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Gated Recurrent Fusion to Learn Driving Behavior
from Temporal Multimodal Data

Athma Narayanan , Avinash Siravuru, and Behzad Dariush

Abstract—The Tactical Driver Behavior modeling problem re-
quires an understanding of driver actions in complicated urban
scenarios from rich multimodal signals including video, LiDAR and
CAN signal data streams. However, the majority of deep learning
research is focused either on learning the vehicle/environment state
(sensor fusion) or the driver policy (from temporal data), but not
both. Learning both tasks jointly offers the richest distillation of
knowledge but presents challenges in the formulation and suc-
cessful training. In this work, we propose promising first steps in
this direction. Inspired by the gating mechanisms in Long Short-
Term Memory units (LSTMs), we propose Gated Recurrent Fusion
Units (GRFU) that learn fusion weighting and temporal weighting
simultaneously. We demonstrate it’s superior performance over
multimodal and temporal baselines in supervised regression and
classification tasks, all in the realm of autonomous navigation. On
tactical driver behavior classification using Honda Driving Dataset
(HDD), we report 10% improvement in mean Average Precision
(mAP) score, and similarly, for steering angle regression on TORCS
dataset, we note a 20% drop in Mean Squared Error (MSE) over
the state-of-the-art.

Index Terms—Sensor fusion, intelligent transportation systems,
computer vision for transportation.

I. INTRODUCTION

R ECENTLY, the domain of autonomous driving has
emerged as one of the hotbeds for deep learning re-

search, bolstered by strong industry support and availability of
large real-world datasets (such as KITTI [1], Berkeley Driving
Dataset [2], Honda Driving Dataset [3], Argoverse [4]) and
physically/visually realistic simulators ([5], [6], [7], [8]). Multi-
sensor1 temporal data, provided by these datasets, offers more
leverage to understand optimal driving actions.
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1In this letter, we use the terms sensor and mode interchangeably. The term

sensor is meaningful to interpret in the autonomous driving setting whereas mode
is generally used in literature to indicate the various forms of state representation.
This may come directly from sensors (image, speech signal) or after some
meaningful post-processing (depth map, n-grams, etc.).

The current strategy for multimodal temporal data is to either
pre-concatenate (concatenation followed by recurrent modules)
[3], [9], [10] or post-concatenate (parallel recurrent modules for
each sensor followed by concatenation) [10]–[14]. While they
both offer unique merits and challenges, in neither of the two
choices, the multi-sensor data is fused explicitly. Moreover, such
design choices may lead to networks with much bigger para-
metric spaces resulting in training difficulties. Hence designing
efficient architectures to exploit this rich source of data is still
an open research problem.

Research on temporal fusion is popular in multimedia do-
mains where either text or audio is combined with video [11],
[13]. However, in the autonomous driving community, while
non-temporal fusion is popular ([15]–[17]), temporal fusion
has garnered much lesser attention. Compared to multimedia
datasets, autonomous driving datasets present additional chal-
lenges, namely,
� There can be much more number of sensor inputs or

multiple copies of each sensor type (multi-camera [18] and
multi-radar, etc.)

� The individual sensor data sizes could be disproportionate
leading to undesirable biases towards a select few.

� Intermittent data quality degradation or sensor failures
could occur (e.g., motion blur and occlusion in image,
LiDAR failures in snow, etc.)

This makes autonomous navigation a more general and chal-
lenging setting for developing temporal fusion models. There-
fore, we first validate our models on autonomous driving related
tasks. Given these complex inter-dependencies that emerge from
learning on multimodal temporal data, it is essential to ensure
that the models are interpretable to verify and correct for any
over-fitting. Hence, in this work, fusion is formulated as the
problem of finding the optimal linear interpolation between the
sensors. The interpolation weights (also learned using gating
functions) can be interpreted as each sensor’s percentage con-
tribution to the fused state.

Contributions of this work: We introduce a novel recurrent
neural network unit, called the Gated Recurrent Fusion Unit
(GRFU) that can jointly learn fusion and target prediction from
temporal data. This new formulation, designed to learn a linear
interpolation of sensor encodings, offers superior performance
two tasks (driver behavior classification and steering angle
regression) on two challenging datasets (one real-world and one
simulated, respectively). By using global average pooling along
the time dimension, we can explain the individual sensor’s con-
tribution to the fused representation. Such interpretable fusion
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Fig. 1. In (a) Driver Behavior Classification, the objective is to correctly
classify driver action based on given video and CAN data streams into one of
the twelve ground-truth labels and, in (b) Steering Angle Regression, we predict
the correct steering angle from video, LiDAR and odometry data streams. Both
are used to understand and compare driving styles.

allows for higher-level intervention in the case of sensor failures.
To the best of our knowledge, this is the first time this has been
attempted in the autonomous navigation domain.

