
2586 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 5, NO. 2, APRIL 2020

Path Planning With Local Motion Estimations
Jérôme Guzzi , R. Omar Chavez-Garcia , Mirko Nava , Luca Maria Gambardella, and Alessandro Giusti

Abstract—We introduce a novel approach to long-range path
planning that relies on a learned model to predict the outcome
of local motions using possibly partial knowledge. The model is
trained from a dataset of trajectories acquired in a self-supervised
way. Sampling-based path planners use this component to evaluate
edges to be added to the planning tree. We illustrate the application
of this pipeline with two robots: a complex, simulated, quadruped
robot (ANYmal) moving on rough terrains; and a simple, real,
differential-drive robot (Mighty Thymio), whose geometry is as-
sumed unknown, moving among obstacles. We quantitatively eval-
uate the model performance in predicting the outcome of short
moves and long-range paths; finally, we show that planning results
in reasonable paths.

Index Terms—Motion and path planning, deep learning in
robotics and automation, probability and statistical methods.

I. INTRODUCTION

SAMPLING-BASED planning [1] is a powerful and general
solution to path planning that casts the problem as a search

for a sequence of feasible local motions, each of which links
two nearby states: the first local motion starts at the source
state and the last ends at the target state. The feasibility of
local motions is determined by a local motion estimator, which
should account for the robot kinematics, the local planners
and controllers at play, and all available knowledge about the
environment.

The local motion estimator is typically a simple component
that checks whether a direct move linking two states collides
with known obstacles and complies with the robot’s kinematic
constraints. However, this approach is unsuitable for cases with
complex, possibly stochastic interactions between the robot and
its environment.

Consider, as an example, the case of a legged robot planning
a long path on a known, rugged terrain. A possible alternative
to evaluate whether a local motion is feasible is to accurately
simulate the robot moving on the terrain patch between two
locations. Such simulation must account, among other factors,

Manuscript received September 10, 2019; accepted January 8, 2020. Date of
publication February 10, 2020; date of current version February 21, 2020. This
letter was recommended for publication by Associate Editor Dr. C. Ekenna and
Editor Prof. N. Amato upon evaluation of the reviewers’ comments. This work
has been conducted as part of ANYmal Research, a community to advance legged
robotics. This work was supported by the Swiss National Centre of Competence
in Research Robotics. (Corresponding author: Jerome Guzzi.)

The authors are with the Dalle Molle Institute for Artificial Intelligence
(IDSIA), USI-SUPSI, Lugano 6928, Switzerland (e-mail: jerome@idsia.ch;
omar@idsia.ch; mirko@idsia.ch; luca@idsia.ch; alessandrog@idsia.ch).

This article has supplementary downloadable material available at https://
ieeexplore.ieee.org, provided by the authors.

Digital Object Identifier 10.1109/LRA.2020.2972849

Fig. 1. Platforms used in our experiments.

for the terrain shape, the robot-terrain interaction, the charac-
teristics of the robot’s sensing ability and low-level controllers,
and the probability that the robot could slip on the terrain. This
is problematic for two reasons: computational expense (a local
motion estimator is queried very often, and therefore needs to
be fast); and partial knowledge about the environment (e.g., at
planning time, we might know the terrain topography but not its
softness/friction characteristics).

Our main contribution is a novel approach in which:
� we learn an estimator to predict the outcome (e.g., success

probability, duration, energy, ...) of motions linking two
nearby states, given the available (possibly incomplete)
knowledge about the local environment;

� we use the learned estimator in a sampling-based global
planning framework to identify feasible local motions and
assign them a cost to be minimized (e.g., finding the path
with minimal failure probability),

under the assumptions that: (1) a local planner and a controller
are available; (2) our knowledge of the environment is static (in
particular, at planning time, the map covers source and target
locations and the robot does not acquire new information during
trajectory execution); and (3) the robot can not recover from
failures and has thus no need for dynamic re-planning. We will
briefly discuss in Section VI how some of these restrictions can
be lifted.

In this context, training the estimator requires to collect in-
stances in the form of input-output pairs: the input is a pair of
nearby states and any available knowledge about the surrounding
environment; the output is the outcome of the move. Such data
can be acquired either in simulation or in the real world, with a
robot attempting local motions and measuring their outcomes.
If the robot can sense the outcome without external help (e.g.,
by visual odometry to measure advancement), the approach can
be implemented in a self-supervised [2] fashion, and the robot
can progressively adapt the estimator to the environment.

2377-3766 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0002-1263-4110
https://orcid.org/0000-0002-2297-9585
https://orcid.org/0000-0002-3736-0419
https://orcid.org/0000-0003-1240-0768
mailto:jerome@idsia.ch
mailto:omar@idsia.ch
mailto:mirko@idsia.ch
mailto:luca@idsia.ch
mailto:alessandrog@idsia.ch
https://ieeexplore.ieee.org

GUZZI et al.: PATH PLANNING WITH LOCAL MOTION ESTIMATIONS 2587

The approach naturally handles planning in partially-known,
stochastic environments, i.e., where robot’s actions do not lead to
deterministic outcomes. In particular, by adopting probabilistic
machine learning [3] tools, one can expect that any uncertainty
in the estimator inputs is properly mapped to uncertainty in the
outputs, which is handled in a principled way when planning.

