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Robot Motion Planning in Learned Latent Spaces
Brian Ichter and Marco Pavone

Abstract—This letter presents latent sampling-based motion
planning (L-SBMP), a methodology toward computing motion
plans for complex robotic systems by learning a plannable la-
tent representation. Recent works in control of robotic systems
have effectively leveraged local, low-dimensional embeddings of
high-dimensional dynamics. In this letter, we combine these recent
advances with techniques from sampling-based motion planning
(SBMP) in order to design a methodology capable of planning for
high-dimensional robotic systems beyond the reach of traditional
approaches (e.g., humanoids, or even systems where planning oc-
curs in the visual space). Specifically, the learned latent space is
constructed through an autoencoding network, a dynamics net-
work, and a collision checking network, which mirror the three
main algorithmic primitives of SBMP, namely state sampling, lo-
cal steering, and collision checking. Notably, these networks can be
trained through only raw data of the system’s states and actions
along with a supervising collision checker. Building upon these net-
works, an RRT-based algorithm is used to plan motions directly in
the latent space—we refer to this exploration algorithm as learned
latent RRT. This algorithm globally explores the latent space and is
capable of generalizing to new environments. The overall method-
ology is demonstrated on two planning problems, namely a visual
planning problem, whereby planning happens in the visual (pixel)
space, and a humanoid robot planning problem.

Index Terms—Motion and path planning, deep learning in
robotics and automation.

I. INTRODUCTION

MOTION planning is a fundamental problem in robotics
whereby one seeks to compute a dynamically-feasible

trajectory connecting an initial state to a goal region while
avoiding obstacles. This problem quickly increases in diffi-
culty with the dimensionality of the system and the complexity
of the dynamics [1]. For some high-dimensional systems, and
even differentially-constrained systems, sampling-based motion
planning (SBMP) techniques have emerged as a particularly suc-
cessful approach. SBMP avoids the explicit construction of the
state space and instead maintains an implicit representation of it
through three algorithmic primitives: sampling the state space,
steering (or connecting) to nearby sampled states, and collision
checking such connections [1], [2]. This implicit representation
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is global and increasingly accurate as samples are added. How-
ever, for robotic systems with very high-dimensional states or
sufficiently complex dynamics, SBMP can become intractable
[1]. This precludes its application (at least directly) to cases
where, for example, plans are computed from visual inputs [3],
[4] or the dynamics are very high-dimensional and complex, as
for humanoids [5].

A promising solution to address this challenge is represented
by recent works on learning-based control, which leverage
learned, low-dimensional manifolds embedded within the state
space to which the dynamics of a robotic system are mainly re-
stricted to [3], [6]–[8]. For example, a bipedal humanoid walking
robot is generally in gait and upright, and a visual representation
of a robot has a “true” underlying lower-dimensional dynamical
representation. These works, however, primarily focus only in
local regions, and can not be directly applied to compute motion
plans whereby one needs to globally explore the state space. Our
key insight to scale these techniques to robot motion planning
is to leverage the local effectiveness of low-dimensional latent
representations to learn a latent space in which one can directly
use SBMP. In other words, the idea is to build a global implicit
representation of the latent space through only local connec-
tions. The latent space is constructed through an autoencoding
network, a dynamics network, and a collision checking network,
which mirror the three aforementioned algorithmic primitives
of SBMP, namely state sampling, local steering, and collision
checking. Specifically, the space is learned through an autoen-
coding network with learned latent dynamics, which provides
the ability to sample the latent space and connect local states
through dynamically-feasible trajectories. Notably, this network
only requires raw data of the system’s states and control inputs
to be trained. Separately, a collision checking network is trained
to efficiently predict whether a trajectory between two latent
states is collision free given a specific problem environment.
Collectively, these networks provide a methodology to globally
search the latent space (in our case, through an RRT-based al-
gorithm), in a way that generalizes well to new environments
and is general enough to apply to a broad class of problems, in-
cluding visual planning and complex dynamics problems. The
final trajectory can then be projected to the full state space
through the autoencoding network and used in conjunction with
the aforementioned local control methods to effectively control
the robotic system along the planned trajectory. We refer to this
as Latent Sampling-based Motion Planning (L-SBMP).

