a path tracking controller
for Ackermann steered autonomous vehicles. It was used by the
MIT entry in the DARPA Urban Challenge in 2007 [40] and
has been widely adopted for autonomous driving applications.
One key feature of the algorithm is it’s pursuit of a “lookahead
point” on the goal path at some distance d ahead of the vehicle
to smoothly adapt to deviations of the vehicle from the reference
path. The pure pursuit steering equation is

δ = tan−1

(
L
2x

d2

)

Where δ is the required steering angle, x is the offset to the goal
point, L is the vehicle length (measured between the front and
rear axles) and d is the lookahead distance. Fig. 6 shows the
vehicle driving along the goal path (in green) and approaching
a left turn. The blue path shows how the pure-pursuit algorithm
will steer the vehicle. As expected, it begins by oversteering
in the beginning of the turn and then overshoots at the end. The
amount of path deviation depends on the lookahead parameter d.
However, when utilizing LGPR, deviations from the path cause



3272 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 5, NO. 2, APRIL 2020

the sensor overlap value uA,B to drop as discussed previously.
The EKF implementation described in the previous section is
crucial to allow the vehicle to continue navigation even when
the overlap is low.

B. Speed Controller

For the purpose of evaluating the LGPR’s capability to provide
localization for autonomous navigation, the speed of the vehicle
is not a critical element. However, a controller to regulate the
speed was still required to maintain the vehicle cruising speed
and appropriately decelerate in turns. To this end, we designed
a speed control law:

v = min

{
vmax,

αvmax

|δ|
}

Where vmax is the maximum speed, α is a tunable parameter,
δ is the steering angle, and v is the commanded speed sent
to the vehicle controls. [3] evaluate the performance of the
localization with a human operator at speeds of up to 65 mph.
For our tests however, using a fully autonomous vehicle, we set
vmax = 10 − 20 mph for safety reasons. Finally, we found that
α = 0.1 provided an appropriate rate of speed reduction while
turning.

VI. EVALUATION

We performed extensive evaluation of the system in order to
verify that the LGPR sensor could provide a localization esti-
mate precise enough for autonomous navigation. We measure
the localization accuracy while the system is being operated
autonomously and compare it to the localization accuracy when
a human is driving. Finally, because the key benefit of LGPR
localization over existing localization techniques is its capability
in inclement weather, we compare the localization accuracy in
different weather conditions.

A. Setup

The testing site was a closed rural area in Devens, Mas-
sachusetts. It includes ∼7 km of unmarked roads and 9 in-
tersections. Testing took place over a period of six months to
compare a variety of weather and lighting conditions including
clear weather, snow, rain, and darkness (See Fig. 1).

The LGPR sensor was mounted on the trailer hitch of a Toyota
Prius which was modified to drive by wire. Two computers
ran in parallel to enable the autonomous system. Onboard the
LGPR sensor the LGPR-PC carried out all localization related
computation. The sensor broadcast localization estimates via
Ethernet to the PRIUS-PC onboard the vehicle. The PRIUS-PC
then incorporated that information into the autonomous driving
system. Note that the PRIUS-PC was a consumer grade laptop
computer with an Intel Xeon E3-1505Mv5 Quad Core 2.80 GHz
processor, 32 GB of RAM, and running Ubuntu 16.04. The only
other sensors used during testing were two wheel encoders on
each of the rear wheels and an IMU.

To evaluate the performance of the system, an additional
RTK-GPS unit with Differential GPS (DGPS) corrections from

a fixed base station was installed on the vehicle for ground
truth. The setup gives the precise vehicle position with ∼2 cm
accuracy. While the LGPR system already uses an onboard
GPS for creating maps, and initializing the search radius, that
device did not have access to the base station correction in order
to simulate real-world operation. The base station only has a
broadcast radius of up to 9 km, which renders it impractical for
use in general purpose autonomous vehicles. The measurements
from the base station were used only for analysis and evaluation
of the LGPR system.

We chose to use the uncorrected GPS unit for the LGPR
device even during the mapping phase as requiring an extremely
accurate GPS sensor could make it very difficult to create
maps. Furthermore, since the GPS coordinates saved are only
necessary to be locally accurate for navigation purposes, it is not
necessary that the LGPR-GPS coordinates match the true GPS
coordinates.

B. Testing

During testing, each test was composed of two runs each of
which yielded two trajectory measurements for a total of four tra-
jectories per test. The first run was a mapping run with the LGPR
system in map creation mode and the vehicle driven by a human
driver. The trajectory measured by the LGPR sensor during map
creation will be denoted Tmap

LGPR. Additionally, the RTK-GNSS
system was used to precisely track the true trajectory of the
vehicle during map creation and that trajectory will be denoted
Tmap
GNSS . Next, the vehicle was driven over the same track again,

with the LGPR sensor set in tracking mode. The localization
estimates during the testing run will be denoted T test

LGPR. Again,
the RTK-GNSS was used to measure the true trajectory of the
vehicle and that trajectory will be denoted T test

GNSS . Note that
during the testing run the vehicle could be piloted by either a
human driver, or the autonomous system.