An overview of each task is shown in Fig. 1. On the classi-
fication task, we report a 10% improvement in the mAP score
over the current state-of-the-art, and on the regression task, we
note a 20% drop in test error.

The paper is structured as follows: In Section II, we review
prior work in autonomous navigation and temporal fusion. In
Section III, we formulate our Gated Recurrent Fusion Unit
(GRFU) starting from a vanilla Long Short-Term Memory unit.
Later, in Section IV, we provide task-specific dataset details
and analyze GRFU performance when compared to existing
benchmarks. Finally, Section V, summarizes the key ideas in
the paper and lists future work avenues.

II. RELATED WORK

A. Temporal Fusion in Machine Learning

Learning using temporal multimodal data is a major sub-
branch in deep learning research with applications that span
video ([10], [19]), audio ([11], [13]), text processing([14], [20])
and robot navigation([21], [22]), to name a few. Various neural
network architectures, like LSTM [23], GRU [24], have been
proposed to model and learn underlying data patterns temporally.
However, training complication becomes severe in a multimodal
setting as complex correlations between the modalities and their
history has to be disentangled.

Some of the major strategies for fusion include Kalman filter-
ing [21], and Fuzzy logic [22], just to name a few. These methods
have shown great promise in robot navigation and are focused
on combating sensor noise and sensor redundancy to do better
state estimation. We, however, wish to propose an alternative
strategy that can learn fusion using a more data-driven approach
for driver behavior understanding.

Most similar to our work in this are attention based fusion [25]
or LSTM modifications [11] used in multimedia data. Unlike ex-
plicit attention mechanisms that fuse non-temporal information
outside the LSTM cell as in [25], we wish to focus on LSTM
modifications within the LSTM cell unit. This we believe can

model complex temporal correlations in a unified way (using
state/information sharing between sensors).

B. Learning in Autonomous Navigation

Sensor fusion in autonomous navigation is a very active
research topic [21], [22], [26], [17], [27]. However, temporal
fusion has received much lesser attention even though they
generate a lot of multimodal temporal data coming from a range
of sensors like Camera, LiDAR (Light Detection and Ranging),
wheel odometry, etc. Typical driving automation tasks of interest
are learning driver behavior [3] and intent [12], motion forecast-
ing [28], [29], object detection [16], learning affordances [30],
action regression [15], [31], semantic segmentation [32], [33]
among others.

Majority of research attacks these tasks in a non-temporal
fashion, mainly using either RGB or RGB-D data [15], [16],
[18], [30], [32]. Prior work on using fusion for autonomous
navigation is either non-recurrent [34] in the reinforcement
learning setting or recurrent unsupervised [35] in the motion
forecasting setting. We present experiments showing that incor-
porating multimodal fusion, in a recurrent supervised setting is
beneficial to model driver behavior.

III. METHODOLOGY

In this Section, we describe the new temporal fusion archi-
tectures that we build over the standard LSTM model. We first
review the LSTM model and simple fusion ideas in Section III-B.
Next, in Section III-C, we introduce three new models that uses
linear interpolation to find the optimal fused state to pass through
the recurrent units.2

A. Preliminaries

Assume we are given a set of modalities S̃1, S̃2, S̃3. . .S̃M

where M is the number of sensors, and the sensor sig-
nal for an arbitrary sensor, i ∈ [1,M ], is a time-series
S̃i = {s̃i1, s̃i2. . .s̃it. . .s̃iT }. The objective is to jointly learn the
optimal temporal and modal composition to correctly predict
the desired classification/regression target. Further, we make
no additional assumptions like sensors having similar structure
or dimensions, having similar forms of occlusions and noise
ranges, or to be temporally correlated always. We do however
pre-process all sensor inputs, s̃it using appropriate encoders to
bring them to the same dimension prior to temporal fusion (we
call the processed sensor inputs as sensor encodings and denote
them as sit). This is done for all proposed models and baselines
for fair comparison.