Related Work: The field of representation learning seeks to
learn representations of data to extract useful information for
classifiers or other predictors [9]–[11]. This often takes the form
of manifold learning, i.e., learning lower-dimensional mani-
folds embedded within high-dimensional data. Representation
learning has been applied along the entire robotic stack – from
perception [12], to decision making and planning [13], [14], to
control and dynamics [3], [6], [7], [15]. Recently, these methods
have seen particular success in the field of control. Embed to
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Control [3] and Robust Locally-Linear Controllable Embed-
dings [6] present approaches to learning to control robotic sys-
tems directly from raw images. Both methods learn a locally-
linear embedding via a variational autoencoder and directly per-
form stochastic optimal control on the latent space. [4] learns to
predict the results of actions in visual spaces and uses model-
predictive control to plan local manipulator actions. In contrast,
this letter learns non-linear latent dynamics (allowing gener-
alization to more complex systems) and a collision checking
network (allowing generalization to new environments).

In the context of robot motion planning, Universal Planning
Networks (UPN) [8] learn a plannable latent representation in
which gradient descent can be used to compute a plan that min-
imizes an imitation loss (learned from an expert planner). Our
methodology, L-SBMP, learns a similar latent space to UPN (by
enforcing dynamics in the latent space), but performs a global
search of the latent space to find motion plans. In addition,
L-SBMP does not rely on an expert planner, which for many
problems may not be available. [16] uses a Gaussian process
latent variable model to learn a low-dimensional representation
and then uses inference to solve the planning problem via a
particle-based approach. Compared to L-SBMP, the latent vari-
able model must be well initialized and using inference does not
allow a global search of the latent space. Motion Planning Net-
works (MPNet) [17] learns a low-dimensional representation of
the obstacle space and uses a feedforward neural network to pre-
dict the next step an optimal planner would take given an initial
state, goal state, and the obstacle representation (trained via an
asymptotically optimal planner). MPNet approaches the prob-
lem of accelerating solutions to planning problems for which
solutions to similar problems can be provided by demonstration,
whereas this letter attempts to solve previously intractable plan-
ning problems. Lastly, within sampling-based planning, learn-
ing has been used to replace parts of the algorithmic stack, such
as the collision checker [18] or the sample distribution [19]. L-
SBMP too learns a collision checking network, though directly
in the latent space, and, in a manner, learns where to sample by
choosing samples for the exploration algorithm directly from
encoded training states.

It is important to note that, in practice, the L-SBMP method-
ology can be, and should be, combined with many of the afore-
mentioned approaches. In many cases, L-SBMP may be an ini-
tialization for the latent spaces in [3], [6], [8]. Furthermore, these
approaches can be used to improve the trajectory generated by
L-SBMP and to control along it.

Statement of Contributions: The contribution of this letter is
threefold. First, we present the Latent Sampling-based Motion
Planning (L-SBMP) methodology, which comprises an autoen-
coding network, a dynamics network, and a collision checking
network to enable planning through the latent space. These net-
works can be trained through only raw data of the system’s states
and control inputs along with a supervising collision checker.
Second, building upon L-SBMP, we present an RRT-based algo-
rithm, termed Learned Latent Rapidly-exploring Random Trees
(L2RRT), to plan motions directly in the latent space. L2RRT
efficiently and globally explores the learned manifold by main-
taining an implicit representation of the space formed through
sampling encoded states and dynamically propagating nearby
trajectories in the tree (under the supervision of the collision
checking network). The final latent trajectory is then projected
back to the full state space through the autoencoding network.
Third, we demonstrate our approach on two planning problems

that are well beyond the reach of standard SBMP, namely a vi-
sual planning problem, whereby planning happens in the visual
(pixel) space, and a humanoid robot planning problem.

II. PROBLEM STATEMENT

In this section we formulate the motion planning problem we
wish to solve. We then briefly overview sampling-based motion
planning algorithms in order to give necessary background and
to motivate our methodology. Lastly, we present the problem of
learning plannable latent spaces.

A. Robot Motion Planning Problem

LetX ⊆ Rdx and U ⊆ Rdu denote the state space and control
input space, respectively, of a robotic system. Let the dynamics
of the robot be defined by

ẋ(τ) = f
(c)
X (x(τ),u(τ)), (1)

where x(τ) ∈ X and u(τ) ∈ U denote the state and control
input of the system at time τ and f (c)

X denotes the continuous-
time system dynamics. To make the dynamics learning prob-
lem tractable we consider a discrete-time formulation. Note
however that we still consider the continuous-time underlying
dynamics to determine collisions. Let the discrete-time dynam-
ics of the robot be defined by

xt+1 = fX (xt ,ut), (2)

where xt ∈ X and ut ∈ U denote the state and control input
of the system at time step t and fX denotes the discrete-time
system dynamics.

