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Relax and Recover: Guaranteed Range-Only
Continuous Localization

Michalina Pacholska

Abstract—Range-only localization has applications as diverse
as underwater navigation, drone tracking and indoor localization.
While the theoretical foundations of lateration—range-only local-
ization for static points—are well understood, there is a lack of
understanding when it comes to localizing a moving device. As most
interesting applications in robotics involve moving objects, we study
the theory of trajectory recovery. This problem has received a lot of
attention; however, state-of-the-art methods are of a probabilistic
or heuristic nature and not well suited for guaranteeing trajectory
recovery. In this letter, we pose trajectory recovery as a quadratic
problem and show that we can relax it to alinear form, which admits
a closed-form solution. We provide necessary and sufficient recov-
ery conditions and in particular show that trajectory recovery can
be guaranteed when the number of measurements is proportional
to the trajectory complexity. Finally, we apply our reconstruction
algorithm to simulated and real-world data.

Index Terms—Localization, range sensing, optimization and
optimal control, trajectory estimation, SLAMpling.

I. INTRODUCTION

ROBOT’S ability to localize itself accurately is essential

for applications such as exploration, rescue and delivery.
In unknown or rapidly changing environments, visual (camera-
based) simultaneous localization and mapping (SLAM) is a
popular solution for reliable localization [1]. However, vari-
ous settings exist in which visual SLAM is not practical, for
example when scanning the environment is impossible (e.g.
passive indoor localization) or when the environment does
not exhibit enough reliable features (for example under wa-
ter [2], [3], at high altitudes [4], or in large exhibition-style
rooms [5]). In such situations, it is sometimes more feasible
to install a few fixed anchors which can provide the robot with
distance measurements. Given sparse range measurements from
multiple anchors, the robot can calculate its position through
multilateration.

While position recovery guarantees exist for traditional latera-
tion in static setups (see Fig. 1(a)), the problem is less understood
when the robot is moving. To date, practical systems predom-
inately recover trajectories by coupling partial lateration with
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(a) Conventional lateration (b) Proposed trajectory estimation

Fig. 1. Two different approaches for recovering a trajectory (¢) (solid line)
from distance measurements (dashed lines) to anchors a,,. In conventional
lateration (a), we recover single points at which we have at least D 4 1 distance
measurements. The proposed method (b) recovers the continuous representation
of the trajectory () from non-synchronized measurements.

filtering techniques [6]. While these approaches lead to good
performance, they offer little hope of providing fundamental
guarantees for the recovery of the robot’s continuous trajectory.
In these cases, under which conditions is it possible to uniquely
recover the trajectory?

We answer this question in the particular setting in which
a moving robot obtains range measurements from static and
known anchors. In particular, we do not require the measure-
ments to be perfectly synchronized, nor to be uniformly dis-
tributed in time. We make the realistic assumption that the
robot can only measure one range at a time and limit ourselves
to smooth trajectories—in particular, we focus on bandlimited
and polynomial trajectories. An example setup is sketched in
Fig. 1(b). With this setup, it is straight-forward to see that tradi-
tional lateration cannot provide us with recovery algorithms,
and even less with uniqueness guarantees. One can instead
resort to trajectory estimation algorithms, which provide either
a probabilistic or deterministic description of the continuous
trajectory, but no guarantees for perfect recovery exist.

In this letter, we obtain a novel closed-form solution to the
trajectory estimation problem, by relaxing the quadratic con-
straints. In addition, by studying the obtained linear system,
we deduce necessary and sufficient conditions for trajectory
recovery of the relaxed problem. This also provides a sufficient
condition for trajectory recovery of the original (non-relaxed)
problem.

II. PROBLEM FORMULATION

To enable us to more accurately compare our contribution
with existing techniques, we define our problem setup before
discussing related work in the next section. Throughout the
paper, we use regular lower-case letters for variables (¢), regular
upper-case letters for constants (K), bold lower-case letters for
column vectors (c) and bold upper-case for matrices (C). By
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D we denote the robot’s embedding dimension, which is fixed
but in principle could be arbitrary. In this letter, we usually use
D =2.

Our aim is to recover the position, 7(t) € RP, of a moving
device (e.g. a robot), for ¢ in some given interval, t € Z C R.
At a set of time instances {t, :n=0,...,N —1}, ¢, € Z,
we measure the distance from the robot’s (unknown) position
7y, := 7(t,) to one of M fixed anchors. We denote the anchor
positions by a,, € R?, m =0,...,M — 1, and assume that
they are known. The distances are thus d,, = ||ry, — am, |
where || - || is the Euclidean norm and m., is the index of the
anchor used at time n. In practice, we assume that we can
measure distances d,, corrupted by additive zero-mean Gaussian
noise: d,, = d,, + €,,, where €, ~ N(0,02).!

For ease of analysis, we assume that each t,, is different; in
fact, this is a strength of our formulation as it means measure-
ments from different anchors are not assumed to be synchro-
nized. However, since the ¢,, are real numbers, two consecutive
t,, can be arbitrarily close.

For noisy measurements, the maximum likelihood estimator
(MLE) of the device’s position at time instant ¢,, is given by the
solution to the following optimization problem, also denoted
Range Least Squares (RLS) [7]:

arg min Z (dn = |l#n — amnH)
n=

It is common to square the two terms inside the brackets, leading
to the Squared RLS (SRLS) problem:

N-1

arg min Z (d% — lam,

P,ERP

2

(D

2
24 2a), - \|m||2) @

n=0

In the following section, we review some of the techniques
that have been devised to tackle these problems.