The LSTM setup most commonly used in literature [23],
[36] features three gated states (input it, forget ft, output ot)
along with the hidden and candidate cell states (ht, ct). Cell
state represents memory while the hidden state is the output
of the model at time t. The gated states control how much
of the current and the past information need to be fused and
transmitted to the next state in time. The two hidden states

2For easier visualization, all the model figures depicted in this Section are for
two sensor case, but the equations are defined for an M sensor case.
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Fig. 2. Early Fusion (Add/Concat) LSTM Unit.

perform important functions namely: slow-state ct that fights
vanishing gradient problems, and a fast-state ht that allows
the LSTM to make complex decisions over short periods of
time. Each gated state performs a unique task of modulating
the exposure and combination of the cell and hidden states. For
a detailed overview of LSTM inner-workings and empirically
evaluated importance of each gate, refer to [37], [38].

B. Early Recurrent Fusion (ERF)

A simple way to extend LSTMs to multimodal settings
is by first summing or concatenating all the sensor encod-
ings [3], [9], [10] and passing that as an input to the LSTM,
ie., X = {x1, x2, x3 . . . xt}, where each xt = (s1 ⊕ s2 . . . si ⊕
sj . . . sM ). From a temporal standpoint, one can view this as a
type of early fusion. A simple ERF unit is shown in Fig. 2.

xt = . . . sit + sjt . . . (or) . . . sit ⊕ sjt . . . , (1)

ft = σ(Wf ∗ xt + Uf ∗ ht−1 + bf ),

it = σ(Wi ∗ xt + Ui ∗ ht−1 + bi),

ot = σ(Wo ∗ xt + Uo ∗ ht−1 + bo),

gt = tanh(Wg ∗ xt + Ug ∗ ht−1 + bg), (2)

ct = ct−1 � ft + it � gt,

ht = ot � tanh(ct). (3)

Remark: Concatenation, while providing individual sensor in-
puts to the LSTM to extract useful information, bloats up the cell
and hidden state size. On the other hand, summation reduces the
cell size but naively combines all sensor encodings with equal
emphasis. This may not be a good idea always, especially at time
steps where one or more sensors provide noisy information to the
fused state (for example, when a car is driving through a tunnel,
camera information is unreliable). Temporal fusion architectures
must be provided with sufficient tuning choice to learn how to
fuse and use temporal data. This is necessary in driving datasets
and both ERF models lack the explicit structures to learn them.
Example scenarios where fusion needs to be dynamic are,

1) Occlusion in a sensor subset: While approaching an inter-
section a huge object in the form of a truck occludes the
entire view in one of the image frames rendering image
features unreliable. The model should rely on CAN data
history to classify driver action correctly.

2) Action dependency: Actions like lane branching are sub-
tle steering actions. If the steering signal does not offer
sufficient information, video features like lane markers

Fig. 3. Late Recurrent Summation (LRS) LSTM Unit.

and road curvature could supplement to avoid inter-class
confusion.

3) Loss of temporal correlation across sensors: As alluded
to previously, when a car is going through a dark tunnel,
optical flow for odometry maybe hard to obtain and might
at best be weakly correlated to the data stream obtained
from the CAN bus or LiDAR. Similarly, LiDAR gets really
noisy and unreliable in snow, rain and grass [39].

C. Proposed Temporal Fusion Models

We identify two important ways to mitigate the above men-
tioned issues, a) delay fusion and pass each sensor parallely
through M LSTM cells, allowing each sensor to individually
decide how much of their respective histories to utilize with
the current sensor input (we term this late recurrent sensor
summation), b) define gates for each sensor to determine the
contribution of each sensor encoding to the fused cell and output
states (we term this early gated recurrent fusion). In the follow-
ing Section, we first define both the modifications separately and
finally define our main model which combines the two (this leads
to the late gated recurrent fusion model). Moreover, we use the
late recurrent sensor summation and early gated recurrent fusion
models also as baselines to evaluate the individual contributions
(ablation study) of the two modifications.