Let Xfree ⊆ X define the free state space of the robot and let
Xobs ⊂ X define the obstacle space, such that Xfree = X \ Xobs.
Let us be given an initial state xinit ∈ Xfree and a goal region
Xgoal ⊂ Xfree. A trajectory π for the robot is defined as a series
of states and control inputs (x0 ,u0 , . . . ,xT ,uT ), where T is the
number of time steps in the trajectory. Further, let x0 , . . . ,xT
denote the continuous curve traced by the robot’s trajectory
(connecting x0 , . . . ,xT ). We make this distinction here to clar-
ify that collision checking should be done along the continuous
trajectory connecting discrete states. A trajectory is said to be
collision-free if x0 , . . . ,xT ∩ Xobs = ∅. A trajectory is said to
be feasible if it connects the initial state and goal region, i.e.,
x0 = xinit and xT ∈ Xgoal, is collision-free, and is dynamically
feasible, i.e., xt = fX (xt−1 ,ut−1) for t = 1, . . . , T . In this let-
ter, we are interested in the following problem,

Problem 1 (Motion Planning Problem): Given a motion
planning problem (xinit,Xgoal,Xfree), find a feasible trajectory
π. If no such trajectory exists, report failure.

B. Sampling-Based Motion Planning

Sampling-based motion planning has emerged as a highly ef-
fective algorithmic paradigm for solving complex motion plan-
ning problems. SBMP avoids the explicit construction of the
state space and instead maintains an implicit, searchable rep-
resentation. This representation is formed by a set of probing
samples which are locally connected and verified via a “black
box” collision checking module [1]. This methodology enables
a global search and guarantees on probabilistic completeness
and often asymptotic optimality [20], [21].
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One particularly successful family of sampling-based motion
planning algorithms is the rapidly-exploring random tree
(RRT) [2]. As our exploration algorithm is built from this,
we now overview RRT to clarify each algorithmic primitive.
The algorithm begins by initializing a tree T with the initial
state xinit, and subsequently iteratively builds a tree through the
state space. At each iteration, a state in the free state space is
sampled, xsample ∈ Xfree. The nearest node within the tree to
xsample is selected as the expansion node, xexpand. The node is
then expanded towards xsample, forming a new sample xnew. If
the trajectory connecting xexpand and xnew does not intersect
Xobs, i.e., is collision-free, then xnew is added as a node to the
tree. This continues until either time elapses or a pre-determined
number of samples is reached. The approach is capable of
globally searching the state space only through three algorith-
mic primitives: (1) sampling, (2) locally connecting, and (3)
collision checking. The key idea in this letter is that, by ensuring
each of these algorithmic primitives can be applied in a learned,
low-dimensional latent space representing the robotic system,
we can directly use SBMP to compute plans for the full state
space.

C. Plannable Latent Spaces

The robotic systems we consider in this letter may have
complex-dynamics and high-dimensional state spaces. For ex-
ample, these may be pixel representations of the robot and en-
vironment or they may be highly-dynamic, high-dimensional
robots. In these cases standard approaches to solving motion
planning problems are computationally intractable. Even ap-
proaches like SBMPs, which were initially created for high-
dimensional systems, can become intractable for sufficiently
high-dimensional or dynamically-complex robots [1].

Our goal is to find the underlying manifold of the problem by
learning a low-dimensional latent space model in which SBMP
can be performed. Due to the complexity of the system, this
space should be learned only through sequences of states and
control inputs of the robot in operation and a separate local col-
lision checker. This data should be collected to fully encompass
the robot’s operational regime as the learned latent space, and
subsequent motion plans, are restricted to regions around the
training data. Let Z ⊆ Rdz denote the learned latent space and
zt ∈ Z a latent state at time step t. We seek to learn a mapping
m from X to Z and a mapping n from Z to X for which latent
dynamics fZ are enforced over Z . We further learn a “black-
box” collision checking function g in the latent space. We thus
wish to learn the following:

m : X → Z, n : Z → X , zt+1 = fZ(zt ,ut),

g(zt , zt+1 ,Xobs) = {1 if xt ,xt+1 ∩ Xobs = ∅, 0 otherwise}.
(3)

III. LEARNING A LATENT SPACE FOR ROBOTIC

MOTION PLANNING

In order to plan on a low-dimensional latent space model,
one needs the properties that: (1) the latent space can be sam-
pled, (2) the dynamics are known, so as to connect nearby la-
tent states, and (3) a local, latent trajectory can be classified as
collision-free. It is also desirable that the latent samples can be
mapped to the full space once a solution is found, so that the
robotic system can execute the motion plan. Finally, we do not

assume we have access to the true system dynamics fX , i.e.,
only observations of states and actions over time and a collision
check.

