
4330 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 4, NO. 4, OCTOBER 2019

A Framework for Automatic Initialization of
Multi-Agent Production Systems Using Semantic

Web Technologies
Felix Ocker , Ilya Kovalenko , Kira Barton , Dawn Tilbury , and Birgit Vogel-Heuser

Abstract—Mass customization and global competition require
Cyber-Physical Systems of Systems (CPSoS) to become increas-
ingly flexible. Modern CPSoS have to be able to create a wide and
versatile variety of products, which takes centralized approaches
to their limits. In addition, they have to produce these products as
quickly as possible. Hence, they must be able to react promptly if
problems arise, such as the failure of a single machine. Modern
agent-based production systems provide the flexibility required to
cope with these challenges. While resource agents (RAs) represent
the available resources, i.e., machines, such as robots, individual
customer orders can be represented by so-called product agents
(PAs). However, a challenge in the design of agent-based production
systems is still the amount of communication and computation that
is necessary online. The PAs have to communicate their requests
and the RAs their capabilities and capacities. On this basis, PAs
must compute the appropriate production sequence. We propose
to automatically initialize every agent with a knowledge base (KB)
created a priori using semantic web technologies (SWT). On the
one hand, the KBs of RAs describe the RAs’ capabilities in terms
of product features and production processes. Every KB of a PA,
on the other hand, expresses all possible production sequences
based on the customer specification and the CPSoS in question.
This allows consistency checks regarding the specification as well
as more purposeful communication that focuses on aspects that
actually need to be determined at runtime, such as the resources’
current capacities or failures. The framework presented aims to
reduce both the communication and computational load necessary
at runtime for agent-based CPSoS.

Index Terms—Agent-Based Systems, Intelligent and Flexible
Manufacturing, Semantic Technology.

Manuscript received February 15, 2019; accepted July 12, 2019. Date of
publication July 29, 2019; date of current version August 15, 2019. This letter
was recommended for publication by Associate Editor Y. Pan and Editor D. Popa
upon evaluation of the reviewers’ comments. This work was supported in part
by an NSF Graduate Fellowship, a gift from Rockwell Automation, in part by a
Bayerische Forschungsstiftung Scholarship, and in part by the German Research
Foundation via the Collaborative Research Center 768. (Corresponding author:
Felix Ocker.)

F. Ocker and B. Vogel-Heuser are with the Institute of Automation and
Information Systems, Technical University of Munich, 85748 Munich, Germany
(e-mail: felix.ocker@tum.de; vogel-heuser@tum.de).

I. Kovalenko, K. Barton, and D. Tilbury are with the University of Michigan,
Ann Arbor, MI 48109 USA (e-mail: ikoval@umich.edu; bartonkl@umich.edu;
tilbury@umich.edu).

This letter has supplementary downloadable multimedia material available
at http://ieeexplore.ieee.org provided by the authors. This includes a video file,
which demonstrates the exemplary application of the framework in simulation.
This material is 58.8 MB in size.

Digital Object Identifier 10.1109/LRA.2019.2931825

I. INTRODUCTION

CURRENT and future CPSoS will face a wide variety
of challenges, including effective integration of new

manufacturing technologies and efficient production of highly
customized products [1]. To address these challenges, manu-
facturing systems will have to incorporate flexible and adapt-
able control strategies that can quickly and efficiently respond
to changes on the plant floor [2]. A distributed strategy that
has been used to control various types of complex systems
is Multi Agent System (MAS) control. Game-theoretical [3],
[4] and event-based feedback [5] MAS approaches have been
used to effectively manage the performance of CPSoS. For
control of manufacturing systems, the MAS control strategy
has been proposed to improve the system response to unplanned
disturbances in the dynamic manufacturing environment [6], [7].
In this control strategy, a distributed system of heterogeneous
agents is responsible for a wide range of tasks, from controlling
system resources and fulfilling customer orders to scheduling
maintenance activities. While each agent has individual goals,
the coordination and cooperation of these agents is crucial to
maintain the productivity of the manufacturing system.

Various MAS architectures for control of manufacturing sys-
tems have been proposed [8]. Most of these architectures have
interacting PAs (representing physical parts) and RAs (repre-
senting machines with various capabilities, e.g., manufacturing
or handling), among a number of other agents [9]. The goal
of PAs is to request actions from available RAs to accomplish
a given process plan. The process plan is a representation of
the manufacturing processes required to accomplish a customer
request. To effectively guide the physical product through the
manufacturing system, a PA’s process plan should consider both
the capabilities of the manufacturing system and the customer
specification.

Despite the benefits of increased flexibility and adaptability,
there are still challenges to using the MAS paradigm in the
production context. First, extensive communication is necessary
for agents to build their environment models on the fly (C1a).
This challenge goes along with the computational effort to
make decisions during runtime (C1b). Secondly, the various
agents require a common language, i.e. semantics, and their
environment models should be consistent (C2).