Note that the approach does not require that a model of the
robot is available (unless one uses simulations to acquire training
data) and resembles the way humans plan paths in open, rugged
terrains: estimating from a distance whether a given passage is
traversable relies on a quick, intuitive evaluation based on partial
information about the local environment and on previous experi-
ence attempting to negotiate similar-looking passages. Crucially,
this evaluation accounts for the operation and performance of
lower-level controllers, i.e., in our case, the motor skills of the
subject. An example of online learning in this context occurs
when inexperienced hikers learn how to plan paths that avoid
wet rocks after slipping and falling once on such surface.

After reviewing related work in Section II, we formalize
our abstract model (Section III) and describe implementations
(Section IV) in two contexts: a simulated legged robot navigating
rugged terrain and a real wheeled robot with unknown geom-
etry navigating among obstacles. Qualitative and quantitative
experimental results are reported and discussed in Section V.

II. RELATED WORK

A. Path Planning

A common strategy for integrating machine learning in
robotic path planning [4] is imitation learning of expert tra-
jectories. Along this line of research, Pfeiffer et al. [5] train a
CNN to compute steering commands to reach the desired target
pose given current readings from a laser scanner; Ollis et al. [6]
analyze expert trajectories to learn features of traversed map
areas and then compute cost maps in a Bayesian framework;
Bagnell et al. [7] use inverse optimal planning to infer a cost
function for which the expert trajectories would be optimal.

In contrast, our work relies on sampling-based graph search.
Sampling-based motion planning algorithms [1] handle high-
dimensional configuration spaces and rely on a local planner
(or steering function) that determines the connectivity between
nodes of a graph; in this context, one can search in the space
of controls to take into account dynamical or differential con-
straints. The Rapidly Exploring Random Trees (RRT) [8] algo-
rithm iteratively constructs a tree by sampling the configuration
space to add edges that lead to feasible states; once the target state
is connected to the tree, the path is returned. Alternatively, the
Probabilistic Road Maps (PRM) [9] algorithm builds a graph
of feasible edges in which the best path is found using, e.g.,
Dijkstra’s algorithm. In general, sampling-based planners are
probabilistically complete, i.e., they find a path from source to
target with probability 1 if such a path exists and if they are given
enough time to grow the graph. Optimal variants such as RRT*

and PRM* asymptotically converge to the path of least cost [10].
Machine learning has been used to augment components of
sampling-based planners, e.g., for automatically selecting the
best sampler [11] or the best expansion strategy depending on
the neighborhood of a node [12]. In this work, we apply machine

learning on a different component, i.e., the one that determines
the connectivity of two nearby states.

B. Search Spaces

Some planning strategies explore the space of states and de-
termine feasible paths as sequences of feasible states to traverse,
for example, focusing on collision-free constraints or searching
for a stable gait state [13]. Alternatively, planners search in the
action space: feasible paths are sequences of feasible actions to
execute. In our previous work [14], we estimated the feasibility
of motions on a regular horizontal grid. In this work, we instead
randomly sample from a much larger space.

C. Local Motion Estimation

Estimating the feasibility of local motions is a key component
of global path planning algorithms. For instance, for legged
robots, traversability scores can be assigned to cells of 2D maps
to account for the robot’s geometry, and the terrain roughness and
slope [15]; in a more complex approach, Fankhauser et al. [13]
first compute stable footholds, and then body and leg trajectories
to overcome steep sections and high steps. In this context,
when the interaction between the robot and the environment is
complex, one can train a model to output traversability scores:
Wellhausen et al. [16] first use a weakly-supervised method to
segment terrain classes from a front-facing camera image, then
use a CNN to compute the confidence of keeping balance on
potential footholds, which is mapped to a cost function. Similar
approaches, which first classify terrain and then assign a cost
to a grid map, have been developed, e.g., during the LAGR
project [17].

Our proposed approach, given a local planner, trains an esti-
mator to predict which local motions are feasible, using many
random trials on diverse terrains; then, instead of building a
fixed resolution grid map, samples from the whole space of local
motions to build a dense planning tree. Moreover, it does not
rely on hand-modeled terrain features (like slope or roughness)
but learns more general features from examples on a variety of
terrains. In contemporary work, Chiang et al. [18] propose a
similar approach for integrating a local planner trained using
reinforcement learning in a global sampling-based planner for
kinodynamic constrained robots. The general approach of using
machine learning to approximate the outputs of a computation-
ally expensive planner is also found in imitation learning, e.g.,
when the expert trajectories for a legged robot originate from a
sophisticated high-dimensional footholds planner [7] instead of
a human pilot.

III. MODEL

In this section, we describe the global path planning problem
as a search in the space of sequences of local motions, whose
feasibility and costs are estimated through machine learning (see
Fig. 2).