The Latent Sampling-based Motion Planning (L-SBMP) ar-
chitecture (Fig. 1) consists of three networks: (1) an autoencoder,
(2) a latent local dynamics model, and (3) a collision classifier.
The autoencoder projects the high-dimensional full state (xt)
into a lower-dimensional latent state (zt), and also allows de-
coding to form inputs for a subsequent controller. The dynamics
model enforces local dynamics on the encoded latent space and
allows the dynamics to be propagated. Finally, the collision
classifier identifies if the connection between two nearby latent
states will be possible given the problem environment. The la-
tent space is trained from a series of trajectories from the robotic
system in operation; i.e., a sequence of states xt and actions ut .
The collision checking network is trained from a data set of
nearby states and a label denoting if the connecting trajectory is
in collision.

A. Learned Latent Space and Dynamics

The first network in our architecture follows a standard
treatment for autoencoders. Given a robotic system with state
xt and latent state zt , we define an encoding network henc

φ (xt)
and a decoding network hdec

θ (zt), with parameters φ and θ,
respectively. These networks project the full state into the
lower-dimensional latent space and then reconstruct the full
state. Depending on the robotic system, such networks may be
convolutional or fully connected networks. For this letter we
use an �2 reconstruction loss.

The second network in our architecture learns, and sub-
sequently enforces, local dynamics in the latent space. Let
hdyn
ψ (zt ,ut) denote the dynamics network and ψ its parame-

ters. This network predicts the next state in the latent space,
ẑt+1 . The accuracy of this prediction is enforced through two
losses. First, the prediction is decodedhdec

θ (ẑt+1), and compared
to the full state xt+1 with an �2 reconstruction loss. Second, the
prediction is compared in the latent space to the next encoded
state zt + 1 = henc

φ (xt+1). In order for this second loss to be
dynamically-consistent, we linearize the dynamics around zt
and ut and compute the weighted controllability Gramian Gt

(also known as the reachability Gramian) as

At =
∂hdyn

ψ

∂z
(zt ,ut), Bt =

∂hdyn
ψ

∂u
(zt ,ut), Gt = AtBtB

�
t A

�
t .

(4)
The loss is then computed as the minimum energy between the
prediction and the true next latent state, that is Ldyn

t = (zt + 1 −
ẑt + 1)�G−1

t (zt + 1 − ẑt + 1). Essentially this enforces that the
loss in prediction is representative of the dynamics of the system,
e.g., for a car, missing the latent state prediction forward or
backward is less important than missing left and right. Note
however, that initially, before the dynamics network has been
trained, the weighted controllability Gramian from Eq. (4) may
be ill-conditioned. We thus begin with an �2 norm and gradually
shift to the G−1

t norm. We also add a small positive term to the
diagonal of Gt to ensure invertibility.

The encoder, decoder, and dynamics networks are then trained
together through a combined loss function, computed as the sum
of Ldyn

t and the �2 reconstructions of xt and xt+1 .
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Fig. 1. The L-SBMP network architecture. The encoder network is shown in blue, the decoder network in orange, the dynamics network in green, and the
collision checking network in gray. The inputs are shown in purple.

B. Learning a Collision Checker

The third network in our architecture learns to identify if
the continuous trajectory between two latent states will be in
collision; we denote this network as hcc

ζ (zt , zt+1 ,Xobs), param-
eterized by ζ. This is a supervised learning process entailing
binary classification; meaning, we assume we have a collision
checker in the full state space capable of reporting if the tra-
jectory is in collision – arguably, a very mild assumption. The
collision checking network is learned separately, after the en-
coder and dynamics have been learned. This network enables
generalization to new environments, allows collision checking
without access to the true state and obstacles, and efficiently
identifies collisions.

We note here our use of Xobs as an input to the network.
In SBMP Xobs is generally only implicitly defined through the
collision checker. We use it here to denote any environmen-
tal information available to the state space collision checker.
This representation can be quite general as the neural network
architecture has the capacity to arbitrarily project this infor-
mation as necessary. The ideal representation is compact and
contains complete obstacle information; for example, this may
be workspace coordinates of the obstacles, an occupancy grid,
or an image of the problem. We note that while this letter consid-
ers collisions resulting from an infeasible connection between
two states, the network can instead be trained to identify when
the robot is in contact with an obstacle at a single timestep,
which may be easier data to collect. It is possible to learn this
network through unsupervised learning by identifying regions
of the state space that are rarely or never connected dependent
on the environment. We leave this for future work.