1) Late Recurrent Summation (LRS): In this model, we use
M distinct LSTM units in total (one for each sensor). For
each modality separate forget, input, output and cell states are
computed. Model schematic with equations are shown in Fig. 3
and Eqns. (4)–(6) respectively.

f i
t = σ(W i

f ∗ sit + U i
f ∗ ht−1 + bif ),

iit = σ(W i
i ∗ sit + U i

i ∗ ht−1 + bii),

oit = σ(W i
o ∗ sit + U i

o ∗ ht−1 + bio),

git = tanh(W i
g ∗ sit + U i

g ∗ ht−1 + big), (4)

cit = ct−1 � f i
t + iit � git,

hi
t = oit � tanh(cit), (5)

ct =

M∑

i=1

cit, ht =

M∑

i=1

hi
t. (6)

The weights, W∗, U∗, and biases, b∗, that transform the input
space for each gate are unique for each modality but are shared
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Fig. 4. Early Gated Recurrent Fusion (EGRF) LSTM Unit.

across time. As summarized in the previous Section, each LSTM
unit receives information from the states of the past time step
(cit−1, hi

t−1) and the input from the current time step, sit. Now,
instead of having separate states of each LSTM unit of a sensor,
all the copies receive the same states (ct−1, ht−1) obtained from
the previous time-step. Through this modelling choice we can
propagate fused representations temporally. In contrast, in [11],
the weights are shared between modalities but not states. By
sharing the past cell state (ct−1) across all sensors, the model
can individually decide whether to retain or discard memory for
each modality. Finally, all the hidden (hi

t) and cell (cit) states are
added to produce a combined representation ht and ct that is
sent to the next time step (hence the prefix late to indicate late
fusion in the model name).

2) Early Gated Recurrent Fusion (EGRF): Late fusion offers
the model some flexibility to separately control the memories of
individual sensors, but even here summation at the end fuses all
sensors assuming equal importance. However, we wish to also
learn from the data the extent of each sensor’s contribution to the
final fused states. Inspired by the gating mechanisms used in the
LSTM [23], [36] and GRU [24], we propose a similar exposure
control in the sensor fusion module as well. For M sensors, we
define M-1 gates (p∗) that control the exposure of the sensor
encoding, sit, in the final state at. Similar to [24], we define the
gating for the last sensor as 1−∑M−1

i pi. This makes the joint
representation a linear interpolation of individual sensor encod-
ings. The model schematic and equations are shown in Fig. 4 and
Eqns. (7)–(11) respectively. Firstly, the sensors embeddings are
converted to the same dimension using a non-linear operation as
in Eqn. (7). Then M − 1 gates are computed as shown in Eqn.
(8). As shown in Eqn. (9), the final fusion is performed where
each gate is multiplied to the corresponding sensor encoding
and summed to form the fused state at. Temporal Modelling is
performed with at as the input as shown in Eqns. (10)–(11).

eit = relu(W i
e ∗ sit), (7)

pkt = σ

(
M∑

i=1

W i
p ∗ eit

)
, ∀k ∈ [1,M − 1], (8)

at =

(
M−1∑

k=1

pkt � ekt

)
+

(
1−

M−1∑

k=1

pkt

)
� ekt , (9)

Fig. 5. Late Gated Recurrent Fusion (LGRF) LSTM Unit.

ft = σ(Wf ∗ at + Uf ∗ ht−1 + bf ),

it = σ(Wi ∗ at + Ui ∗ ht−1 + bi),

ot = σ(Wo ∗ at + Uo ∗ ht−1 + bo),

gt = tanh(Wg ∗ at + Ug ∗ ht−1 + bg), (10)

ct = ct−1 � ft + it � gt,

ht = ot � tanh(ct). (11)

The gating functions are valuable to draw insights and explain
the nature of fusion occurring within the model. Once learnt,
the user can interpret the gating values as contributions of each
sensor and verify if they match human insight for some arbitrary
sample in the dataset. This explainability feature is crucial for
scenarios involving safety-critical tasks.

3) Late Gated Recurrent State Fusion (LGRF): Finally, we
describe our Late Gated Recurrent Fusion model, which com-
bines the best aspects of both late recurrent fusion (independent
control of memory for each sensor) and gated recurrent fusion
(learning how to fuse) in order to improve learning performance
of temporal fusion models.