A. Local Motions

The robot moves in an environment of which it has, at planning
time, partial knowledgeKmodeled as a set of relevant pieces of

2588 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 5, NO. 2, APRIL 2020

Fig. 2. Basic definitions, as introduced in Section III: a dataset (a) of local
motion outcomes is used to train a model (b), which a sampling-based planner
(c) queries to get the success probability and cost of candidate edges for a tree
connecting source s with target t. The orange circle represents local knowledge
Ke that the model uses to predict the outcome.

information. A local motion e = (q1, q2) ∈ C2 is defined by two
nearby states in the robot’s configuration space C. For example,
for a differential-drive wheeled robot moving on a plane among
obstacles, we may represent a local motion as a pair of poses
in the two-dimensional special Euclidean group SE(2), and
knowledge as an obstacle occupancy grid.

When the robot attempts to travel from q1 to q2 using a
local planner and a controller, it follows a time-parametrized
trajectory γ : [0, T]→ C, with γ(0) = q1. In general, multiple
executions of the same local motion may result in different
trajectories; this randomness has diverse sources, such as: partial
knowledge of the environment (possibly based on the robot’s
sensors); stochastic interaction with the environment while exe-
cuting the motion (e.g., when a robot slips); local planners that
use random algorithms. Therefore, we assume that γ is randomly
drawn from a distribution, which depends on the environment, e,
and the local knowledgeKe ⊂ K, which we define as the subset
that contains any information about the surroundings of e; for
the previous example, local knowledge would be a portion of
the occupancy grid map containing the source and target poses.

Let d(γ) = (d1(γ), . . . , dn(γ)) ∈ D be an n-dimensional de-
scriptor that should contain any information relevant to evaluate
trajectories. For instance,d1 ≡ S ∈ {0, 1}denotes whenever the
robot has reached the target, i.e., if γ(T) = q2. Other interesting
descriptors may be duration T , energy consumed, number of
collisions occurred, and maximal motor torque. Finally, we use
the notation d(e,Ke) to denote the distribution of descriptors
for trajectories resulting from a local motion e when the robot
has local knowledge Ke; the dependency on the environment is
always implicit.

B. Learning to Predict Local Trajectories

We use supervised machine learning to predict the outcome
of a given local motion (i.e., the expected value of the trajectory
descriptors). In particular, we learn the mapping (e,Ke) �→ y =
E[d(e,Ke)] (see Fig. 2(b)). As a first step, we collect many
instances of local trajectories γ by sampling local motions in dif-
ferent environments and recording the values of their descriptors
d(γ); then, we train a machine learning model using this data.

1) Collecting the Dataset: The robot can collect the dataset
(see Fig. 2(a)) in a self-supervised way if the robot directly
extracts the trajectory descriptors from on-board sensors and

Algorithm 1: RRT-based planner that builds a random tree
T with resolution δ to compute a path from s ∈ C to t ∈ C,
using a model to predict the expected descriptors y of local
motions trajectories and knowledge K about the environ-
ment. Only edges with success probability larger than τ are
added to the tree and carry a cost function C .

Initialize T with a node in s
while t �∈ T do

q ← random sample from C with a small bias toward t
q1 ← vertex in T nearest to q
e← local motion from q1 toward q of at most length δ
y ← E[d(e,Ke)]
if yS > τ then

add edge e with cost C (y) to T
end if

end while

its internal state. As relevant descriptors should only depend
on the relative position of q2 with respect to q1, and the local
knowledge around q1, we use a local coordinate frame, centered
at q1, to represent q2 and Ke. The resulting dataset is composed
of many samples of the form (Kq2 , q2, d1, d2, . . . , dn).

2) Learning: Because some descriptors are categorical (e.g.,
S) while others are continuous (e.g., duration and energy), the
model has multiple outputs: some for classification and others
for regression. Fig. 5 shows the deep neural network architecture
that we use as a local motion estimator for two specific planning
problems.

C. Global Path Planning

The global path planner searches for the best trajectory for
the robot to travel from s ∈ C to t ∈ C, encoded as a sequence
π = (e1, e2, . . . em) of local motions to perform. We discrimi-
nate among trajectories using the descriptors computed by the
trained model. In particular, we define an additive cost for the
path as C (π;Kπ) =

∑
e∈π C (e;Ke) =

∑
e∈π C (E[d(e,Ke)]),

where the cost of the local motions depends on the predicted
descriptors.