IV. PLANNING IN THE LATENT SPACE

We now present the Learned Latent Rapidly-exploring Ran-
dom Trees (L2RRT) algorithm used to globally search the latent
space learned as described in Section III. L2RRT is a SBMP al-
gorithm within the rapidly exploring random trees (RRT) family
of algorithms [2]. The algorithm is outlined in Alg. 1 and visu-
alized in Fig. 2. Briefly, the algorithm builds a tree, T , through
the latent space by sampling latent samples from the learned
manifold and propagating dynamics from nearby tree nodes
(under the supervision of the collision checking network). As
the learned dynamics may be quite complex, the algorithm must
rely on a dynamics propagation strategy, rather than a steering
function, to connect local latent states.

The L2RRT algorithm is similar to the RRT-BestNear algo-
rithm presented in [22], with samples restricted to the latent
space and dynamic propagation through latent dynamics. The

Fig. 2. Learned Latent RRT exploring the latent space, as described in Alg.
1. (2a) Sample zsample and select lowest-cost tree node within a δG−1

t
ball. (2b)

Sample time Tprop and controls u0 , . . . ,T prop−1 . Propagate dynamics with hdyn
ψ

.
(2c) Verify the new edge is collision free with hcc

ζ . Add the node to the tree.

algorithm takes as input the planning problem in the full state
space: the obstacle representation, Xobs initial state, xinit, and
goal region, Xgoal. Note again, we abuse notation here with Xobs.
Though traditionally in SBMP, Xobs is only implicitly defined
through the collision-checker, we use it here to refer to any envi-
ronmental information used for the state space collision checker.

To begin, the initial state and goal region are encoded into
the latent space as henc

φ (xinit) = zinit and henc
φ (Xgoal) = Zgoal, re-

spectively (Alg. 1, line 1). The tree is initialized with the initial
latent state (line 2). The algorithm then begins expanding the
tree outwards into the latent space. At each iteration a sample,
zsample, is selected from a sample set Zsamples (line 4). This set is
comprised of latent samples generated by encoding a randomly
drawn set of the robot in operation. That is, given a sequence
of states (x0 , . . . ,xN ) (where N is large to well cover the op-
erational state space of the robot), we randomly select a sample
set Xsamples and encode it as Zsamples = henc

φ (Xsamples). By select-
ing samples only from this set, L2RRT ensures that the explo-
ration remains nearby the learned manifold in the latent space.
L2RRT then selects a node in the tree for propagation by using
the BestFirstSelection strategy outlined in [22] (line
5). BestFirstSelection(zsample, δG−1

t
) selects the tree

node zprop within a ball radius, (zprop − zsample)�G−1
t (zprop −

zsample) < δG−1
t

, with the lowest-cost trajectory.1 If no tree
nodes are within the ball radius, the nearest tree node is re-
turned. The ball radius δG−1

t
parameter represents a tradeoff

between exploration and exploitation of good trajectories; its
value is discussed in the subsequent paragraph and at length
in [22]. With zprop in hand, L2RRT then forward propagates
dynamics through hdyn

ψ with a randomly chosen control action
u0,...,Tprop−1 ∈ U for time Tprop, where Tprop is randomly chosen
between 1 andTmax, following the Monte Carlo propagation pro-
cedure outlined in [22] (line 6). This gives a trajectory in latent

1This cost can be fairly general, e.g., control cost or time.
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Algorithm 1: Learned Latent RRT Outline.
Parameters: δG−1

t
, Tmax , Zsamples, α

Inputs: (xinit, Xgoal, Xfree)
1 Encode problem input into latent space:

zinit = henc
φ (xinit), Zgoal = henc

φ (Xgoal)
2 Add zinit to the tree T
3 while time remains do
4 Sample zsample ∈ Zsamples
5 zprop = BestFirstSelection(zsample, δG−1

t
)

6 Sample Tprop ∈ {1, . . . , Tmax} and u0,...,Tprop−1 ∈ U
7 Propagate dynamics zt+1 = hdyn

ψ (zt ,ut) from
z0 = zprop for Tprop time steps, to generate latent
trajectory (z0 ,u0 , . . . , zTprop−1 ,uTprop−1 , zTprop , 0)