III. RELATED WORK

Note that although the focus of the paper is localization, we
include the SLAM literature, as localization is a core part of
SLAM and thus many methods can be transferred from one
problem to the other.

A. Basic Concepts for Range-Only Localization

A core concept of many range-based localization algorithms
is lateration, or how to estimate an object’s location from dis-
tances to anchor points of known position. This problem can
be tackled from the RLS or SRLS perspective. While both
problems are non-convex, they are not equally difficult to solve.
In particular, no known algorithm is guaranteed to find the
optimal solution of (1) but (2) can be solved optimally [7].
However, the SRLS solution is not the MLE. Therefore, it is
common to use a standard non-linear least-squares solver such as
Levenberg-Marquardt [8], which can recover a local minimum
of (1) [9].

INote that, it is easy to extend the noise model to differing variances for each
distance. However, we chose to present the simplest case of additive i.i.d. noise
as the alternative results in additional notational overhead for concepts that are
well known. In the case of correlated measurements, one can write an analogue
of Theorem 1; however, the equations become more complex and the proposed
algorithm needs to be changed.
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An important variation of the classical lateration problem
is when the anchor locations are also unknown. Historically,
this problem has often been analyzed through Euclidean Dis-
tance Matrices (EDMs), which contain the squared distances
between points, and exhibit characteristic properties which can
be exploited for denoising, completion and point recovery [10].
Although EDMs by definition are more closely related to the
SLAM problem, knowledge of anchor locations can be incor-
porated through the Procrustes transform, or in a semidefinite
program, as proposed in [11].

B. Non-Parametric Trajectory Recovery

Using the above methods, a moving object can only be local-
ized at discrete time instances. This imposes a strong require-
ment on the number of measurements available at each such time
instant, and does not ensure consistency between subsequent
position estimates.

Numerous algorithms solve these two issues by combining
range measurements with movement estimates from inertial
measurement units (IMUs) in standard filtering methods such
as particle or Kalman filters [6], [12]-[15]. The obtained accu-
racy depends strongly on the sampling rate at which position
updates can be computed, and problems can arise when IMU
measurements are delivered at a much higher frequency than
other modalities [16].

Sampling-rate issues can be solved by continuous-time non-
parametric trajectory models. A widely used approach [17]—
[19] is to impose time consistency using Gaussian processes.
Numerous research efforts have been invested to make these
computationally expensive methods more efficient, using for
example Bayes trees for incremental reordering and just-in-time
relinearization [20].

C. Parametric Trajectory Recovery

As opposed to the previously discussed methods, in this letter,
we aim to recover a parametric model of the robot’s position. A
number of other works have been proposed to this end, predom-
inantly using splines. A comprehensive review of this field is
given in [16]. Li et al. [21] solve the classical SLAM problem,
replacing the position update of the usual state-space equations
with a continuous, parametric trajectory x(t) = F(Cy,t). The
authors consider polynomial basis functions identical to ours,
and update the coefficients C}, for sliding time windows at time
index k. They use a standard iterative solver which in general
converges to a local minimum. Other methods [16], [22], [23]
solve the same trajectory estimation problem, parameterizing
the trajectory with B-spline basis functions. As B-splines have
local support, they automatically offer more flexibility in fitting
complex trajectories without recursively updating the coeffi-
cients. However, these papers lack in optimality guarantees since
Gauss-Newton solvers are used. As opposed to methods solving
the more general SLAM framework with arbitrary measurement
modalities, we show that, by focusing on range measurements,
a closed-form solution and recovery guarantees can be deduced.

Recently, trajectory estimation has been integrated in the
traditional EDM framework with so-called Kinetic EDMs [24],
where all points are considered to move on trajectories. In a sim-
ilar spirit, this letter extends the traditional lateration framework
to a single device moving on a trajectory and measuring ranges
from fixed anchors.
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IV. PROBLEM RELAXATION

In this section, we give an outline of our recovery algorithm.
We first introduce the trajectory model and reformulate (2) to
include it. Then, we relax the problem by reformulating it into
a linear system of equations that can be solved with any linear
solver. Finally, we provide intuition of why O (K ) measurements
are enough to recover C.

We assume that the robot trajectory coordinates belong to
some K -dimensional linear space of functions F:

K-1

r(t) =Y erfi(t), 3)

k=0

where {f. : K =0,..., K — 1} is abasis for F, and the vectors
¢ € R are the multidimensional basis coefficients.

In this work, we focus on bandlimited functions and polyno-
mials. Both these models can approximate naturally occurring
trajectories well. For example, bandlimited trajectories describe
the oscillatory motion of a body around a stationary point.
Polynomials cover constant speed motion (/X = 1), constant
acceleration (e.g. free fall, K = 2) and linearly changing ac-
celeration (K = 3). For more complex trajectories, polynomials
are the essential ingredient to the commonly-used spline approx-
imation.

For the space of bandlimited functions, we define the basis
functions for odd K as

2cos(2rkt/T) for k odd,

2sin(2wkt/T) for k even,
1 for k =0,

Tr(t) = k>0,

where 7 is the fixed period of the trajectory. For the space of
polynomials we simply use the monomial basis f(t) = t*.