The contribution of this letter is a framework based on SWT to
enable the automatic processing and manufacturing of customer

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-5320-2525
https://orcid.org/0000-0003-4764-9117
https://orcid.org/0000-0003-1047-8078
https://orcid.org/0000-0002-2510-0556
https://orcid.org/0000-0003-2785-8819
mailto:felix.ocker@tum.de
mailto:vogel-heuser@tum.de
mailto:ikoval@umich.edu
mailto:bartonkl@umich.edu
mailto:tilbury@umich.edu

OCKER et al.: FRAMEWORK FOR AUTOMATIC INITIALIZATION OF MULTI-AGENT PRODUCTION SYSTEMS 4331

orders through the use of intelligent agents. The letter presents
a framework that automatically synthesizes customer requests
with the capabilities of the production system to initialize intel-
ligent PAs and RAs. The main benefit of this framework over
existing approaches lies in the combination of both “offline” and
“online” components to improve the performance of intelligent
products in manufacturing systems. During the “offline” phase,
i.e. prior to initialization of a PA, engineering knowledge is used
to create an appropriate KB for the PA and pass the information
regarding possible PA requests to the RAs. After the PA is
initialized and a physical product is placed into the system, i.e.
the PA goes “online”, the PA can explore the system and react
to changes in the dynamic environment in real-time.

The rest of the letter is organized as follows. Section II
provides background regarding MASs in production and SWT.
Section III describes the framework developed to create the
agents’ initial knowledge bases. Section IV presents a feasibility
study and a discussion. Lastly, Section V summarizes the letter
and discusses future work.

II. BACKGROUND

Cyber-Physical Systems of Systems (CPSoS) are systems
of systems, with each system being a Cyber-Physical System
(CPS). CPSs are characterized by collaboration and an intensive
connection with the physical environment [10]. These are also
key aspects for MASs in the production domain. Due to the
relevance of CPSs to smart factories [11], various standards have
already been established [12], including SWT.

A. Agent Development for Cyber-Physical Systems of
Systems (CPSoS)

CPSoSs can take advantage of an agent-based control ar-
chitecture to fulfill the necessary flexibility and adaptability
requirements [13], [14]. Agents represent individual elements
and have to be autonomous, reactive, and adaptable to effectively
control a dynamic system [15]. The agents developed to control
industrial systems need to make decisions based on their inherent
goals and information obtained from the plant floor. Over the
past few decades, various types of MAS architectures have been
presented in detail [7], [8], [14]. For this letter, some properties
of individual, goal-driven agents, specifically PAs and RAs, are
discussed.

The notion of an intelligent product that makes decisions and
actively affects operations on the plant floor is discussed in detail
in [16]. Some recent MAS architectures that use the idea of
product intelligence to design PAs include [17]–[19]. Each of
these PAs contains a formal, discrete event model to encode its
process plan, i.e. the goals of the PA [20]. However, automatic
initialization of these process plans for PAs is not provided.
In [21], Vrba et al. propose another agent to automatically
supply the PAs with their process plans. However, a formal
representation for a process plan is not presented. Several other
letters focus on the communication and decision making of PAs
in the system, e.g., [22], [23].

Similarly, the development of intelligent RAs has been the
focus of various MAS architectures. Farid et al. [17] provide
architecture and communication requirements for RAs in the

system. An architecture for implementation in the real-world
is provided in [24] and a case study with an intelligent RA is
provided in [25]. Note that there are many other examples of RA
development in other works.

In summary, various MAS approaches have been proposed
to increase flexibility and adaptability of production systems
and the need for a mediator between RAs and PAs has been
discussed. However, the communication load (C1a) and the
computational effort (C1b) during runtime still pose major
challenges [26]. To the best of our knowledge, a framework to
address these challenges towards PA and RA development and
to initialize this type of MAS has not yet been proposed.

B. Knowledge Bases in the Context of Agent-Based Systems

Ontologies, i.e. KBs, provide three major benefits. They en-
able engineers to share knowledge, reuse knowledge across do-
mains, and make assumptions explicit [27]. Reusing formalized
knowledge from previous design phases, e.g., the capabilities
of available resources, saves time and enables feasibility feed-
back along the design process [28]. SWT provide the means
to leverage the knowledge stored, using queries and inference
engines. Thus, SWT provide the means to define a common
language for agents and manage inconsistencies among the
agents’ KBs (C2).

To represent the production context of agents, engineers
can rely on the Product Process Resource (PPR) model [29],
which revolves around resources that execute processes to create
products. Products are typically defined by their features; a
feature being something that provides engineering meaning or
application-dependent semantics to a product [29]. This letter
focuses on form features, e.g., holes and chamfers [30], and
functional features, e.g., holes for assembly [30]. Various feature
taxonomies are available in the literature, e.g., one for semicon-
ductors [31].

The application of SWT to the design of intelligent production
systems has long been suggested. Lastra et al. [32] stressed
the benefits of using SWT to increase the reconfigurability of
factories already in 2006. They infer process classifications and
autonomous manufacturing orchestrations but do not consider
PAs. The applicability of SWT to design agents in the production
domain is analyzed by Ribeiro et al. [33], who also introduce
a lightweight ontology for agent-based manufacturing systems.
They match required processes and skills for finding appropriate
resources for processes. The project ADACOR [34] aims to
model distributed manufacturing systems including modules
and processes to support scheduling and monitoring. However,
features are not explicitly modeled. Borgo et al. [35] also present
an approach to use ontologies for online decision making of
RAs. Vrba et al. [21] focus on production planning and material
handling, but their PAs and RAs are managed via a central RDF
database instead of communicating directly. Similarly, Lin et al.
[36] suggest to develop manufacturing ontologies for knowledge
reuse in a distributed manufacturing environment. More specific
applications can be found, e.g., in the semiconductor domain
[31], [37]. To optimize resource utilization via the production-
as-a-service paradigm, Balta et al. [38] specify a minimalist
ontology to compare a customer order to manufacturer

4332 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 4, NO. 4, OCTOBER 2019

TABLE I
OVERVIEW OF COMMON NOTIONS IN PRODUCTION KBS FOR AGENTS

Fig. 1. Framework for initializing intelligent agents for CPSoS.

capabilities. They do not explicitly model resources because the
approach is based on a description of available services. Also, the
creation of a knowledge base for an integrated smart factory is
not the intention of their work. Finally, SWT can also be applied
to product configuration [39], allowing engineers to integrate
the product configuration and the initialization of agents. Table I
gives an overview of selected notions used in these approaches.