For instance, if we assume that the probabilities of failing
different local motions are independent, one interesting cost to
minimize is the path survival risk R, given by the negative log-
probability that the robot completes all local motions

R(π;Kπ)

= −
∑

e∈π
log P(S(e,Ke) = 1) = −

∑

e∈π
log yS(e,Ke). (1)

1) Sampling-Based Planner: We solve the global planning
problem using a sampling-based planner that iteratively builds a
graph of states connected by edges that represent feasible local
motions (e.g., local motions with a sufficiently high probability
of success). In our implementation, we use randomized variants
of Rapid Exploring (Dense) Tree (RDT) [19] algorithms to an-
swer one-shot path planning queries. In general, these algorithms
iteratively construct a tree T ⊂ C that covers the configuration
space by sampling random points (with a bias towards t) and

GUZZI et al.: PATH PLANNING WITH LOCAL MOTION ESTIMATIONS 2589

Fig. 3. ANYmal pipeline: (a) we collect about 90 K random trajectories by picking q1 uniformly on a map and q2 in an annulus around it. We use these trajectories
to train a model (b) to finally compute plans (c) using RRT*. Local knowledge K(q1,q2) is encoded as a 2m× 2m grid patch P around the robot bounded by the
orange line; heightmaps are depicted as gray-scale images. All drawing are in scale and use experimental data.

connecting them to the tree through local motions, as illustrated
in Fig. 2(c) and Algorithm 1, which makes explicit the role of
the predictions during planning. The main difference with the
original RDT algorithms, like RRT, is that we cannot evaluate
infinitesimally short local motions (otherwise their descriptors
would be meaningless), and therefore the asymptotic properties
are not preserved.

Optimal variants, like RRT* [10] and SST [20] (Stable Sparse
RRT), use a cost C (in our case computed from the predicted
descriptors) to grow a tree of optimal paths; adding an edge
to the tree may involve locally reorganizing the tree (RRT*) or
competing with neighbor branches (SST).

IV. EXPERIMENTAL SETUP

In this section, we present two concrete applications of the
model presented in Section III for two different robots depicted
in Fig. 1: a simulated ANYmal robot and a real Mighty Thymio
robot.

Both robots move on 2D terrain whose knowledge K is
encoded as heightmaps (i.e., grey-scale images with an altitude
value associated with each pixel); we ignore any property that
is not geometrical (like the surface material). Knowledge used
by the robot for local motions is given by local heightmaps,
i.e., square heightmap patches centered at the robot location,
and aligned with its orientation. We implement sampling-based
planners using the Open Motion Planning Library (OMPL) [21].

A. Simulated ANYmal

1) Robot and Environment: ANYmal [22] is a state-of-the-
art quadruped robot developed at ETHZ for autonomous oper-
ation in challenging environments, with the ability to walk on
rough terrain. We simulate ANYmal in Gazebo (see Fig. 1(a))
to learn how well the robot copes with different obstacles
(e.g., steps, holes, slopes, bumps) and later plan safe paths;
ANYmal’s footprint is 80 cm× 60 cm× 70 cm. For simplicity,
we limit our analysis to local motions that maintain orienta-
tion; therefore, the configuration space C = R2 is given by the
horizontal position of ANYmal’s center. Heightmaps have a
resolution of 2 cm per pixel; local knowledge is represented

as a 100 px× 100 px(2m× 2m) patch P of such heightmap
(see Fig. 3(a)).

2) Local Motion: The simulated ANYmal uses a simple,1

locomotion planner and a complex closed-loop feedback con-
troller to follow a local trajectory while compensating for terrain
irregularities [23]. The local planner takes as its only input the
relative target pose q2 = (x, y, θ). For any sampled trajectory γ,
d(γ) ∈ {0, 1} ×R+ is composed of success S (“has the robot
arrived near enough to q2?”) and duration T .

3) Dataset Collection: We collect a dataset of about 90 K
samples (76% with S = 1), where each sample is a tuple
(P, x, y, S, T), by randomly spawning the robot on stable poses
and randomly sampling a relative target point at a distance
between 15 cm to 50 cm along a random direction; on average the
robot needs 8 steps (about 10 seconds) to complete a local motion
(Fig. 3(a)). We gather data on 12 different terrains (with total area
1200m2), which contain challenging obstacles such as slopes,
bumps, holes, rails, and steps. As in our previous work [14],
terrain heightmaps are procedurally generated as superpositions
of simplex noise at different scales.

4) Training: The success and duration of local motions are
modeled by a deep neural network, outlined in Fig. 5. The esti-
mator has two stages: the first is composed of convolutional lay-
ers that operate on the heightmap patch (which has an image-like
2D structure); the second stage processes the resulting features
and accepts, as an additional input, the relative target point (x, y).
The output of the model consists of the success probability yS
from a dense layer with softmax activation and the estimation
of duration yT from a dense layer. The loss function is given by
the sum of categorical cross-entropy (success) and mean squared
error (duration). The training dataset contains 70 K samples from
7 terrains; the validation dataset contains 10 K samples from 2
terrains; the evaluation dataset contains 8.7 K samples from 3
terrains; all 12 terrains are distinct.

5) Path Planning: We use the trained local motion model
to compute global paths through a planner, which is derived
from RRT* in the same way Algorithm 1 has been derived from

1ANYmal also features a more complex local planner [13] which we do not
use in this work, that selects the best foothold locations on a terrain.