eit = relu(W i
e ∗ sit). (12)

pkt = σ

(
M∑

i=1

W i
p ∗ eit

)
. ∀k ∈ [1,M − 1]. (13)

ai
t =

{
pit � eit if i ∈ [1,M − 1],(
1−∑M−1

k=1 pkt

)
� eit if i = M

f i
t = σ(W i

f ∗ ai
t + U i

f ∗ ht−1 + bif ),

iit = σ(W i
i ∗ ai

t + U i
i ∗ ht−1 + bii),

oit = σ(W i
o ∗ ai

t + U i
o ∗ ht−1 + bio),

git = tanh(W i
g ∗ ai

t + U i
g ∗ ht−1 + big), (14)

cit = ct−1 � f i
t + iit � git,

hi
t = oit � tanh(cit), (15)

ct =

M∑

i=1

cit,ht =

M∑

i=1

hi
t. (16)
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TABLE I
MAP OF DRIVER BEHAVIOR CLASSIFICATION ON HDD DATASET

The model schematic is shown in Fig. 5. Similar to the early
gated recurrent fusion model, we compute fusion gates p∗t as a
function of all the sensor encodings e∗t , but instead of doing the
linear interpolation of all sensor inputs to get a joint input state,
at, we use the gates to control the exposure of each encoding
that is passed into sensor specific LSTM cells. The final joint
cell and hidden states are computed by summing all the final cell
and hidden state outputs. Having described the new temporal
fusion designs, in the next Section, we test the models on two
challenging autonomous driving datasets.

IV. EXPERIMENTS

A. Tactical Driver Behavior Classification

1) HDD Dataset: Recently, HDD [3] was proposed to stimu-
late research on learning driver behavior in interactive situations.
The dataset includes a 104-hour synchronized multi-sensor natu-
ralistic driving data. We focus our attention on the goal-oriented
driver behavior classification task which involves temporally
classifying the multimodal data involving video stream and
CAN signal data into driver actions. The 104-video-hour data
corresponds to 137 sessions. Each frame contains one label
from the twelve behavior classes such as left turn, right turn,
intersection passing, lane change, etc.

We follow the prior work [3] and obtain our training (100 driv-
ing sessions) and testing splits (37 driving sessions). CAN signal
includes: car speed, accelerator and braking pedal positions, yaw
rate, steering wheel angle, and the rotation speed of the steer-
ing wheel,turn signals (eight dimensional stream). The images
are of dimension 720 × 1280 × 3. The image representation is
extracted from conv2d7b1x1 layer of InceptionResnet-V2 [40]
pre-trained on ImageNet [41]. The features are convolved with
a 1× 1 convolution to reduce the dimension from 8 × 8 × 1536
to 8 × 8 × 20 and flattened to 1× 1280. Raw sensor signals are
passed through a fully-connected layer to transform 1 × 8 size
signal to obtain a feature vector of size 1 × 20.

2) Results: In this task, the input is untrimmed, egocentric
sequences of video and CAN signals. The output is the tactical
driver behavior label of each frame. We follow the evaluation
protocol as in [3], [42], [43] to compute mean Average Precision
(mAP) over all classes. We use the Adam optimizer [44] to learn
the network parameters with the sequence length set to 90 video
frames. To fairly compare with the baseline methods [3], we use

the same batch size set to 40. The training is performed using
truncated back-propagation through time. The training process
is terminated after 50 epochs, with a fixed learning rate 5 × 10−4.
The results for the same test split as used in [3] are showcased
in Table.I.

Non-Fusion Architecture: We first perform experiments only
on the CAN signal and Img (Image) sensors separately. The
embeddings are directly sent to a standard LSTM with hidden
size of dimension 2000. The output ht is directly fed into a
fully connected layer then squashes the dimension to 12 classes
including background class. The CAN signal outperforms in
certain classes such as left turn, right turn, U-turn while Image
performs better in classes such as lane change, lane branch,
intersection passing and crosswalk passing. TCN [45] performs
slightly better than LSTM as showcased in Table.I. A successful
sensor fusion should outperform these results benefiting from
each sensor separately.

Early Fusion LSTM: As baseline architectures we use the
early sensor fusion where sensor embeddings are either con-
catenated (Early-Concat) or element wise summed (Early-Add)
as explained in Section III-B. Early-Concat is similar to the
technique used in [3]. In the early fusion stage the Early-Concat
outperforms Early-Add (mAP of 32.66 vs 29.88) as the LSTM
has access to individual sensor information, and can choose to
discard noisy sensor readings. However each sensor has different
ranges and are normalized individually. For example, steering
angle is between +360◦ to −360◦ and image has pixel values
between 0 to 255. Features added from a normalized 0 pixel
value and 10◦ steering input can result in the same output when
the values are interchanged. Several such combination of values
can be created. Hence adding could corrupt the fused encoding
resulting in the LSTM operating on a corrupted feature space.