In summary, none of the approaches aims to initialize PAs and
RAs with consistent KBs (C2) to reduce the effort for commu-
nication (C1a) and decision making (C1b) during runtime while
ensuring flexibility and adaptability. The value of these other
approaches lies in different goals, which we implicitly support
by including the same underlying notions.

III. FRAMEWORK FOR AGENT INITIALIZATION

In the framework proposed, cp. Figure 1, engineers provide
two kinds of knowledge. On the one hand, they define product
features that are available to customers as well as restrictions
regarding the combination of features in the Spec KB. Addition-
ally, they describe the capabilities of all resources available in
terms of the processes and features these resources can realize
within the Capa KB. Based on the specification KB, customers
can configure their desired products, e.g., using a spreadsheet
or via a web interface. To ensure that the configuration does not
violate any restrictions imposed by engineers, query 1 (indicated
by Q1 in Figure 1) checks this product configuration against the

specification KB. Based on the feedback offered by query 1,
customers can revise their orders to resolve inconsistencies
within the specification (C2). If the configuration chosen by the
customer is valid, query 2 returns possible process plans, which
are stored as non-cyclic directed graphs, and serve as initial
KBs for PAs. Analogously, query 3 returns the KBs necessary
to initialize RAs. Our framework creates the initial KBs for PAs
and RAs before the agents are actually deployed as parts of
production systems, cp. upper box in Figure 1 marked offline.
This reduces the necessary online communication because new
agents do not have to create their entire environment model on
the fly (C1a). Additionally, we cope with the computational
load of checking the RAs’ capabilities against the features
required by PAs offline, where more computational power is
available (C1b).

A. Requirements on the Agents’ Initial KBs

The design of CPSoSs imposes several requirements on the
agents’ KBs. Intelligent agents require certain information that
must be encoded. This information includes the description of
the product in terms of specified features, the various resources,
and the processes these resources are capable of. Also, the pro-
cesses must be linked to the features they realize, the resources
they can be executed by, and other processes they are related
to, e.g., via a precedence relation. Additionally, customer re-
quirements such as deadlines must be represented. Even though
there are no real-time requirements towards the initialization of
agents, the effort should not exceed the magnitude of minutes.
This allows to update the agents’ KBs several times a day.
Also, engineers and customers require an interface to specify the
required information that is easy to operate. Finally, the agents’
initial knowledge should be encoded as automata to support
integration with previous efforts regarding the application of
intelligent PAs in the production domain [22]. To facilitate
the agents’ initialization, the automata should be provided in
a standardized format.

B. Assumptions

Within the scope of this letter, we make several assumptions.
The most significant thereof is that exactly one process is nec-
essary to create a feature, even though there may be several
processes that are capable of realizing the feature in question.
This restriction can be lifted by adding part relationships for both
features and processes, which would also allow the description
of non-atomic features and processes. Also, we only consider
precedence relationships among features, not those among pro-
cesses. This is because the unambiguous mapping between

OCKER et al.: FRAMEWORK FOR AUTOMATIC INITIALIZATION OF MULTI-AGENT PRODUCTION SYSTEMS 4333

Fig. 2. Overview of the ontology used.

features and processes makes additional restrictions regarding
process sequences redundant, as they can be inferred from the
sequence in which the features are realized. So far, restrictions
regarding precedence are only modeled in the terminological
component of an ontology (TBox). This requires that the prece-
dence relationships are generally valid. A possible extension
would be to support individual restrictions on the instance level,
i.e. within the assertional component of an ontology (ABox).
Finally, we focus on the manufacturing part of production and
assume that flexible transport units are available, which connect
all manufacturing resources. However, additional restrictions
resulting from non-flexible transport units can easily be added.
Furthermore, we realize all logistics processes online, since we
believe that they have the potential to compensate for delays in
manufacturing.

C. Knowledge Base

The framework presented is based on a lean application
ontology, cp. Figure 2. The ontology serves as a single source of
truth (C2) because the initialization files for both PAs and RAs
are created from it. By using common notions, cp. Section II-B,
we allow engineers to combine this framework with existing ap-
proaches. The core universals are specification, productFeature,
productionResource, and productionProcess. The specification
represents the customer order that defines a combination of
various features to unambiguously describe the desired product.
Each specification has a deadline at which the product should
be delivered to the customer. To ensure that the specification is
valid, classes of features can be defined as conflicting. Addition-
ally, engineers can express dependencies among classes of fea-
tures using the object property requires. These two restrictions
on combinations of features allow us to check the specification
for inconsistencies. Resources, e.g., robots, are capableOf ex-
ecuting certain processes. Since a resource’s capabilities may
be restricted by its available capacity, freeCapa is included so
that it can be checked against a process’ requiredCapa. Every
process serves the purpose of realizing a feature. There may
exist dependencies among features that influence the process
sequence. Such relations can be represented using the precedes
relation between features. The ontology is formalized using
the Web Ontology Language (OWL), which provides sufficient
expressiveness while still being decidable. We intentionally
kept the ontology lean and its degree of axiomatization low.
Otherwise, the combination with existing and future KBs would

be restricted unnecessarily because incompatibilities were more
likely to arise.