2590 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 5, NO. 2, APRIL 2020

Fig. 4. Mighty Thymio pipeline: (a) the robot randomly changes angular speed every 2 s to collect 1 s training samples labeled according to the occurrence (or
not, S ∈ {0, 1}) of a collision; (b) this model predicts the probability of a collision in the next 1 s for given angular and linear speeds, which (c) we use to plan safe
trajectories (τ = 0.98) that minimizes duration using SST. Local knowledge K(q1,q2) is a grid patch P (orange stroke) of 50 cm around the robot. All drawing
are in scale and use experimental data.

RRT in Section III-C1. Namely, the planner iteratively samples
a random point q and attempts to grow the tree with a motion
from the nearest neighbor of q, towards q, on a segment of length
δ = 45 cm. If q is closer than δ, the candidate is retained as long
as the distance is above 15 cm; otherwise, it is discarded. Based
on the success scoreyS returned by the estimator, we assign a risk
− log yS to each edge while we consider any edge with a score
lower than a threshold τ = 0.5 as not feasible. We run RRT* to
find the path with minimal survival risk, as defined in Eq. (1);
as RRT* is an anytime algorithm that converges towards the
optimal solution, we let the tree grow for a given computational
time budget.

B. Mighty Thymio

1) Robot and Environment: The Mighty Thymio [24] is an
extension of the small educational robot Thymio [25] for re-
search use. It features two differentially driven wheels and
its configuration space C = SE(2) is composed of the robot’s
position and orientation. The small mobile robot moves on the
flat floor of a room that has several obstacles on the ground (see
Fig. 1(b)); to make the planning problem more interesting, we
have extended the body of the robot by adding a rigid arm on its
right. The Mighty Thymio size is 11 cm× 11 cm× 20 cm, and
the arm size is 10 cm× 2 cm× 0.5 cm. As another application
of the model introduced in Section III, the goal is to learn
to predict if the robot (whose geometry is assumed unknown)
would collide with obstacles during a short motion and use this
information to plan collision-free paths. We represent environ-
ments as heightmaps with a resolution of 0.625 cm per pixel;
local knowledge is represented by robot-centered 80 px× 80 px
(50 cm× 50 cm) patches P .

2) Local Motion: Like ANYmal, the Mighty Thymio could
use a relatively complex planner/controller combination to
perform arbitrary local motions in free space. Instead, we
present a simpler model that highlights the generality of our
approach; namely, we limit local motions to have constant
linear speed v ∈ {−8 cms−1,−8 cms−1}, angular speed ω ∈

Fig. 5. Neural Network architecture for ANYmal discussed in Section IV-A.
Given the robot-centered heightmap patch P and the relative target goal (x, y),
the model outputs a probability of reaching the target pose and an estimation of
the required time. The architecture used for Mighty Thymio is very similar (see
Section IV-B).

[−0.5 rad s−1,−0.5 rad s−1], and duration T = 1 s; in this case,
the local planner is trivial and just executes the corresponding
control. For every local motion in the training set, we record
S ∈ {0, 1}, which discriminates whenever a collision occurred
during the local motion.

3) Dataset Collection: We acquire data using a controller
that randomly selects a new angular speed every 2 s. Each time
a collision occurs, the robot records it and inverts its motion
direction (i.e., starts moving backward if it was moving forward,
and vice versa). A motion capture system records the position
of all obstacles and the robot. The robot runs for a total time of
120 min (in 6 different maps), during which about 460 collisions
were recorded. After the acquisition, we process the data to
extract 1 s trajectories with constant controls: we assignS = 1 to
those without collisions, while we assign S = 0 to those where
a collision occurs (see Fig. 4(a)). In total, we collect a dataset of
104 K samples of the form (P, v, ω, S).

4) Training: We adopt the CNN architecture depicted in
Fig. 5, with the only difference that the output is only the success
probability (no-collision) of the motion. We generate the dataset
from three disjoint sets of maps: 52 K samples were used for
training (3 maps), 20 K for validation (1 map), and 30 K for
evaluation (2 maps).

GUZZI et al.: PATH PLANNING WITH LOCAL MOTION ESTIMATIONS 2591

5) Path Planning: To take into account the differential con-
straints of the robot’s motion, we use a variant of SST, which
samples control inputs to reach a local target point. More
precisely, SST iteratively samples a random pose q ∈ SE(2)
and several control inputs, among which it selects the one that
would lead the robot nearest to q from its nearest neighbor;
the planner then adds an edge to the tree only if it decreases
the local cost-to-come. We discard any edge with a success
probability lower than τ = 0.98 and assign a fixed cost of 1
(i.e., proportional to their duration) to feasible edges. SST is
an anytime algorithm that converges towards a nearly optimal
solution; therefore, we let the tree grow for a fixed amount of
computational time.

V. EXPERIMENTAL RESULTS

How well are we able to predict the outcome of local mo-
tions? Are the local models useful for path planning? Are the
assumptions we made in Section III justified? In particular, are
we justified to interpret yS as the success probability for local
motions and use it to compute the success probability for an
entire path? In this section, we present experimental results that
partially answer these questions for the two setups introduced
in Section IV.