The LGPR sensor only needs to localize the vehicle within
the coordinates of the created map, rather than in the fixed
ground-truth GPS frame. Therefore, we cannot simply compare
theT test

LGPR estimate to theT test
GNSS because the coordinates of the

LGPR system are limited by the accuracy of the onboard GPS
unit used for mapping (which does not receive base station cor-
rections). Hence, there is no expectation for the T test

LGPR values
to match the “correct” ones, rather they need to be consistent
with those measured in the mapping phase in order to allow
accurate path following. Consequently, as in [3], we utilize a
relative metric to obtain the accuracy of the LGPR localization
by computing the mean relative difference. That is, the mean
error over a run with n scans is computed as:

1

n

∑

n

∥∥∥
(
T test
GNSS,i − Tmap

GNSS,i

)
−
(
T test
LGPR,i − Tmap

LGPR,i

)∥∥∥

where, the ith estimate of the Tmap
GNSS is denoted Tmap

GNSS,i etc.
Note that the subtractions shown are the vector differences
between the offset from the map to the test runs as measured
by the LGPR sensor, and the same vector as measured by the
RTK-GNSS system. This method provides a measurement of
how closely the relative position estimate of the LGPR system
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Fig. 7. A comparison of the LGPR estimates compared to ground truth in
various weather conditions.

matches the ground truth RTK-GNSS system which is necessary
for autonomous path following.

One concern with calculating the mean error is aligning the
timing of the trajectories. Each trajectory is measured using
individual sensor clocks yielding four separate time series. The
two trajectories for each run occurred at the same real world time,
and therefore alignment only requires finding the scalar offset
between the clocks. However, the time steps between the map
and test runs cannot be as easily aligned because the runs took
place over different intervals. To align these four trajectories to
a unified time axis, we first align the estimates in Tmap

GNSS and
T test
GNSS by aligning each point in the test trajectory with the

closest point in the map. Next, the two scalar offsets that best
align the LGPR and RTK-GNSS trajectories respectively were
found through numerical optimization.

Finally, after synchronizing the timing and calculating the
total mean error, the error vector e at each scan point was decom-
posed into a cross-track error, e⊥, and an along-track error, e‖
for additional insight. First, the unit tangent vector at each point
was calculated using a centered finite difference along T test

GNSS

and then the components along the track and perpendicular to
the track were found such that e = e⊥ + e‖. For autonomous
navigation purposes, the requirements for low cross-track error
are typically more stringent than the along-track error due to
lane tolerances.

C. Results

The system was evaluated over a total of 17 km composed of
both manual and autonomous driving modes in clear weather,
rain, and snow.

1) Weather Conditions: Fig. 7 shows the results from com-
paring the effect of weather on localization accuracy. In clear
weather, the system achieved 0.34 m mean total error with a
cross-track error of only 0.26 m. This value is significantly better
than GPS error which is typically >1 m even when fused with
inertial and wheel odometry sensors [30]. Comparing the results
from clear weather and snow, there is very little degradation in
localization accuracy with mean total error of 0.39 m and mean
cross-track error of 0.29m respectively.

In the tests during rain, a degradation in the localization
quality was observed, The mean total error jumped to 0.77 m
and mean cross-track error was 0.40 m. However, these values
are still significantly lower than utilizing a GPS/INS solution

Fig. 8. A histogram showing the distribution of scan correlations between the
test run and the LGPR map in various weather conditions.

Fig. 9. A comparison of the LGPR estimates compared to ground truth in
manual and autonomous driving modes.

and were not large enough to require disengagement of the
autonomous system. This degradation in localization accuracy
can potentially be attributed to the water in the ground changing
the dielectric properties of the soil and inhibiting the penetration
depth of the signal. Fig. 8 shows a histogram of the correlation
values of the localization measurements as calculated in Eq. (1)
in various weather conditions. It is interesting that rather than
the rain causing a high instance of very low correlations, it only
shifts the histogram left which indicates that the rain is not fully
obscuring the signal but rather “blurring” it and making the
measured scans more difficult to match to the map. It is possible
that these signals could be cleaned in post-processing to achieve
accuracy in rain closer to that in clear weather. However, we
leave that for future work.

2) Driving Mode: Finally, Fig. 9 shows the evaluation re-
sults when comparing autonomous and manual driving. During
manual driving, the system achieved 0.27 m mean total error
and 0.20 m mean cross-track error. However, in autonomous
mode, the mean total error went up to 0.5 m and the mean
cross-track error was 0.36 m. (Note that this includes all weather
conditions.) The degraded performance in autonomous mode
can be attributed to the fact that the autonomous systems do not
follow the mapped path perfectly. However, the magnitude of the
error was not so significant to preclude following the reference
path and over the course of over 8 km of autonomous testing not
a single unplanned disengagement was necessary.

VII. CONCLUSION

This letter presents a solution for autonomous driving using
only underground features measured with an LGPR sensor.
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This solution permits safely driving in inclement weather in-
cluding rain, and snow, and under complete darkness at night.
Furthermore, we have obtained measurements of the system
performance during fully autonomous navigation, which, to the
best of our knowledge, has never been published previously.
While safety requirements at our testing facility did not allow
for testing autonomously at high speeds, [3] tested a similar
setup (albeit with a human driver) at highways speeds and
demonstrated successful localization. Therefore, we believe our
results will readily extend to high speed driving as well. Current
limitations of the system involve a decrease in performance
when the weather conditions during localization differ from
those during map creation. Furthermore, the current system is
not capable of performing global localization without using a
GPS prior. Thus, future work will investigate methods explicitly
modeling temperature and humidity induced reflection changes
as well as aggregation-based global localization techniques for
precise initialization even in the absence of GPS priors.
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