D. Checking the Product Configuration for Inconsistencies

Within the ontology, product designers can specify restric-
tions regarding the configuration of products. The object prop-
erty conflicts can be used to express exclusive features in the
TBox. Analogously, the object property requires allows engi-
neers to formalize that one feature cannot be chosen without
another one. We implemented a simple SPARQL Protocol And
RDF Query Language (SPARQL) query that identifies specifi-
cations which are incomplete or contain conflicting features in
the ABox. The query’s results can be fed back to the customers
so that they can adapt their configuration accordingly. Alterna-
tively, the encoded knowledge could also be applied to reduce
the available decision points during the configuration process.
We assume that all inconsistencies detected are resolved before
the agents are initialized.

E. Synthesize Customer Order and Resource Capabilities

One way to encode a PA is to represent its possible process
plans as an automaton that serves as a KB. This type of data
structure allows various information to be encoded into the
agents. The automaton is derived from the product specification
and consists of states, transitions, and a global deadline that must
be met.

The automaton’s states represent the various states possible
for a PA throughout the production process. More precisely,
each state corresponds to an intermediate product defined by
the feature that was manufactured last, upon completion of
a manufacturing process [22]. This automaton design mirrors
the product-centric view of a PA and has two major benefits,
even though it contrasts with the process-centric view of an
RA. First, it is easier to keep track of the features already
completed. In production, several processes may be suitable
for creating a product feature. If a process-centric view is
used, all of them would need to be updated so that the same
feature is not realized more than once. This would need to be
achieved, e.g., by updating the guards for all of these processes.
Secondly, the design chosen reduces the number of states and
transitions by grouping them in a way that preserves the usability
for our application. This way, a state space explosion can be
avoided. An additional start and end state are added, so a PA’s
automaton has two more states than the respective specification
has features.

Transitions indicate which feature can be realized next, de-
pending on the current state. Hence, a transition exists for
every tuple of states for which there is no restriction that states
otherwise. To reduce the communication load and computational
effort (C1a, C1b), we increase the transitions’ expressiveness
by including information regarding the processes that can be
executed to enter the next state, i.e. to realize the intended next
feature. Since the same process may be executed on various
machines, the transitions also include information regarding the
resources that can be used to execute said process, and how much
time the process takes to execute. Transitions are restricted by
precedence relations among features, which apply analogously

4334 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 4, NO. 4, OCTOBER 2019

Fig. 3. Excerpt of an exemplary automaton that represents a PA’s initial
knowledge.

within the automaton. Two universal restrictions are that there
may exist neither a state that precedes the start node, nor can the
end node precede another state. The path through an automaton
is further restricted by the use of counters so that the same state
is not entered twice, which would correspond to the same feature
being realized twice. Additionally, the PA can keep track of its
current position by use of a variable.

Even though the RAs’ capacities restrict the possible tran-
sitions, we choose not to consider them in the creation of the
initial PAs’ automata. This is because the capacities of resources
are volatile, changing with the instantiation of additional PAs
and RAs as well as in the case of technical failures. Instead,
we provide the PAs with automata that include all theoretically
possible paths so that they can figure out the best thereof during
runtime.

The process plan automaton can be used to express additional
information, too [18]. This includes, but is not limited to, prices
for energy consumption and quality losses. Additionally, the
RA schedules can be encoded within the automaton by use of
clock constraints. For example, the deadline specified within
the customer order is included as a global deadline for every
PA. Analogously, the automaton can express manufacturing
deadlines if a subsequent process has to be executed within a
certain timespan.

An exemplary automaton is depicted in Figure 3. The specifi-
cation defines two features, f1 and f2, which are complemented
by the start state fraw and the end state ffinal. Feature f1 can be
realized by resource rA or rB via process p1. Let only feature
f1 be completed for a product, i.e. the PA is currently in state f1
but has not yet been in f2. In this case, two different processes
can be executed to realize f2: p2a or p2b. While the process
p2a can only be run by resource rC , both resources rA and rD
are capable of completing process p2b. The automaton can be
extended to indicate the machine- and process-specific costs of
realizing a feature as well as clock constraints.

For creating the RAs’ KBs, we rely on the Capa KB. Relevant
information for RAs are their available capacities, the features
they can realize, and the processes they can execute to realize
these features. Additionally, we include the costs of executing
these processes, i.e. the requiredCapa. Such process execution
duration times are typically stable and do not have to be contin-
uously updated online.

F. Agent Initialization

Many different types of PAs have been proposed for MAS
control [9], [40]. Each of the proposed PAs must be able to
guide an associated physical part through the system based
on its goals and communication with other agents. Therefore,
the PA relies on the process plan provided to make a large
fraction of its decisions. For example, once initialized by the
system, a PA must understand the surrounding manufacturing
environment [40], [41]. The PA can use the process plan to
build an update version of the manufacturing environment in
the vicinity of the associated physical part by querying the
availability of the next desired features from the RAs. Using
the example automaton in Figure 3, the PA initially requests
nearby resources to accomplish f1 or f2. Using these requests,
the RAs start to bid on how these features can be accomplished.
These bids contain the resources that take the product to the
RA, the schedules of these resources, and the expected time that
each process should take. Note that the PA sends requests that
contain multiple features that the RAs should respond to. While
the exploration component of the PA is out of the scope of this
letter, the process plan plays an important role in ensuring the
effectiveness of the employed exploration technique.