8 if sigmoid(hcc
ζ (zt , zt+1 ,Xobs)) > α ∀ t then

9 Add zT to the tree T
10 end if
11 end while
12 if T ∩ Zgoal = ∅ then
13 Report failure
14 else
15 Select lowest-cost trajectory with its end in

T ∩ Zgoal

16 Project back to full state space through hdec
θ and

return (xinit,u0 , . . . ,xT ,uT ), where T is time
steps to zgoal

17 end if

space (z0 ,u0 , . . . , zTprop−1 ,uTprop−1 , zTprop , 0), where z0 = zprop
(line 7). Each pair of waypoints is then collision checked
by hcc

ζ (zt , zt+1 ,Xobs) for t = 0, . . . , Tprop − 1. The probabil-
ity that a local connection is collision-free can be computed as
sigmoid(hcc

ζ ) (line 8). Thus, the acceptable probability thresh-
old α can be tuned to the required level of safety. Finally, if
the propagated trajectory is collision free, zTprop is added to the
tree (line 9). The exploration ends after a set amount of time
or number of samples. If no trajectories end in the goal region
Zgoal, the algorithm reports failure (line 13). If any trajectories
reach the goal region, the best trajectory1 is then selected and
projected back to the full state space through hdec

θ (line 15–16).
This outputs nominal control inputs as well as the full state
space trajectory (which may be used as input to a controller or
a trajectory optimizer).

Briefly we provide discussion on how to choose values for the
algorithm’s parameters. The δG−1

t
ball radius represents a trade-

off between exploiting good trajectories and exploring with new
ones. This value should be tuned according to the system and
from discussion in [22]. The maximum dynamic propagation
time Tmax controls, roughly, the length of edge. For subsequent
results this was approximately set so the robot with optimal
control can traverse the full state space in 4Tmax . The value
of α reflects the required level of safety in the collision check-
ing network. We found most collision classifications yielded
probabilities less than 1% or greater than 99%, however, for
subsequent results this threshold was set as α = 0.9. Finally, we
also use a technique called goal-biasing, in which we sample
more heavily from the goal region. For subsequent results we
sample a state within the goal region 10% of the time.

Due to the approximate nature of the learned latent space,
L2RRT does not enjoy formal completeness or optimality

guarantees. An interesting avenue for future research is to inves-
tigate conditions under which theoretical guarantees for L2RRT
can be derived.

V. EXPERIMENTAL RESULTS

In this section we demonstrate the effectiveness of our
methodology on two planning problems from domains in which
traditional motion planning approaches are intractable. We show
that the methodology can generalize to new unseen problems
and find solutions without access to the true robot state or to
a training oracle. The first is a visual planning problem en-
tailing a point robot with single integrator dynamics navigat-
ing a cluttered environment based on visual inputs. The sec-
ond is a humanoid planning problem where a humanoid robot
has to maneuver amidst obstacles. The methodology was im-
plemented in Python and Tensorflow [23]. All data was col-
lected on a Unix system with a 3.4 GHz CPU and an NVIDIA
GeForce GTX 1080 Ti GPU. Example code can be found
at github.com/StanfordASL/LSBMP and more details can be
found in the Appendix.

A. Visual Planning Problem

We consider a visual space planar problem similar to the one
outlined in [3], though with a more complex obstacle space. This
setup allows us to demonstrate the performance of the L-SBMP
methodology to generalize to new environments by leveraging
the algorithmic prior of separating collision checking from the
dynamic propagation process. As we have access to the true
underlying state, and the underlying planning problem is rela-
tively simple, this problem allows us to compare our method-
ology against sampling-based motion planning algorithms with
access to the true state of the system.

The full state of the visual problem is a 32 × 32 pixel image
rendered in MuJoCo showing both the robot and the obstacles
in the scene. The robot is a point robot with single integrator
dynamics. The obstacles are a random number of circles and
squares with randomly generated locations and sizes. An exam-
ple problem’s initial and goal states are shown in Figs. 3a–3b.
The training data for the autoencoder and dynamics network
consists of 10,000 environments, each with a trajectory of 10
successive states and control inputs. The training data for the
collision checking network consists of 25,000 environments,
again with 10 pairs of states and a collision label.

The full state is projected down to a two dimensional latent
space. The methodology applied to an image-based system re-
quires some architectural changes to make the learning problem
more tractable. The encoder network, henc

φ , is a deep-spatial
autoencoder [7], which encourages learning important visual
features by using a convolutional neural network followed by a
spatial soft arg-max. To create accurate reconstructions of the
full state the decoder network is given as input an image of the
environment in addition to the latent state. This additional input
image may be the environment without the robot present or it
could be an image with the robot from a different time step (e.g.,
the initial state for a planning problem).