We can now reformulate (2) in terms of the coefficients c;. By
setting f,, := [fo(tn) ... fr—1(tn)]" and C = [co...cx 1] €
RP*K "we can express the sampled positions in matrix form:
r, = Cf,. The distances thus become d,, = ||C'f,, — am, ||
and we can reformulate (2) as

arg min Z

CERDXK (

2
”amn”2+2amn fn_fgLfn> )

st. L=C"C. “4)

Here, L is introduced to separate terms linear in C' from those
quadratic in C. We will refer to (4) as the SRLS trajectory
recovery problem. Itis common to use semidefinite relaxations to
make problems like (4) convex [25]. We take a simpler approach
and discard the constraint entirely, producing what we refer to
as the relaxed SRLS trajectory recovery problem.

Solving this relaxed problem is actually equivalent to solving
a system of linear equations. To see this, let us introduce the
vectorized forms vec(C) and vec(L). Since a,, Cf, is a
scalar, it is equal to its trace and thus

mn (Cf,) =tr(am, fICT) = vec (amnf;)Tvec (C),

where the first equality comes from the commutativity of the
trace, tr(A' B) = tr(AB"), and the second from the fact that
tr(A"B) = vec(A)" vec(B). Similarly,

fIL-fn_ (fnfT) VGC( )
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Input: Anchor coordinates a,,, distance measurements d,,,
times and anchor indices ¢,,, m,,.
Output: Trajectory coefficients C', empty if not unique.

Fne [fO(tn) fK—l(tn)]
set up T' 4, Tr, b as in (5)
bn (”amnH2 - di) /2
b + concatenate(b,,)
T 4 + concatenate(vec (@, f,)')
T + concatenate(vec (f,, f1))
C ]
if conditions (7) and (8) are satisfied then
U,%,V <« SVD(Tr)
A < concatenate (T 4, UX)
& < linsolve (A, b)
C « reshape (&[1: DK], (D, K))
end if

Fig. 2. Proposed algorithm for range-only continuous localization.

Using this notation, the cost in (4) is minimized by the C and L
satisfying the following system of equations:

vec (C) } |

b= e fan, 7)o ()] |Solcl)

where b, := 1(||am,||* — d2). By concatenating the above

equations, we obtain

ey 7[5 Joee

where the rows of T 4 € RN*PK are vec(a,,, f,)" and the

rows of T € RV*5* are vee(f,, f)7.

At first sight, it appears that, by additionally solving for L, the
relaxation has introduced K2 new variables (or K (K + 1)/2 if
we enforce L’s symmetry). However, as we will formally prove
in Section V, the required effective increase is only of order K.

To see this, consider applying a Singular Value Decomposi-
tion (SVD)to T'p: Ty = UXV. Here, X is an r x r diagonal
matrix, with r the rank of T" . Then, (5) becomes

vee (C)(L)} }DKJm (6)

b= [T, UX] {—évT e
Therefore, if we have at least DK + r measurements such that
[T A UE] is full-rank, we can recover C' with any linear
solver. This gives rise to a simple recovery algorithm, which
is summarized in Fig. 2. Note that, before solving the linear
system, we check invertibility using the conditions derived in
the next section.

In the polynomial case, it is easy to see that r < 2K. In
particular, in this case, each row of T'r contains the vectorized
version of samples of the outer product of a polynomial of
degree K — 1 with itself. The columns of T' are thus samples
of polynomials of degrees up to 2K — 2, and so they span (at
most) a 2K — 1 dimensional space. Similar reasoning can be
applied for bandlimited functions by treating them as elements
of a polynomial ring, see Observation 1 from [26]. Therefore,
the rank of the whole matrix is O(K) and the computational
complexity of the algorithm is O(N? K + K*%).
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V. RECOVERY GUARANTEES

In this section, we prove conditions for when the linear system
corresponding to the relaxed SRLS trajectory recovery problem
can be solved for a unique C. In the noiseless case, these
conditions are sufficient for perfect trajectory recovery. To see
this, note that, in the noiseless case, any minimizer of (4) is also a
minimizer of (6); therefore, if the the solution of (6) is unique, it
is also the unique minimizer of (4) (assuming (4) is solvable). In
addition, in the noiseless case, the unique solution of the SRLS
problem is also the unique solution of the RLS problem.

When there is noise on the distances, we do not obtain perfect
reconstruction but the conditions for the invertibility of the linear
system are still valid. This is because the matrix that is inverted
does not depend on measured distances.

The main theoretical contribution of this letter is the following
theorem. .

Theorem 1: Let C satisfy the relaxed SRLS trajectory re-
covery problem. Given N measurements from non-degenerate
anchors at random times %, . .., ty_1 sampled from a continu-
ous distribution on Z%, Cis unique and can be recovered with
the proposed algorithm if

N>K(D+2)—1, 7)

and
M —

Ju

min(k,,, K) > K(D + 1), (8)

m=0

where k,, is the number of measurements in which the m-th
anchor is used. Furthermore, in the noiseless case, C = C and
perfect trajectory recovery is achieved. Finally, if (8) is not
satisfied, then C is not unique.

Here, we call a set of anchors non-generate if no D + 1
anchors lie on the same affine subspace. This assumption is
only slightly stronger than the common requirement that not
all anchors lie on the same affine subspace. Randomly placed
anchors will satisfy this condition almost surely.