After creating a model from these bids or using a model
provided, the PA must choose its next actions using the process
plan and the capabilities model [19], [40]. By incorporating
the process plan it was initialized with offline, the PA is able
check the accuracy of the model provided by RAs. By encoding
possible resources for each process via the automaton events, the
PA can perform a consistency check on RA responses. If a feature
promised by the RA does not match up with the process plan,
the PA can raise a flag about the RA, adding a layer of security
to the agent-based controller. Additionally, before making any
other requests, the PA can evaluate whether or not it is able to
accomplish its goals based on the deadlines in its process plan.
Note that the PA might have to change its decisions based on
the status of its deadlines, e.g., if it does not meet a deadline,
the PA might have to start negotiating with other resources (RAs
or PAs) to find a different path through the system. Finally, the
PA can start to schedule future events from the RAs and start
to request operations from the RAs. An example of this type of
intelligent PA can be found in [22], [40].

Agents decide on their next steps online by relying on their KB
in combination with an objective function. For now, we assume a
simple objective function to minimize the sum of production and
transport times for the next production step s; with S being the set
of possible next steps, cp. Equation (1). This objective function
can be extended to include, e.g., quality losses and prices for
energy consumption. These factors are weighted according to
customer preferences or company specific guidelines. While the
duration times for manufacturing are encoded in the agents’
KBs, the transport duration times are determined online. The
optimization during runtime is subject to restrictions originating
in the agent’s environment such as the position and workload of
transport resources [40].

min
s∈S

(tmanufacturings + ttransports)

s.t. restrictionsenvironment (1)

OCKER et al.: FRAMEWORK FOR AUTOMATIC INITIALIZATION OF MULTI-AGENT PRODUCTION SYSTEMS 4335

Fig. 4. Steps for creating the agents’ initial KBs.

Note that during all of this communication, it is imperative that
the RAs understands the PA requests. The initialization of the
RAs’ KBs allows for the RAs to match their capabilities with the
various PA requests. By initializing the RA KB, the agent-based
system maintains consistency over agents (C2). This supports
effective communication and negotiation between the agents in
the system (C1a, C1b).

IV. IMPLEMENTATION AND DISCUSSION

A. Workflow

As stated in Section III, the description of products, processes,
and resources is key to the agent based production system.
Engineers describe the resources available, the processes these
resources can execute, and the features that can be realized
with said processes. Customers on the other hand configure the
product desired based on the features specified by the engineers.
Within the scope of this letter, we use a semi-formalized Excel
spreadsheet. To be less dependent on proprietary tools, we use
a macro to export the file’s sheets as csv files. In the next
step, a python script transforms the csv files into an ontology
compliant with OWL. To query the ontology, a reasoner is
required that supports SPARQL queries. We use the knowledge
graph platform stardog [42] to execute the queries described in
Section IV-B. This way, we create automata for the PAs, which
describe the states and transitions allowed as well as dictionaries
that list the RAs’ capabilities in terms of features and processes.
These query results, too, are stored as csv files. This format
allows us to easily parse the files by use of another python script
and create a json file containing the initial information for every
PA and RA. These json files are designed in a way that they
can be used directly to initialize the PAs and RAs and thus get
the production systems running. An overview of the workflow
is depicted in Figure 4.

B. Queries

Within this framework, we use SPARQL to query the ontology
developed. The framework’s first query Q1 identifies whether a
customer selected conflicting features and whether any depen-
dencies among features are violated, cp. Algorithm 1. Customers
can resolve these issues based on feedback regarding the kind
of violation and the features concerned. Only when this query
does not return issues any more is the specification accepted as
valid.

Algorithm 1: Inconsistency Management for Specifica-
tions.

1: procedure CONSISTENCY CHECKING (specs)
2: for all specifications spec do
3: for all tuples (f1, f2) of features in spec do
4: if class(f1) conflicts class(f2) then
5: return f1 conflicts f2
6: for all features f1 in spec do
7: if class(f1) requires c2 and � instance(c2) then
8: return f1 requires instance(c2)

Algorithm 2: Product Agent Initialization.

1: procedure PA INIT (specs)
2: for all specifications spec do
3: globaldeadline = deadline
4: states.update(start)
5: for all features f in spec
6: states.update(f)
7: states.update(end)
8: for all transitions t for tuples (f1, f2) in states do
9: if � precedence restriction for (f1, f2) then

10: transitions.update(t)
11: for all p in processes do
12: if p can realize f2 then
13: transitions[t].processes.update(p)
14: for all r in resources do
15: if r capable of p then
16: transitions[t].processes[p].resources.

update(r)

Algorithm 3: Resource Agent Initialization.