Fig. 3c shows the learned latent space for the problem in
Fig. 3a–3b. The methodology learns a latent space that captures
the position of the robot and effectively removes latent regions
within obstacles, though this obstacle set has never been seen be-
fore. Fig. 3d shows the inverse weighted controllability Gramian
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Fig. 3. (3a–3b) The full state of the visual robot with obstacles (robot is
shown in yellow) and initial and goal states for input to our methodology.
(3c) The learned latent space colored by the position of the robot in the true
underlying state space. States from the lower-left corner are green, lower-right
are yellow, upper-right are red, and upper-left are blue. The encoded initial state
is shown in blue and the goal state in red. States in collision are not visualized
(empty white regions). (3d) The inverse of the weighted controllability Gramian
in the state space (an ellipse representing equal energy costs). The learned latent
space in the upper right is less dense so the ellipses are larger in the direction of
the spread, thus penalizing errors less.

in the latent space. Because the true system dynamics are con-
sistent throughout the state space, this gives an opportunity to
evaluate the weighted loss function. As desired, in regions of
the state space that are more spread (i.e., the same control input
allows more movement), errors are penalized less.

Fig. 4 shows two planning problems for this system, the
planned trajectories in the full state space, and the L2RRT in
latent space. L-SBMP is able to successfully generalize to these
problems and find trajectories even through narrow passages.
These global plans can then be fed into a local controller, such
as [6], or a trajectory optimizer [8], to be executed.

Fig. 5 shows the success rate and cost convergence curve
(in terms of control input, i.e., distance) versus the number
of samples. The success rate increases quickly at first before
leveling below 100% (though all problems are solvable). The
cost convergence curve follows a standard curve for SBMP,
converging quickly at first before leveling out. The confusion
matrix shows nearly 90% of collisions are correctly classified,
with only 4% of true collisions classified as free. This false
positive ratio could likely be reduced by including conservatism
in the full state space collision checker. With 1000 samples, the
algorithm takes on average 9 seconds.

We additionally compare these plans to plans computed in the
true state space (given a perfect representation of the robot and
obstacles in two dimensions) by the Fast Marching Tree (FMT∗)
algorithm [21] and by RRT-BestNear [22] (which uses the same
exploration strategy as L2RRT, but with knowledge of the true
state space). We note that FMT∗ relies on a two point boundary
value problem solver to make local connections. Figs. 5a–5c
show the success rate and cost over a range of sample counts
and computation times. From these results we make three ob-
servations. First, planning in the latent space incurs only a small
loss in cost and computation time considering the algorithm is
only given a very high-dimensional, inexact, visual observation
of the state and that RRT-BestNear has access to simple, fast

Fig. 4. (4a–4b) Initial and goal states for the visual planning problem. (4c–4d)
Planned trajectories decoded into the full state space. Note that collisions for
this system are only determined by the center of the point robot. (4e–4f) L2RRT
in the latent space, where the initial state and final trajectory are shown in green,
the goal state in red, and collisions between states in black. States within the
tree are color-coded by their cost (blue denotes low cost, red denotes high cost).
Lastly, samples from the training data are used as samples in L2RRT and are
shown in blue.

Fig. 5. Convergence curves and collision confusion table for visual planning
problem. Note, FMT∗ and RRT-BestNear have access to the true state space.

dynamic propagation. Second, planning in the latent space re-
sults in some loss of success rate even at high sample counts,
much of which is a result of conservatism in the collision check-
ing network. Third, if the latent space were forced into a more
restrictive class of dynamical systems (e.g., locally-linear) with a
two point boundary value problem solver available, the L-SBMP
methodology could leverage algorithms like FMT∗ to more ef-
ficiently explore the state space. We leave this to future work.

B. Humanoid Robot

Our second numerical experiment shows the methodology
with a high-dimensional dynamical system, a humanoid in
OpenAI Roboschool [5]. The system consists of 50 states
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Fig. 6. (6a) The humanoid robot with an obstacle in blue and the control target
in red. (6b) The humanoid robot executing the planned trajectory in the full state
space (video at goo.gl/wrm9JR).

Fig. 7. A 3D representation of the structure learned within the humanoid latent
space, with each plot visualized by the robot’s x, y, yaw respectively (where red
denotes a low value and blue a high value).