The assumption that times follow a continuous distribution is
in place to ensure that the times are not adversarial, in particular
that the functions fj, are unlikely to be zero. Note that the ¢,, do
not have to be independent.

Before proving the theorem, let us try to gain some more
intuition of its meaning. Condition (7) formalizes that O(K D)
measurements are sufficient to localize. Even without the relax-
ation, one would expect to need K (D + 1) measurements for
recovery. Indeed, to recover a trajectory of complexity K, one
can independently localize K points along it, and to localize a
single point, we need D + 1 distance measurements.

Condition (8) describes how measurements cannot be arbi-
trarily distributed between anchors. In particular, if an anchor
provides more than K measurements, only the first K have an
effect on uniqueness, see the examples in Fig. 3. Moreover,
unique recovery is not possible with measurements from less
than D + 1 anchors..

A natural question to ask is, how likely it is to obtain a
measurement set sufficient to recover C. Unfortunately, the
probability of the set of measurements satisfying Theorem 1
does not seem to have a closed form formula. Fortunately, it
depends only on the partition of measurements between the M
anchors, so it can be easily calculated numerically by counting
partitions that satisfy (8), see Fig. 4. Clearly, the probability of
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[ )
°
N=9x N=11v
M-1 M-—1 M-—1
> min (b, K) =9 | Y min(ky, K) =8 X | > min (ky, K) =9/
m=0 m=0 m=0

(a) (b) (c)

Fig. 3. Examples of sufficient and insufficient measurements, with model
degree K = 3 and embedding dimension D = 2; ie, K(D+2)—-1=11
and K(D + 1) =9. (a) Condition (8) is satisfied, but Condition (7) is not.
(b) Condition (7) is satisfied, but Condition (8) is not because too many
measurements involve the same anchor. (c) Both conditions are satisfied and
recovery is guaranteed.

1.00 A
> 0.75 1
5
@ 0.50 1
'@ = 3 anchors
% 0.25 === 4 anchors
— = 5 anchors
0.00 L T T T T T T T
1.00 o= =
i | — K=3
1 e K
5 0757 i i K=5
= | . —= K=7
® 0.50 1 i |
[ 1 I
% 0.25 ! !
|
I -
0.00- T _-_l-_._-l_l._.—'l_.-l T T T
10 15 20 25 30 35 40
number of measurements
Fig. 4. Probability of recovering C, with dimension D = 2. Upper plot: the

trajectory degree is set to ' = 5 and the number of anchors vary. We observe
that the probability of recovering C' grows with the number of anchors. This is
because, the more anchors we use the higher the chance that the measurements
spread uniformly and satisfy (8). Lower plot: the number of anchorsis setto M =
4 and the trajectory degree varies. For the proposed algorithm (7) states that the
minimum number of required measurements is 11,19 and 27 for trajectory
complexities of 3, 5 and 7, respectively.

recovering C'is non decreasing, because adding a new measure-
ment can only increase the rank of [T a T F] . In practice, we
observe that the probability is already large for K (D +2) — 1
measurements, and grows with the number of measurements
to 1.

Note that, in practice, the matrix might be ill conditioned when
the anchors are almost co-linear, or many measurements to the
same anchor are taken at almost the same time.

To conclude this section, we prove Theorem 1. We first
transform the system [T a T F] into a form that is simpler to
analyse. Instead of applying the SVD, we introduce a matrix ¥
to reduce the dimensions of L, thus instead of solving the linear
system for vec(C') and V 'vec(L)/2 we solve for vec(C') and
W vec(L) /2. Both formulations are equivalent because V' and
W are the same size and of full column rank. The difference
is that W is constructed to make a theoretical argument in the
proof, while the SVD is more numerically stable and so is used
in practice.
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In the second step of the proof, we use the following lemma
to derive (8).

Lemma 2 (Theorem 1 from [26]): Consider the set of N =
K J vectors of the form vec(g,, f,). It is a basis in R%” if and
only if no more than K group vectors g,, are equal.

In the above lemma, itis assumed that f,, and F are defined as
in Section II with times sampled from a continuous distribution,
and g, are vectors in R” that are either equal or linearly
independent. More formally, the vectors g,, form a collection
such that each set G of g,, spans a min(|G|, J)-dimensional
subspace of R”.

The final step of the proof uses the following lemma to show
that if T" 4 is invertible and (7) is satisfied then Cis unique.

Lemma 3 (Lemma 4 from [26]): Let A; € R™*" be a full
rank matrix and let A,;; be a matrix constructed by first
appending any column to A; and then appending a row of the
form

[po(t) pr-1(t) pe(t)],

where p; € R,j = 0...r,isevaluated at arandom time ¢ (from
a continuous distribution) and the degree of p, in at least one
of the variables is greater than the degree of any other p; in the
same variable. Then, A;; is full rank with probability one.

In the above lemma, R is a set of functions R — R with the
structure of a polynomial ring, such that if p € R and p # 0,
then the Lebesgue measure of zeros of p is zero (A({t : p(t) =
0}) =0).

Observe that both polynomials and bandlimited function sat-
isfy the assumptions on . Bandlimited functions are associ-
ated with elements of the ring of trigonometric polynomials,
R[X,Y]/(X? +Y? — 1). Throughout the proof, when we refer
to a polynomial, we mean an element of R.