1: procedure RA INIT (resources)
2: for all resources r do
3: get free capacity
4: for all processes p do
5: if r capable of p then
6: r.processes.update(p)
7: for all features f do
8: if p can realize f then
9: r.processes[p].features.update(f)

Queries Q2a and Q2b serve the purpose of extracting knowl-
edge necessary for the PA, cp. Algorithm 2. First, Q2a identifies
all states a PA can be in for every product specification. Q2a also
returns the global deadline for each specification. As described
in Section III-E, every PA’s automaton includes one state per
feature complemented by a start and an end node. Next, Q2b
finds all n ∗ (n− 1) possible transitions among the states, but
removes those that would violate a precedence restriction. Asso-
ciated to each transition, the query returns the combinations of
processes and resources that can realize a feature and thus enable
the PA to change into a subsequent state. Q2b deliberately does

4336 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 4, NO. 4, OCTOBER 2019

Fig. 5. Exemplary layout of a semiconductor fab.

not check the resources’ capacities because these are subject to
continuous changes as the production system operates.

To create the initial KBs for the RAs, we use queries Q3a and
Q3b, cp. Algorithm 3. Q3a identifies the resources available
in the system and their current capacities. This also allows
engineers to easily analyze the resources’ degree of capacity
utilization. Q3b on the other hand returns the processes each
resource is capable of as well as the features that can thus be
realized. Additionally, Q3b gives back the capacity required for
realizing the associated combination of feature and process.

All source files created in the scope of this research as well as
the simulation used for the proof of concept can be found online
[43], [44].

C. Feasibility Study

The framework proposed has been used to initialize PAs and
RAs for the simulated semiconductor fabrication facility shown
in Figure 5. The feasibility study can easily be scaled up to
multiples of this layout. The manufacturing facility is a scaled-up
version of the Intel Mini-Fab previously used to test an MAS
planning architecture [45]. There are three different types of
stations (diffusion, lithography, and ion implementation) that are
connected using material handling robots and buffers. There are
three possible configurations, specified in [45], for the process
plan of a single part in the system. The entrance and exit points
for this facility are shown in Figure 5.

For this example, the machines, robots, and buffers are each
controlled by an individual RA. Within the Capa KB, engineers
describe the resources’ capabilities in terms of processes and
features. E.g., the diffusion resource D3 can execute the two
slightly different diffusion processes PD3 and PD4. While
process PD3 can be used to realize the feature Fd1, process
PD4 serves to complete the feature Fd2. Both Fd1 and Fd2
are of type featDiff . A similar methodology was used to
map the lithogrophy and ion implementation processes and
features. Additionally, engineers can restrict the combination
of features allowed in customer specifications Spec KB, based
on the universal process plans described in [45].

Once the engineers specified the Capa KB and the Spec KB,
the customer followed the workflow described in Section IV-A to
request new products from the system. If the requested specifica-
tions were found to be valid, json files were produced to initialize

the PAs and RAs in the manufacturing MAS. An initializing
agent would wait for new json files to appear. Once detected, the
agent parses the files to initialize new PAs. In addition, the json
files are provided to the RAs to ensure efficient communication
between all agents in the system. Using this framework, the
PAs and RAs are able to effectively communicate information
that is required to store, handle, and manufacture the products
requested.

D. Comparison With Existing Approaches

The approach presented in this letter differs from exist-
ing work as it specifically addresses the communication load
(C1a) and computational effort (C1b) necessary during runtime
of MAS based production systems. Using model-based PAs
increases both flexibility and adaptability of the production
system. However, existing approaches that use PAs and focus
on flexibility and adaptability disregard the communication
load (C1a) and the computational effort (C1b). Also, these
established approaches typically do not consider inconsistency
management regarding the specification and KBs of the agents.
Approaches based on SWT on the other hand mainly aim to
create predefined process plans instead of a set of process plans,
making the resulting production system more rigid. Also, most
of these approaches do not consider PAs, which help greatly
to increase flexibility and adaptability. Still, we ensure basic
compatibility with these existing approaches as well as previous
work for inconsistency management by using the same under-
lying notions. Compared to our own previous work [40], there
are two major benefits of the approach presented in this letter.
First, we reduced both the communication effort as well as the
computational load for the decision making of the agents (C1a,
C1b). Secondly, we reduced the engineering effort by initializing
the agents automatically in a consistent way (C2).

V. SUMMARY AND OUTLOOK

The framework presented allows engineers to automatically
initialize intelligent agents for production systems by use of
SWT. This helps to reduce the online communication load
(C1a) and the computational effort (C1b) for both PAs and
RAs because they already know their environments. On the one
hand, the KBs of RAs describe their capabilities. On the other
hand, every KB of a PA describes the set of possible production
sequences of the respective product in the form of an automaton.
To create these process plans, customer specifications are first
checked for inconsistencies and are then synthesized with the
available resources’ capabilities (C2). The underlying ontol-
ogy’s generic design allows it to be be combined with existing
domain-specific KBs and, e.g., libraries for generic product
feature mappings [46]. The framework’s theoretical feasibility
has been shown at the example of a semiconductor fabrication
facility.

Future work will include more advanced feasibility checks
that support an engineer-to-order approach instead of the cur-
rent configure-to-order one. This should be complemented by
approaches to cope with uncertainties in the production context.
Additionally, we intend to close the loop between the “offline”

OCKER et al.: FRAMEWORK FOR AUTOMATIC INITIALIZATION OF MULTI-AGENT PRODUCTION SYSTEMS 4337

ontology and the agents’ “online” KBs by continuously report-
ing changes of the agents’ states. The flexibility gained through
the framework may also be leveraged to increase the customers’
benefits. The status of a PA can be used not only to let the
customers track their orders’ completion progress but also to
allow late changes if customers change their minds regarding
the product specifications. As long as certain features are not
realized, the customers may change their specifications, which
would result in an update of the respective PAs.