Qualitative tests, like those illustrated in Figs. 3(b) and 4(b),
show that the learned model’s predictions are coherent with the
map: the ANYmal model correctly estimates that motions that
step over the short wall are risky; the Mighty Thymio model cor-
rectly predicts collisions. Similarly, computing paths between
hand-picked locations on interesting maps, like in Figs. 3(c) and
4(c), shows that the planner computes sensible paths: ANYmal
avoids high steps and slopes, and Mighty Thymio (with an
arm on the right) stays on the left side of a corridor to avoid
collisions. The video in the supplementary material contains
several examples of planned paths and their executions.

In the rest of this section, we report quantitative, statistically
significant results. First, we present metrics on the evaluation
datasets for the prediction of local motions. Then, we report
results for the planned paths, focusing on the ANYmal case,
for which we gathered a large number of executed samples in
simulation.

A. Local Motion Prediction

1) ANYmal: Fig. 6:left illustrates how well the ANYmal
model outputs correspond to the true values on the evaluation
dataset; the corresponding performance scores are listed in the
evaluation row of grey columns (related to testing single local
motions) in Table I (AUC = 0.889). The model is very well
calibrated for both outputs.

2) Mighty Thymio: Similarly, we report in Table II and
Fig. 6:right the results for the Mighty Thymio model predicting
success probability (AUC = 0.972). During data collection, the
robot had a relatively small number of collisions, which lead to
training and evaluation datasets that are very unbalanced (one
failed sample every 25 successful samples), which could explain
the inferior calibration (compared to the ANYmal model) of
a model that tends to overestimate the success probability.

Fig. 6. Model evaluation (ground truth vs prediction) on local motions for
ANYmal (8700 samples, left and center) and Mighty Thymio (30 K samples,
right). In the success plots, we group yS in 0.1 width bins. In the duration
plot, dots mark the mean value of T for outputs yT grouped in 1 s width bins,
while the grey area is delimited by± one standard deviation. Perfect models are
represented by dashed black lines.

TABLE I
ANYMAL MODEL EVALUATION FOR SUCCESS PREDICTION: NUMBER OF

SAMPLES FOR THE TWO CLASSES AND AREA UNDER THE ROC (AUC). THE

COLUMNS CONTAIN THE RESULTS FOR SINGLE LOCAL MOTIONS e (GRAY),
PATHS π BETWEEN RANDOM SOURCE AND TARGET

LOCATIONS ON SELECTED MAPS (WHITE), AND ALL SUBPATHS subπ
EXTRACTED FROM SUCH PATHS (BLUE)

TABLE II
MIGHTY THYMIO MODEL EVALUATION: NUMBER OF SAMPLES FOR THE TWO

CLASSES, AREA UNDER THE ROC (AUC), AND SUCCESS PROBABILITY FOR

SCORES ABOVE τ = 0.98, WHICH IS THE THRESHOLD WE USE TO COMPUTE

THE PLANS ACCORDING TO SECTION IV-B

Nonetheless, the model, with a threshold τ = 0.98, yields a
precision of 99.7% and a recall of 96.1%, which prove to be
good enough for planning on our maps.

B. Path Planning for ANYmal

In this section, we report results that investigate the core of our
contribution, i.e., using the learned local motion model to plan a
path: we compute and then execute many paths between target
and source locations for the simulated ANYmal. In particular,
we randomly sample 1000 pairs of source and target states in two
different maps (rough and surf) of size 10m× 10m illustrated
at the top of Fig. 8: we reject any pair outside of the green areas
(where we expect a successful spawning of the simulated robot)
and any pair with a distance shorter than 3 m. The two maps
have not been used to train or evaluate the model and have been
hand-designed as realistic (rough) and easy legible (surf, with a
smooth, gradual slope) outdoor terrains.

One evaluation of the model requires about 1 ms on a single,
modern desktop, CPU. We fix the RRT* planning duration to
120 s, which is sufficient to cover the maps with a granularity
of δ = 0.45m, resulting in trees with about 10 K edges and that
require about 100 K model evaluations.

2592 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 5, NO. 2, APRIL 2020

Fig. 7. Three samples of paths from source (cyan arrow) to target (blue arrow)
and their execution on the rough map: one failure (partly red) and two successes
(all blue). For any execution, we record ground truth and model prediction
(yellow). Because of stochastic interactions with the terrain, multiple runs may
have different outcomes; for examples, 30 trials of the bottom path result in 14
failures and 16 successes, for which P(S = 1) ≈ 0.53 is remarkably near to
the predicted value yS = 0.57, with failures distributed in 3 out of 34 segments
(e10 : 7, e11 : 3, e20 : 4).

As illustrated2 in Fig. 7, for any planned path, we spawn the
robot at the source location and pass the sequence of intermediate
target poses to the controller. We record the success and duration
of each segment of the path: in about 80% of the cases the
robot arrives safely at the target, while in the remaining cases
we observe a failure to complete one segment. To increase the
number of (path) samples (from 1 K to around 400 K), from
any path we extract all subpaths that start before a failure (if
any): each subpath has well-defined ground truth labels and
predictions for success and duration.