Late Fusion LSTM: Here we have two separate LSTM cells
that do not share any weights or hidden states between the modal-
ities. Concatenation or summation happens after the LSTM cell.
More precisely hImg

t ⊕ hCAN
t is sent to a single fully connected

layer for classification. The fully connected layer operates on
a 2000× 2 dimension vector in the case of Late-Concat or
2000 dimension vector in the case of Late-Add respectively.
Interestingly Late-Add (which is essentially LRS without cell
state sharing) outperforms all other types of baseline fusion as
the addition of cell states allows the model to focus more on the
temporal aspects of each sensor.
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Look, Listen and Learn [11]: The most similar baseline to
our LRS model described in Section III-C1 is the Look, Listen
and Learn architecture presented in [11]. We re-implement the
architecture in Pytorch for the HDD dataset. We add auxiliary
losses to both the modalities and sum in the predicted output
results with weight sharing. This results in a huge improvement
over baseline model over every class. We call this model Look
Listen in Table.I

EGRF, LRS, LGRF: We replace the standard LSTM with each
of our fusion modules explained in Section III-C2 (EGRF),
Section III-C1 (LRS), Section III-C3 (LGRF). Each of our hy-
pothesised fusion architectures outperform the state of the art on
almost all of the classes. Our EGRF and LRS models increase the
mAP by 7% over the standard fusion LSTMs while benefiting
distinct class labels as shown in Table.I. Finally, we hypothesize
that our combined model LGRF attempts to combine the benefits
of both LRS and EGRF and therby increasing the mAP by
10%. The main driver for the performance boost is the added
flexibility in learning afforded by the gating functions which
allow the network to modulate the fusion process at each time
step and best optimize the data being input from individual
sensors.

3) Discussion: One of the limitations of most sensor fusion
architectures is the inability to provide visual explanations for
the decision-making process. For example, when in the case
of a noisy sensor signal, the model needs to adapt to another
sensor and gate the noise. LGRF model is uniquely positioned
to give class specific reasoning for the sensor weighting. For
this, we apply global average pooling on the pre-gate layer psik
along the sensor dimension and display its value. For example,
a value of 0.7 for sensor one means that sensor one had a higher
weighting than the 0.3 for sensor two. We additionally visualize
the class activation maps [46] to show the localization ability
of our models by using Grad-CAM [47] on the last convolution
layer of the image input.

We get explainable results that validate our assumptions about
which sensor is important for which action, as showcased in
Fig. 6. The heat map falls on image locations such as lane
markers for lane actions, road extensions for turns or intersection
passing. Turns have higher CAN weighting as they capture the
motion better. An interesting observation is the truck occluding
the view in the last example. Our model not only improves the
attention region by localizing to the cross-walk but also shows
equal weighting for both images and CAN signals, thereby
correctly classifying the action.

4) Failure Cases: We focus on the driver behavior classifi-
cation task and visualize the attention maps on the image sensor
to better understand the failure cases. We conjecture that the
majority of failure cases occur due to: 1) Wrong sensor being
weighted higher, 2) Fusion model’s inability to resolve inter class
confusion. Such cases, as shown in Fig. 7, have to be investigated
further to resolve unexplained attention regions.

B. Steering Action Regression

To show the generality of our methodology we test our models
on steering angle regression as well. Given a set of sensor

Fig. 6. Sensor Attention visualized for different actions where baseline models
fail, and our model succeeds. In most of the actions we can see a shift in the
attention to more meaningful parts of the image by LGRF model. For Right
Lane Change (RLC) focus is on lane marker, Left lane branch (LLB) on branch
arrow, Intersection on traffic lights and road extension. Moreover, we can also
determine the weighting scheme the model used to predict the correct results
using global average pooling on the fusion gates as shown in the last column.
(Shown in Eq. 8).

Fig. 7. Failure modes of our models. High Image weight: (A) Inter class
confusion between Left turn and U-Turn due to improper long term CAN signal
weighting. (B) Crosswalk and Intersection confusion is high in spite of expected
higher Img weight. High CAN weight: (C) The Attention appears on graffiti.
Higher CAN weight does not resolve issue. (D) Attention falls on plausible road
extension but is misclassified due to higher CAN weight.

signals the task is to determine the appropriate steering control
action to successfully drive in a race track. One method of
addressing this problem is to perform end to end regression. A
better temporal fusion could provide richer features to deal with
the challenging task of understanding vehicle dynamics just by
observing sensors. We also showcase an extension of our work
to a three sensor setting.