Proof of Theorem 1: The rows of Tp have the form
vee(f,, f;)T and are evaluations of polynomials of degrees
0,...,2K — 2. Thus, there is a matrix ¥ € RE**(2K-1) gych
that vec(f, f,)" equals

[fO(tn) fK—l(tn) fK(tn) fQK—Q(tn)] ‘I’7

where the f; are as defined before for £ < K, and are some
polynomials of degree k for K < k < 2K — 1. Therefore,

vee (Fuf D) = [£1 Fxltn) Farca(tn)] @,

and the right hand side of (5) can be written as

[vec (a,mnf;)T Frofr(t,) ... f2K—2(tn)] [_%V;;CV(@CC’)(L)}

Since f, can be expressed as 1- f,, the row vector in the
equation above can be rearranged into

T

[ (|| 75) e

Let us now call T4 € RN*(P+DK the matrix consisting of
vectors vec([a:nnrl]Tfl)T as rows, and Tp € RV*E-1 the
matrix consisting of the additional polynomials; i.e., the n-th
row of Tr is [ fr(tn) for—2(tn)].

Observe that if any subset of rows of T 4 is abasis in RX (P+1)
then T4 is invertible. We can apply Lemma 2 to any K (D + 1)
rows of T 4, with g, =[a} 1] and J = D + 1, because the

Mo,

for 2 (tn)] .
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assumptions that anchors are non-degenerate translates to the
assumptions that different g,, are independent. This way we
get that K (D + 1) rows form a basis in R*(P+1) if and only
if no more than K vectors [a,, 1] are equal, where index n
corresponds to the indexes of those K (D + 1) rows.

We would like to know when such a K (D + 1) element
subset of rows exists—call it a core subset. Note that for each
anchor, there can only be K rows containing this anchor in
the core subset. If the m-th anchor is contained in k,,, rows,
it can contribute at most min(k,,, &) rows to the core subset.
Therefore, the total number of core rows is limited by

M-1

Z min(ky,, K).
m=0

If this number is greater or equal to /X (D + 1), then the core
subset is indeed a basis, and 7" 4 is full column rank.

What remains to be shown is that given K (D + 2) — 1 mea-
T F} is full
column rank too. To do this, we inductively apply Lemma 3.

First, since T 4 is full rank, it has K (D + 1) independent
rows. Without loss of generality, we can assume that those are
its first K(D + 1) rows. We can then let A, be the top left

K(D + 1) x K(D + 1) submatrix of [TA ’f‘p} .Foranyi €
[1...K —1],let A; bethetopleft (K(D + 1) +4) x (K(D +
1) + ¢) submatrix of {T . T F} .ByLemma3,if A; is full rank,

then A, is full rank with probability one. The latter is also true
if A; is full rank with probability one, since the probability of
two events with probability one is still one. Therefore, since
A; is full rank, by mathematical induction, the matrix Ax_1,

consisting of the first K (D + 2) — 1 rows of {TA TF} is full

surements with T 4 full column rank, then [T A

rank with probability one, so the whole matrix [T a2 T F} is
full column rank with probability one.

VI. RESULTS

In the previous section, we established conditions under which
unique recovery of C'is possible. In this section, we compare the
performance of different localization algorithms on simulated
and real data.

As mentioned before, we assume additive Gaussian noise
on distance measurements d, = d,, + €,, where ¢, are i.i.d.
random variables, €,, ~ N(0, 7).

An immediate problem comes from the fact that we use SRLS
for trajectory recovery and the distribution of squared distances
is both additive and multiplicative:

CEL =d? +2dpe, + €2,

while our recovery method implicitly assumes only centered
additive noise. Indeed, in the proposed algorithm we solve a
linear system of equations, and we obtain a solution that would
be a MLE if the Gaussian noise was added to the squared
distances. To alleviate this problem, we propose a Weighted
Least Squares (WLS) approach described below.

If the noise is small, the €2 term is negligible. The remaining
noise has distribution 2d,,¢,, ~ N (0, 2d,,0). If we knew d,,, we
could use WLS, with weights 1/d,,, to bring the system back to
an i.1.d. noise model. Since we do not know the distances, we
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error: 0.1m error: 0.2m error: 0.4m error: 0.8m
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%

Fig.5. Visualisation of the distance between trajectories. Original bandlimited
trajectory of order K = 7 (dashed blue) and a randomly perturbed trajectory
(solid orange). The Frobenius distance between the trajectory coefficients is
displayed above each subplot.

use the measured distances Jn, and obtain a noisy version of the
n-th row of (5):

d, 1 vec (C) ] bn
g, ot e Trl, L%veC(L) dy

Again, assuming that noise is small, d,,/ dn is close to 1, and
the noise is approximately i.i.d. In practice, to avoid dividing by
extremely small numbers, we can add some small regularisation

v to the distance and divide by dn + 5.

A. Simulations

In this section, we report the root squared error F/ between
the estimate C' and the ground truth C":

where || - ||z is the Frobenius norm. For the chosen basis of
bandlimited functions, this norm is equivalent to the power of
the signal: using power as opposed to energy makes errors com-
parable between trajectories with different periods. For more
intuition, see Fig. 5.

In the simulations, we take samples ¢,, uniformly in the
interval [0, 7], and at each time we choose anchors uniformly
at random. Technically speaking, this violates the assumption
of the random measurement times in Theorem 1. However, the
assumption mostly serves for mathematical rigour and all typical
sampling schemes (random, uniform, etc.) work in practice.