Table I compares the prediction performance of success for
single segments, source-target paths, and all their subpaths. For
both maps, the AUC is similar across the different datasets.3

Performance on the rough map is comparable to the evaluation
dataset of single segments discussed before, while predictions
on the surf map are easier.

Fig. 8 illustrates the quality of the prediction when applied
to subpaths. In general, the success score is well calibrated
although it tends to overestimate the success chance of risky
paths (i.e., those with low score); the model is better calibrated
on the rough map than on surf, which is smoother but has
steeper slopes. Instead, the duration of subpaths is systematically
underestimated; we believe that this is an artifact: in training,
we record the time until a single pose is reached, which may
happen while the robot has not fully stopped yet; instead, during
path execution, the controller waits until the robot is still to start
moving towards the next pose. Nonetheless, the error is relatively
small at around 5%.

2The supplementary video captures ANYmal planning queries on the surf
map too and planning queries for Mighty Thymio.

3We note that the vast majority of the segments along a path are successful,
which leads to local motions datasets on rough and surf that are significantly
unbalanced.

Fig. 8. ANYmal model evaluation on about 400 K subpaths for two maps
(rough left and surf right). The first row shows the 3D view of the terrain
with a correctly sized robot. The second row depicts the heightmap (in meters)
with spawning areas in green. In the plots, dots marks mean values for binned
prediction outputs, while the area on the bottom plots covers ± one standard
deviation.

VI. CONCLUSIONS

We introduced a novel, data-driven approach to robotic path
planning: first, we learn to predict the outcome of short tra-
jectories from local information; then, we use this model to
discriminate between potential edges while building a dense
random tree to connect source and target states. We applied
the model in two scenarios: computing geometrical paths on
rough terrain for a simulated legged ANYmal robot with a
sophisticated controller whose performance would be difficult
to model by hand; and computing control trajectories for a
real, non-holonomic, Mighty Thymio robot moving between
obstacles with a simple controller. Note that, in the second case,
it would be straightforward to analytically model the collision
risk of the robot with known obstacles; yet, it is interesting that
our data-driven approach yields acceptable results, using a small
training dataset and requiring no explicit knowledge of the robot
geometry.

To assign a risk to the path (as a function of the estimated
risk of individual edges), we assumed that the model output was
calibrated and that edge failure probabilities were independent
(or at least Markovian). We verified that this is the case for
ANYmal, for which we acquired a large and balanced dataset:
our approach yields accurate predictions of success probabil-
ity for entire paths. In general, we observe that the size and
class balance of training datasets is a crucial factor; ongoing

GUZZI et al.: PATH PLANNING WITH LOCAL MOTION ESTIMATIONS 2593

work focuses on assessing requirements for path planning tasks.
Moreover, the machine learning models that have been trained
do not take into account the sequential nature of following a path:
we can improve this by defining loss functions on sequences of
segments rather than on individual segments.

We are presently working on a richer model for ANYmal, with
local motions that change orientation and additional labels, such
as consumed energy and multiple failure modes (getting stuck,
capsizing, low-level control errors); we are going to compare the
plans produced by our pipeline with those obtained by modeling
a cost function by hand [26].

To keep the model simple, we assumed that knowledge is
static, that the map is known, and that failures are fatal. To drop
these assumptions, one can integrate our data-driven approach
with online learning, receding horizons, and fast re-planning
strategies for sampling-based planners [27]; this would address
more realistic scenarios where the robot is able to re-plan once
it discovers new information or experiences a non-fatal failure.

Finally, we illustrated the model in the context of path
planning, but the application scope of the main idea is broad
enough that it can be applied to any planning problem using
actions whose outcome can be predicted by a machine learning
estimator.

REFERENCES

[1] M. Elbanhawi and M. Simic, “Sampling-based robot motion planning: A
review,” IEEE Access, vol. 2, pp. 56–77, 2014.

[2] C. Doersch, A. Gupta, and A. A. Efros, “Unsupervised visual represen-
tation learning by context prediction,” in Proc. IEEE Int. Conf. Comput.
Vision, 2015, pp. 1422–1430.

[3] Z. Ghahramani, “Probabilistic machine learning and artificial intelli-
gence,” Nature, vol. 521, pp. 452–459, 2015.

[4] D. González, J. Pérez, V. Milanés, and F. Nashashibi, “A review of motion
planning techniques for automated vehicles,” IEEE Trans. Intell. Transp.
Syst., vol. 17, no. 4, pp. 1135–1145, Apr. 2016.

[5] M. Pfeiffer, M. Schaeuble, J. Nieto, R. Siegwart, and C. Cadena, “From
perception to decision: A data-driven approach to end-to-end motion
planning for autonomous ground robots,” in Proc. IEEE Int. Conf. Robot.
Autom., 2017, pp. 1527–1533.