REFERENCES

[1] B. Vogel-Heuser, A. Fay, I. Schaefer, and M. Tichy, “Evolution of software
in automated production systems: Challenges and research directions,” J.
Syst. Softw., vol. 110, pp. 54–84, 2015.

[2] K. Barton, F. Maturana, and D. Tilbury, “Closing the loop in IoT-enabled
manufacturing systems: Challenges and opportunities,” in Proc. Amer.
Control Conf., 2018, pp. 5503–5509.

[3] V. Suraci, L. R. Celsi, A. Giuseppi, and A. Di Giorgio, “A distributed
wardrop control algorithm for load balancing in smart grids,” in Proc.
Med. Conf. Control Autom., 2017, pp. 761–767.

[4] F. D. Priscoli et al., “Multi-agent quality of experience control,” Int. J.
Control, Autom. Syst., vol. 15, no. 2, pp. 892–904, 2017.

[5] M. P. Fanti, B. Maione, S. Mascolo, and A. Turchiano, “Event-based
feedback control for deadlock avoidance in flexible production systems,”
IEEE Trans. Robot Autom., vol. 13, no. 3, pp. 347–363, Jun. 1997.

[6] P. Leitão, “Agent-based distributed manufacturing control: A state-of-the-
art survey,” Eng. Appl. Artif. Intell., vol. 22, no. 7, pp. 979–991, Oct. 2009.

[7] B. Vogel-Heuser, J. Lee, and P. Leitão, “Agents enabling cyber-physical
production systems,” vol. 63, no. 10, pp. 777–789, 2015.

[8] P. Leitão, V. Maík, and P. Vrba, “Past, present, and future of industrial
agent applications,” IEEE Trans. Ind. Inform., vol. 9, no. 4, pp. 2360–2372,
Nov. 2013.

[9] P. Vrba et al., “Rockwell automation’s holonic and multiagent control
systems compendium,” IEEE Trans. Syst, Man, Cybern., vol. 41, no. 1,
pp. 14–30, Jan. 2011.

[10] L. Monostori et al., “Cyber-physical systems in manufacturing,” CIRP
Ann., vol. 65, no. 2, pp. 621–641, 2016.

[11] J. Lee, H.-A. Kao, and S. Yang, “Service innovation and smart analytics for
industry 4.0 and big data environment,” Procedia CIRP, vol. 16, pp. 3–8,
2014.

[12] A. J. Trappey, C. V. Trappey, U. H. Govindarajan, J. J. Sun, and
A. C. Chuang, “A review of technology standards and patent portfolios
for enabling cyber-physical systems in advanced manufacturing,” IEEE
Access, vol. 4, pp. 7356–7382, 2016.

[13] L. Ribeiro, J. Barata, and P. Mendes, “MAS and SOA: Complementary
automation paradigms,” in Proc. Int. Conf. Inf. Technol. Balanced Autom.
Syst., Boston, MA, USA, 2008, pp. 259–268.

[14] P. Leitão, S. Karnouskos, L. Ribeiro, J. Lee, T. Strasser, and A. W.
Colombo, “Smart agents in industrial Cyber Physical systems,” Proc.
IEEE, vol. 104, no. 5, pp. 1086–1101, May 2016.

[15] M. J. Wooldridge, An Introduction to MultiAgent Systems, 2nd ed. West
Sussex, U.K.: Wiley, 2009.

[16] D. McFarlane, V. Giannikas, A. C. Y. Wong, and M. Harrison, “Product
intelligence in industrial control: Theory and practice,” Annu. Rev. Control,
vol. 37, no. 1, pp. 69–88, 2013.

[17] A. M. Farid and L. Ribeiro, “An axiomatic design of a multiagent re-
configurable mechatronic system architecture,” IEEE Trans. Ind. Inform.,
vol. 11, no. 5, pp. 1142–1155, Oct. 2015.

[18] C. Schoppmeyer, S. Subbiah, J. Manuel, D. L. Fuente, and S. Engell,
“Dynamic scheduling of shuttle robots in the warehouse of a polymer
plant based on dynamically configured timed automata models,” Ind. Eng.
Chem. Res., vol. 53, no. 44, pp. 17135–17154, 2014.

[19] S. Rehberger, L. Spreiter, and B. Vogel-Heuser, “An agent-based approach
for dependable planning of production sequences in automated production
systems,” Automatisierungstechnik, vol. 65, no. 11, pp. 766–778, 2017.

[20] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event Systems,
2nd ed. New York, NY, USA: Springer, 2009.

[21] P. Vrba, M. Radaković, M. Obitko, and V. Maik, “Semantic technologies:
Latest advances in agent-based manufacturing control systems,” Int. J.
Prod. Res., vol. 49, no. 5, pp. 1483–1496, 2011.

[22] I. Kovalenko, K. Barton, and D. Tilbury, “Design and implementation of an
intelligent product agent architecture in manufacturing systems,” in Proc.
Int. Conf. Emerg. Technol. Factory Autom., 2017, pp. 1–8.

[23] J. De Las Morenas, A. Garcia-Higuera, and P. Garcia-Ansola, “Shop floor
control: A physical agents approach for PLC-controlled systems,” IEEE
Trans. Ind. Inform., vol. 13, no. 5, pp. 2417–2427, Oct. 2017.