When simulating different values for IV, we discard some
measurements uniformly at random. We fix 7 = 2. Fig. 6 shows
the coefficients reconstruction error obtained using the weighted
reconstruction. We can see that the error decreases with over-
sampling, and the fitted slope is roughly —0.6. This means that
for 10x oversampling we get more than a 5x reconstruction
improvement. The regular (non-weighted) solver performed
similarly, with a smaller improvement from oversampling.

B. Real-World Experiments

We test our trajectory estimation algorithm on two real-world
datasets provided by Djugash ez al. [27]. The datasets consist
of an autonomous lawnmower moving on a grass field, using
ultra-wideband (UWB) signals to 4 stationary anchors for range
measurements, and densely sampled kinematic GPS for ground
truth. The distance measurements have an average standard
deviation of ca. 0.5m, with a tendency to overestimate [27].

We first evaluate the Plaza2 dataset. The trajectory completed
by the robot does not perfectly fit our models, but we will
see that it can be approximated by the bandlimited model. We
can estimate its period 7 by visual inspection. Using all 499
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Fig. 6. Reconstruction from noisy measurements using the weighted system

of equations. For clarity, slopes (dark lines) were fitted to the averages over 1000
simulations (light lines). The simulated distances were between 0.1 m and 10 m.
Upper plot: the trajectory degree was set to KX = 5 and M = 4 anchors were
used; the magnitude of the noise is changing. In this setup, the minimum number
of measurements required is 19. We can see that the algorithm is robust to noise
starting from about 3x oversampling. Lower plot: the trajectory degree was set
to K = 3 and noise magnitude was set to o = 1m; the number of anchors is
changing. The reconstruction error does not depend heavily on the number of
anchors, but it has much higher variance for D 4 1 = 3 anchors.

*fe

N = 200
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N =30

Fig. 7. Reconstruction accuracy of lawnmower trajectory using period 7 =
54 s. In dotted black is the ground truth trajectory (from GPS), in solid lines are
our reconstructions, and the orange dots show the RLS estimates. The top row
shows different complexities K using all available distance measurements. In
the bottom row, we fix K to 5 and drop measurements uniformly at random.
The different colors correspond to different sets of measurements.

range measurements, we use the algorithm presented in Fig. 2
to estimate the coefficients for different complexities K, and
report the obtained trajectories in the first row of Fig. 7. We see
that the trajectory is well approximated with degrees of K =5
or higher.

Next, we fix K to the smallest sensible value for the given
trajectory (K = 5) and test the performance of our algorithm
when dropping measurements uniformly at random, down to
the minimum number required (19 measurements). The second
row in Fig. 7 shows that the obtained reconstruction quality
remains satisfactory down to 30 measurements only, and is not
too sensitive to the specific distance measurements selected. As
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TABLE 1
MSE OF RECOVERED TRAJECTORIES FOR TWO REAL-WORLD UWB-BASED LOCALIZATION DATASETS [27]

# measurements N 100 300 499 10 20 30 50
model complexity K 5 11 19 5 11 19 5 11 19 2 2 2 2
model mismarch | 37 18 15 [ 38 20 17 ]38 21 18| | 03 | 03 | 04 | 07 |
SRLS 137.5 141.0 114.5 222 222 21.8 | 132 132 132 33.8 15.1 142 | 7.8
SRLS fitted 779 100.5 43780 | 18.1 17.6 17.8 | 156 14.1 13.9 50.4 119.0 | 15.6 | 8.7
RLS 113.6 1343 106.1 16,5 172 162 | 9.7 9.7 9.7 32.5 14.1 12.7 | 6.3
RLS fitted 62.1 91.5 5971.6 | 13.2 128 129 | 105 92 9.4 48.5 198.8 | 129 | 6.7
LM ellipse/line 127 1476 3398 | 11.3 259 132 | 114 115 120 253.4 246 | 163 | 6.6
LM ours weighted 12.7 13.0 113 119 122 | 114 115 120 _ 7.2 7.5 6.6
ours 13.9 14.1 69.5 132 11,5 11.6 | 132 114 113 51.7
ours weighted _ 68.2 _ 5639.1 4.3

bandlimited trajectory (Plaza2)

seen already in simulation, the variance of the reconstructions
is higher for fewer measurements.

For comparison, we also plot localization results with the
point-wise RLS method [7], using the latest distance measure-
ments from D + 1 anchors. The method uses brute force on
a uniform grid initialized in the bounding box of the anchors
with a grid size of 0.5 m. The trajectory only starts to be
recognizable from N = 200 measurements upwards, and the
individual estimates are more noisy than ours.

Finally, we compare the provided algorithms quantitatively
with standard lateration methods and solvers. Table I shows the
trajectory recovery accuracy for the two UWB-based datasets
from [27]. As we have seen before, the trajectory in Plaza?2
is approximately bandlimited. The trajectory in Plazal, on the
other hand, covers the lawn in a zig-zag manner. In practice,
for such a trajectory, an iterative application of our algorithm
would be appropriate. For the purpose of this letter, we simply
report the average reconstruction accuracy over 20 different
linear parts of the trajectory. We compute the error by sampling
the parametric model at the times at which we have ground
truth measurements, compute the mean squared error (MSE)
between the predicted and ground truth points, and average over
20 different realizations.