(representing the robot’s position, orientation, joint angles, and
joint velocities) with with dynamics and a learned controller
from OpenAI Roboschool, which takes as input a target posi-
tion. The obstacles are randomly generated spheres or cubes of
random sizes and positions. The initial and goal states too are
randomly generated through the state space.

The state is encoded into a four dimensional latent space,
which was chosen inspired by [16]. The network architecture is
fully connected. The collision checking network takes as input
two latent states and a vector of the centers of each obstacle, the
type of obstacle (sphere or cube), and the sphere radius or cube
width of the obstacle. The autoencoder and dynamics network
was trained on 1,000,000 data points (states and control input),
sampled at 10 Hz. This data was obtained by randomly sam-
pling control inputs (target positions) and propagating dynamics
with the Roboschool controller [5], essentially randomly explor-
ing the operational state space. The collision checking network
was trained on 1,000,000 data points (pairs of states and the
location, type, and size of each obstacle in the workspace).

Fig. 7 shows the structure learned within the latent space.
The latent space captures the intuitively important dynamics of
the problem: the robot’s position and yaw. These states most
significantly govern the humanoid’s dynamics, i.e., it is often
traveling in a straight line towards the control target. The other
dimensions of the state space, such as joint angles and velocities,
are fairly structured within the gait of the humanoid and only
vary small amounts.

For a single problem, L2RRT for the humanoid (projected into
two and three dimensions) is shown in Fig. 8. The latent search
is able to remain near the learned manifold, and the collision
checker has effectively encapsulated the obstacles. The final
trajectory is shown in Fig. 6b with the control input (the target
location) set as a half second ahead on the planned trajectory.
A video is available at goo.gl/wrm9JR. Fig. 9 details L2RRT’s
performance in terms of success rate, convergence, and collision
network confusion. After only a few hundreds of samples, the

Fig. 8. L2RRT in latent space with nodes colored by cost (blue is low cost,
red is high cost), collisions are shown in black, and the final trajectory is shown
in green.

Fig. 9. Convergence curves and collision confusion table for the humanoid
problem.

algorithm is able to solve 100% of the planning problems.
The trajectory cost again shows convergence as the number of
samples increases. The collision checking network performs
well, classifying nearly 95% correct, with only a 0.7% false
positive rate. With 1000 samples, the algorithm takes on average
15 seconds. Note we do not provide comparisons to planning
in the full state space as traditional planning approaches with
the 50 dimensional, dynamical system are intractable (unlike
the visual planning problem where an exact lower-dimensional
state was available).

VI. CONCLUSIONS

We have presented the Latent Sampling-based Motion Plan-
ning (L-SBMP) methodology, which leverages the effective-
ness of local, latent representations for robotic systems with
techniques from sampling-based motion planning (SBMP) to
compute motion plans for high-dimensional, complex systems.
In particular, this latent space is learned through an autoencoder,
a dynamics network, and a separate collision checking network,
each of which enforces the main algorithmic primitives of SBMP
on the latent space (sampling, local connections, and collision
checking). Given this latent space, we use the Learned Latent
RRT (L2RRT) algorithm to globally explore the latent space
and compute motion plans directly in it. Through two experi-
ments, one planning within visual space and one planning with
a humanoid robot, we demonstrate the methodology’s overall
generality and ability to generalize to new environments.

This letter leaves several avenues for future work. First, we
plan to investigate learning more restricted classes of dynamics
for which a steering function is available, e.g., locally-linear dy-
namics. This would allow more optimal latent space exploration
techniques. Second, we plan to investigate using unsupervised
learning to learn the collision checking network. Third, we plan
to investigate planning problems in which the topology of the
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latent space is dependent on the environment and obstacle set
specific to a planning problem, e.g., if stairs are involved for
a humanoid. Fourth, we plan to use a similar methodology
within a task and motion planning framework by state aug-
mentation in the full state space. Fifth, we plan to investigate
conditions under which theoretical guarantees for L2RRT can
be derived. Sixth, we plan to investigate how L-SBMP can
solve planning problems with solutions significantly outside of
the training operation. Finally, we plan to investigate the lim-
its of partial observability with which L-SBMP can effectively
plan. Beyond L-SBMP, the approach of learning plannable la-
tent spaces through enforced algorithmic primitives can be quite
powerful. We believe a similar methodology could be used to
learn a space directly for trajectory optimization, or instead for
lower-dimensional problems, combinatorial motion planning.
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