1) TORCS Dataset: TORCS driving simulator is capable
of simulating physically realistic vehicle dynamics as well as
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TABLE II
MSE OF STEERING ANGLE REGRESSION ON TORCS DATASET

multiple sensing modalities to build sophisticated AI agents that
can complete race tracks. The following sensing modalities for
our state description include : (1) odometry (SpeedX, SpeedY,
SpeedZ) substituting CAN signals (2) laser scans consisting of
19 LiDAR points. (3) color images capturing the ego-view. We
collect 1000 time steps from 32 different tracks that vary in
the form of complicated loops to different road conditions. To
collect the steering action ground truths we use the standard PID
controller that successfully completes navigating one lap on each
track without veering off the road. Out of the 32 tracks, we divide
the training-test into 20–12 track split. We perform 5 fold cross
validation on training data (80 – 20 split) and display the best
model results for the test split in Table II. For the encoding we
employ multiple convolution layers of kernel size 3 × 3. More
specifically, the following layers are used: layer1,layer2 has 32
filters, followed by max pooling with kernel size 2 × 2, followed
by layer3,layer4 with 64 filters each. Finally an additional max
pooling layer with 2 × 2 to downsample the feature space to
a feature size of 1× 1638. The 1× 19 velodyne points and
1 × 3 odometry signals are embedded using separate linear
layers to 1 × 30 and 1 × 20 respectively. The flattened feature
embeddings are used as inputs to our model. The output of the
LSTM is sent to a linear layer followed by tanh activation.

2) Results and Discussion: In this task the input is a batch
of images, odometry and LiDAR points with a time history
of four time steps. We train the model to directly regress the
steering action. We compute the average Mean squared error
(MSE) between the predicted action and ground truth action
value over all the data in test set. After ablation study we found
that history above four time steps does not provide significant
information for temporal modeling. We set the batch size to 128
for all experiments and use Adam optimizer to train the weights.
For the final activation we choose tanh activation function to
squish the last linear layer output to a range (−1, 1). We perform
a grid search on the learning rate from 1e− 2 to 1e− 5. Overall
5e− 3 performs best. The comparison of the overall MSE for
the test set is shown in Table II.

Baselines: We extend our previous baselines from HDD
experiments to a three sensor setting and report the results
in Table II. A similar trend in results is obtained with [11]
outperforming other baselines with the lowest error of 0.810.
Most of the models are not able to handle the huge disparity in
sensor embedding dimensionality with image embedding size
of 1× 1638 overshadowing others.

EGRF, LRS, LGRF: We extend our models to a three sensor
setting. This involves 1) modifying Eqn. 4 in LRS to support 12
gates (4 for each modality) 2) compute two pre-gates for EGRF
as in Eq. 8 for images (pimg

t ), LiDAR (plidart ) and odometry
(1− pimg

t × plidart ) 3) Combine both for LGRF. Our models
outperform all other baselines. LGRF gives an overall best

performance with an additional +20% drop over the state-of-
the-art. An interesting note is the huge variation in error between
EGRF and LRS. We suspect that this may be due to the highly
correlated sensors in a simulated setting as opposed to the
real world setting in HDD dataset. Hence the benifit of early
noise rejection from EGRF does not play as important a role as
learning to fuse the best aspects of each sensor as in LRS.

V. CONCLUSION

In this work we presented a novel temporal fusion archi-
tecture that we termed Gated Recurrent Fusion Unit to learn
from large-scale multi-sensory temporal data. Gating functions
modulate the exposure of individual sensor data at each time step
to determine optimal fusion strategy. GRFU eliminates the need
to design and train separate network blocks for pre-processing
sensor data, learning intermediate representations, or driver
behavior modeling assuming full state information. As GRFU
is end-to-end differentiable, all these building blocks can be
learned together.

For future work we plan to evaluate GRFU’s effectiveness
on other challenging temporal multimodal settings not limited
to autonomous driving domain. Moreover additional extensions
using TCN backbones may be considered to determine the
best temporal abstraction for fusion. Additionally, for situations
where the data is not synchronized, or, actions depend on track-
ing of particular objects in the scene, we could add attention
mechanisms [14] to GRFU to provide more context.
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