We evaluate the proposed solution with and without the
weighting introduced at the beginning of this Section. For
the RLS and SRLS methods, we compare both the raw later-
ated points and a parametric trajectory fitted to these points
(RLS/SRLS fitted). The LM method reported for comparison
solves (1) using the scipy.optimize [28] implementation
of Levenberg-Marquardt [8] optimization. We compare two
different initializations: a simple ellipse / line in the correct order
of magnitude (LM ellipse/line) and the result of our weighted
algorithm as initialization (LM ours weighted). The row model
mismatch shows the error of the model fitted directly to the
ground truth position measurements, and gives an upper bound
on how well we can hope to do.

We can draw a number of interesting conclusions from the
quantitative evaluation. First of all, we note that weighting dis-
tance measurements for real data is improves the reconstruction
accuracy significantly, especially for the bandlimited trajectory
(left side of Table I). We believe that this is due to a positive bias
in the distance measurements; indeed, if the bias is removed by
an oracle, the weighted and non-weighted algorithms perform
almost identically.

We further observe that the reconstruction behaves poorly
when the number of measurements is close to the limit given in

polynomial trajectory (Plazal)

Theorem 1. For the bandlimited trajectory of degree K = 19 this
limitis 75 measurements, and N = 100 noisy measurements are
too few to accurately estimate the trajectory. For the polynomial
trajectories, we observe the same behavior for N = 10 and K =
2, where N = 10 is close to the minimum of 7.

Finally, we note that the accuracy of the LM methods depend
highly on the initialization, which is a well-known limitation [9].
This shows in a big difference between the results for LM
ellipse/line and LM ours weighted, which is particularly pro-
nounced for high model orders and few measurements. Quite
surprisingly, even though LM optimizes the RLS cost function
and thus aims to recover the MLE estimate for zero-mean
Gaussian noise on measurements, it does not compare favorable
with our proposed algorithm. We believe that both the fact that
the solution is only suboptimal and the bias in the distance
measurements play against this method. However, we suggest
that if LM is the preferred solution in a complete system for
different reasons, our proposed method is an attractive candidate
for an accurate initialization.

VII. CONCLUSION AND FUTURE WORK

In this work we proposed a closed-form trajectory estimation
method. Even though the method is based on a relaxation, the
number of required measurements stays modest. Furthermore,
Theorem 1 provides recovery guarantees and the framework
eliminates the impractical assumption of perfectly synchronized
measurements and dense anchors deployment. We demonstrated
the performance of our method both on simulated and real data,
showing in particular the advantage over point-wise lateration
and traditional solvers.

To the best of our knowledge, this letter presents the first
recovery guarantees for trajectory estimation from range mea-
surements. As such, we have focused on the theoretical aspects.
In future, we believe that the model can be extended to build more
sophisticated and practically relevant localization algorithms.
One natural extension would be to apply the proposed method
in spline-based approximations, and to allow for dynamically
changing trajectory models. A second direction would be to
incorporate measurements of different modalities (e.g. IMU)
and estimate the full pose. Finally, it would be interesting
to investigate if the reconstruction could be improved with
standard linear regression “tricks”, such as different regular-
ization methods, different noise models, (e.g. correlated noise
described by Mahalanobis distance) or different optimisation
methods (e.g. random projections).



PACHOLSKA et al.: RELAX AND RECOVER: GUARANTEED RANGE-ONLY CONTINUOUS LOCALIZATION

ACKNOWLEDGMENT

The authors would like to thank Ivan Dokmani¢ for many
fruitful discussions and Martin Vetterli for his suggestions and
guidance. We also thank Karen Adam and Sepand Kashani for
their constructive comments on the manuscript.

Detailed contributions: Adam Scholefield designed research.
Michalina Pacholska, Frederike Diimbgen, and Adam Schole-
field designed the algorithm, Frederike Diimbgen and Michalina
Pacholska implemented the algorithm and simulations. Fred-
erike Diimbgen performed literature review and worked on
real data. Michalina Pacholska proved algorithm properties,
and analyzed simulations. Frederike Diimbgen, Michalina Pa-
cholska, and Adam Scholefield wrote the paper. All the code
used to produce the results of this letter is available at https://
github.com/Icav/continuous-localization.

REFERENCES

[1] C.Cadenaetal., “Past, present, and future of simultaneous localization and
mapping: Toward the robust-perception age,” IEEE Trans. Robot., vol. 32,
no. 6, pp. 13091332, Dec. 2016.

[2] A. Bahr, J. J. Leonard, and M. F. Fallon, “Cooperative localization for
autonomous underwater vehicles,” Int. J. Robot. Res., vol. 28, no. 6,
pp. 714-728, 2009.

[3] G. Vallicrosa, P. Ridao, D. Ribas, and A. Palomer, “Active Range-Only
Beacon Localization for AUV Homing,” in Proc. Int. Conf. Int. Robot.
Syst., 2014, pp. 2286-2291.

[4] F.R.Fabresse, F. Caballero, L. Merino, and A. Ollero, “Active perception
for 3D range-only simultaneous localization and mapping with UAVs,” in
Proc. Int. Conf. Unm Air Syst., 2016, pp. 394-398.

[5] F. Diimbgen et al., “Multi-Modal Probabilistic Indoor Localization on a
Smartphone,” in Proc. Int. Conf. Indoor Positioning Indoor Navigation,
2019, pp. 1-8.