[6] M. Ollis, W. H. Huang, and M. Happold, “A bayesian approach to imitation
learning for robot navigation,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst., 2007, pp. 709–714.

[7] J. Bagnell, J. Chestnutt, D. M. Bradley, and N. D. Ratliff, “Boosting
structured prediction for imitation learning,” in Proc. Adv. Neural Inf.
Process. Syst., 2007, pp. 1153–1160.

[8] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” Iowa State University, Tech. Rep., 1998.

[9] L. E. Kavraki, P. Švestka, J.-C. Latombe, and M. H. Overmars, “Probabilis-
tic roadmaps for path planning in high-dimensional configuration spaces,”
IEEE Trans. Robot. Autom., vol. 12, no. 4, pp. 566–580, Aug. 1996.

[10] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” Int. J. Robot. Res., vol. 30, no. 7, pp. 846–894, 2011.

[11] A. Upadhyay and C. Ekenna, “Investigating heterogeneous planning
spaces,” in Proc. IEEE Int. Conf. Simul., Model. Program. Auton. Robots,
2018, pp. 108–115.

[12] J. Denny, M. Morales, S. Rodriguez, and N. M. Amato, “Adapting rrt
growth for heterogeneous environments,” in Proc. IEEE/RSJ Int. Conf.
Intell. Robots Syst., 2013, pp. 1772–1778.

[13] P. Fankhauser, M. Bjelonic, C. Dario Bellicoso, T. Miki, and M. Hutter,
“Robust rough-terrain locomotion with a quadrupedal robot,” in Proc.
IEEE Int. Conf. Robot. Autom., 2018, pp. 1–8.

[14] R. O. Chavez-Garcia, J. Guzzi, L. M. Gambardella, and A. Giusti, “Learn-
ing ground traversability from simulations,” IEEE Robot. Autom. Lett.,
vol. 3, no. 3, pp. 1695–1702, Jul. 2018.

[15] P. Krüsi, P. Furgale, M. Bosse, and R. Siegwart, “Driving on point clouds:
Motion planning, trajectory optimization, and terrain assessment in generic
nonplanar environments,” J. Field Robot., vol. 34, no. 5, pp. 940–984,
2017.

[16] L. Wellhausen, A. Dosovitskiy, R. Ranftl, K. Walas, C. Cadena Lerma,
and M. Hutter, “Where should i walk? predicting terrain properties from
images via self-supervised learning,” IEEE Robot. Autom. Lett., vol. 4,
no. 2, pp. 1509–1516, Apr. 2019.

[17] L. D. Jackel, E. Krotkov, M. Perschbacher, J. Pippine, and C. Sullivan,
“The DARPA LAGR program: Goals, challenges, methodology, and phase
I results,” J. Field Robot., vol. 23, pp. 945–973, 2006.

[18] H. L. Chiang, J. Hsu, M. Fiser, L. Tapia, and A. Faust, “Rl-rrt: Kinodynamic
motion planning via learning reachability estimators from rl policies,”
IEEE Robot. Autom. Lett., vol. 4, no. 4, pp. 4298–4305, Oct. 2019.

[19] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge Univ.
Press, 2006.

[20] Y. Li, Z. Littlefield, and K. E. Bekris, “Asymptotically optimal sampling-
based kinodynamic planning,” Int. J. Robot. Res., vol. 35, no. 5, pp. 528–
564, 2016.

[21] I. A. Sucan, M. Moll, and L. E. Kavraki, “The open motion planning
library,” IEEE Robot. Autom. Mag., vol. 19, no. 4, pp. 72–82, Dec. 2012.

[22] M. Hutter et al., “Anymal - a highly mobile and dynamic quadrupedal
robot,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2016, pp. 38–44.

[23] P. Fankhauser, C. Dario Bellicoso, C. Gehring, R. Dubé, A. Gawel, and
M. Hutter, “Free gait — an architecture for the versatile control of legged
robots,” in Proc. IEEE-RAS Int. Conf. Humanoid Robots (Humanoids),
2016, pp. 1052–1058.

[24] J. Guzzi, A. Giusti, G. A. Di Caro, and L. M. Gambardella, “Mighty thymio
for university-level educational robotics,” in Proc. AAAI Conf. Artif. Intell.,
2018, pp. 7952–7953.

[25] F. Mondada et al., “Bringing robotics to formal education: The thymio
open-source hardware robot,” IEEE Robotics and Automation Mag.,
vol. 24, no. 1, pp. 77–85, Mar. 2017.

[26] M. Wermelinger, P. Fankhauser, R. Diethelm, P. Krüsi, R. Siegwart, and
M. Hutter, “Navigation planning for legged robots in challenging terrain,”
in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2016, pp. 1184–1189.

[27] M. Otte and E. Frazzoli, “Rrtx: Asymptotically optimal single-query
sampling-based motion planning witutt quick replanning,” Int. J. Robot.
Res., vol. 35, no. 7, pp. 797–822, 2016.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