[24] W. Lepuschitz, A. Zoitl, M. Vallee, and M. Merdan, “Toward self-
reconfiguration of manufacturing systems using automation agents,” IEEE
Trans. Syst, Man, Cybern., vol. 41, no. 1, pp. 52–69, Jan. 2011.

[25] P. Marks, M. Weyrich, X. L. Hoang, and A. Fay, “Agent-based adaptation
of automated manufacturing machines,” in Proc. IEEE Int. Conf. Emerg.
Technol. Factory Autom., 2017, pp. 1–8.

[26] B. Vogel-Heuser and L. Ribeiro, “Bringing automated intelligence to
cyber-physical production systems in factory automation,” in Proc. IEEE
14th Int. Conf. Autom. Sci. Eng., 2018, pp. 347–352.

[27] M. Obitko and V. Marik, “Ontologies for multi-agent systems in manufac-
turing domain,” in Proc. 13th Int. Workshop Database Expert Syst. Appl.,
2002, pp. 597–602.

[28] F. Ocker, B. Vogel-Heuser, and C. J. J. Paredis, “Applying semantic web
technologies to provide feasibility feedback in early design phases,” J.
Comput. Inf. Sci. Eng., vol. 19, no. 4, 2019, Art. no. 041016.

[29] J. Nielsen, “Information modeling of manufacturing processes: Informa-
tion requirements for process planning in a concurrent engineering envi-
ronment,” Ph.D. dissertation, Dept. Prod. Eng., KTH Roy. Inst. Technol.,
Stockholm, Sweden, 2003.

[30] E. M. Sanfilippo and S. Borgo, “What are features? An ontology-based
review of the literature,” Comput.-Aided Des., vol. 80, pp. 9–18, Nov. 2016.

[31] J. J. Jung, “Ontology-based decision support system for semiconductors
EDS testing by wafer defect classification,” Expert Syst. Appl., vol. 38,
no. 6, pp. 7425–7429, Jun. 2011.

[32] J. L. Lastra and M. Delamer, “Semantic web services in factory automation:
Fundamental insights and research roadmap,” IEEE Trans. Ind. Inform.,
vol. 2, no. 1, pp. 1–11, Feb. 2006.

[33] L. Ribeiro, J. Barata, M. Onori, and A. Amado, “OWL ontology to support
evolvable assembly systems,” IFAC Proc. Vol., vol. 41, no. 3, pp. 290–295,
Jan. 2008.

[34] S. Borgo and P. Leitão, “The role of foundational ontologies in manu-
facturing domain applications,” in On the Move to Meaningful Internet
Systems, R. Meersman and Z. Tari, Eds., Berlin, Germany: Springer, 2004,
pp. 670–688.

[35] S. Borgo, A. Cesta, A. Orlandini, and A. Umbrico, “Knowledge-based
adaptive agents for manufacturing domains,” Eng. Comp., vol. 35, no. 3,
pp. 755–779, Jul. 2008.

[36] L. F. Lin, W. Y. Zhang, Y. C. Lou, C. Y. Chu, and M. Cai, “Developing
manufacturing ontologies for knowledge reuse in distributed manufactur-
ing environment,” Int. J. Prod. Res., vol. 49, no. 2, pp. 343–359, 2011.

[37] L. Mönch and M. Stehli, “An ontology for production control of semi-
conductor manufacturing processes,” in Multiagent System Technologies.
Berlin, Germany: Springer, 2003, pp. 156–167.

[38] E. C. Balta, Y. Lin, K. Barton, D. M. Tilbury, and Z. M. Mao, “Production
as a Service: A digital manufacturing framework for optimizing utiliza-
tion,” IEEE Trans. Autom. Sci. Eng., vol. 15, no. 4, pp. 1483–1493, Oct.
2018.

[39] D. Yang, R. Miao, H. Wu, and Y. Zhou, “Product configuration knowledge
modeling using ontology web language,” Expert Syst. Appl., vol. 36, no. 3,
pp. 4399–4411, Apr. 2009.

[40] I. Kovalenko, D. Tilbury, and K. Barton, “The model-based product
agent: A control oriented architecture for intelligent products in multi-
agent manufacturing systems,” Control Eng. Pract., vol. 86, pp. 105–117,
2019.

[41] M. K. Lim, Z. Zhang, and W. T. Goh, “An iterative agent bidding mecha-
nism for responsive manufacturing,” Eng. Appl. Artif. Intell., vol. 22, no. 7,
pp. 1068–1079, 2009.

[42] Stardog Union, “Stardog: The enterprise knowledge graph platform,”
[Online]. Available: https://www.stardog.com/

[43] F. Ocker, “Multi agent ontology,” [Online]. Available: https://github.com/
felixocker/multi-agent-ontology

[44] I. Kovalenko, “Semiconductor simulation,” [Online]. Available: https://
github.com/ikovalenko92/SemiconductorSimulation

[45] H. J. Yoon and W. Shen, “A multiagent-based decision-making system for
semiconductor wafer fabrication with hard temporal constraints,” IEEE
Trans. Semicond. Manuf., vol. 21, no. 1, pp. 83–91, Feb. 2008.

[46] F. Ameri and S. Allen, “An ontological approach to integrated product and
process knowledge modeling for intelligent design repositories,” in Smart
Product Engineering. Berlin, Germany: Springer, 2013, pp. 825–834.

https://www.stardog.com/
https://github.com/felixocker/multi-agent-ontology
https://github.com/ikovalenko92/SemiconductorSimulation

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