[6] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. Cambridge,
MA, USA: MIT press, 2005.

[71 A. Beck, P. Stoica, and J. Li, “Exact and approximate solutions of source
localization problems,” IEEE Trans. Signal Process., vol. 56, no. 5,
pp. 1770-1778, May 2008.

[8] J. J. Moré, “The Levenberg-Marquardt algorithm: Implementation and
theory,” in Proc. Numer. Anal., 1978, pp. 105-116.

[9] D. M. Rosen, C. DuHadway, and J. J. Leonard, “A convex relaxation
for approximate global optimization in simultaneous localization and
mapping,” in Proc. IEEE Int. Conf. Robot. Aut, 2015, pp. 5822-5829.

2255

[10] I.Dokmanic, R. Parhizkar, J. Ranieri, and M. Vetterli, “Euclidean Distance
Matrices: Essential theory, algorithms, and applications,” IEEE Signal
Process. Mag., vol. 32, no. 6, pp. 12-30, Nov. 2015.

[11] S. Sremac, F. Wang, H. Wolkowicz, and L. Pettersson, “Noisy euclidean
distance matrix completion with a single missing node,” J. Global Optim.,
2019, pp. 973-1002.

[12] J. L. Blanco, J. A. Fernandez-Madrigal, and J. Gonzdlez, “Efficient prob-
abilistic range-only SLAM,” in Proc. Int. Conf. Int. Robot. Syst., 2008,
pp. 1017-1022.

[13] E. Menegatti, A. Zanella, S. Zilli, F. Zorzi, and E. Pagello, “Range-only
SLAM with a mobile robot and a Wireless Sensor Networks,” in Proc.
IEEE Int. Conf. Robot. Autom., 2009, pp. 8-14.

[14] Y. Song, M. Guan, W. P. Tay, C. L. Law, and C. Wen, “UWB/LiDAR
Fusion for cooperative range-only SLAM,” in Proc. IEEE Int. Conf. Robot.
Autom., 2019, pp. 6568-6574.

[15] A. Torres-Gonzélez, J. R. Martinezdedios, and A. Ollero, “Range-only
SLAM for robot-sensor network cooperation,” Auton. Robots, vol. 42,
no. 3, pp. 649-663, 2018.

[16] P. Furgale, C. H. Tong, T. D. Barfoot, and G. Sibley, “Continuous-time
batch trajectory estimation using temporal basis functions,” Int. J. Robot.
Res., vol. 34, no. 14, pp. 1688-1710, 2015.

[17] C. H. Tong, P. Furgale, and T. D. Barfoot, “Gaussian Process Gauss-
Newton for non-parametric simultaneous localization and mapping,” Int.
J. Robot. Res., vol. 32, no. 5, pp. 507-525, 2013.

[18] J. Dong, M. Mukadam, B. Boots, and F. Dellaert, “Sparse Gaussian
processes on matrix lie groups: A unified framework for optimizing
continuous-time trajectories,” Proc. IEEE Int. Conf. Robot. Autom., 2018,
pp. 6497-6504.

[19] T. D. Barfoot, C. H. Tong, and S. Sidrkkd, “Sparse Gaussian Processes
on Matrix Lie Groups: A Unified Framework for Optimizing Continuous-
Time Trajectories,” Rob: Sci. Syst., 2014.

[20] M. Kaess, H. Johannsson, R. Roberts, V. 1la, J. J. Leonard, and F. Dellaert,
“iISAM2: Incremental smoothing and mapping using the bayes tree,” Int.
J. Robot. Res., vol. 31, no. 2, pp. 216-235, 2012.

[21] T.Li, H. Chen, S. Sun, and J. M. Corchado, “Joint smoothing and tracking
based on continuous-time target trajectory function fitting,” IEEE Trans
Autom. Sci. Eng., vol. 16, no. 3, pp. 1476-1483, Jul. 2019.

[22] E.Mueggler, G. Gallego, and D. Scaramuzza, “Continuous-time trajectory
estimation for event-based vision sensors,” Rob: Sci. Syst., 2015.

[23] D. Droeschel and S. Behnke, “Efficient continuous-time SLAM for 3D
lidar-based online mapping,” in Proc. IEEE Int. Conf. Robot. Autom.,2018,
pp- 5000-5007.

[24] P. Tabaghi, I. Dokmani¢, and M. Vetterli, “Kinetic Euclidean Distance
Matrices,” IEEE Trans. Signal Process., vol. 68, pp. 452-465, 2020.

[25] Z.Q.Luo, W.K.Ma, A. So, Y. Ye, and S. Zhang, “Semidefinite relaxation
of quadratic optimization problems,” IEEE Signal Process. Mag., vol. 27,
no. 3, pp. 20-34, May. 2010.

[26] M. Pacholska, K. Adam, A. Scholefield, and M. Vetterli, “Matrix recovery
from bilinear and quadratic measurements,” Feb. 2020, arXiv:2001.04933
[eess.SP].

[27] J. Djugash, B. Hamner, and S. Roth, “Navigating with Ranging Radios:
Five Data Sets with Ground Truth,” J. Field Robot., vol. 26, no. 9,
pp. 689-695, 2009.

[28] P. Virtanen et al., “SciPy 1.0-fundamental algorithms for scientific com-
puting in python,” Jul. 2019, arXiv:1907.10121 [cs.MS].


https://github.com/lcav/continuous-localization


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


