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Learning Navigation Behaviors End-to-End
With AutoRL

Hao-Tien Lewis Chiang

Abstract—We learn end-to-end point-to-point and path-
following navigation behaviors that avoid moving obstacles. These
policies receive noisy lidar observations and output robot linear
and angular velocities. The policies are trained in small, static envi-
ronments with AutoRL, an evolutionary automation layer around
reinforcement learning (RL) that searches for a deep RL reward
and neural network architecture with large-scale hyper-parameter
optimization. AutoRL first finds a reward that maximizes task
completion and then finds a neural network architecture that max-
imizes the cumulative of the found reward. Empirical evaluations,
both in simulation and on-robot, show that AutoRL policies do
not suffer from the catastrophic forgetfulness that plagues many
other deep reinforcement learning algorithms, generalize to new
environments and moving obstacles, are robust to sensor, actua-
tor, and localization noise, and can serve as robust building blocks
for larger navigation tasks. Our path-following and point-to-point
policies are, respectively, 23% and 26 % more successful than com-
parison methods across new environments.

Index Terms—Autonomous agents, collision avoidance, deep
learning in robotics and automation, motion and path planning.

I. INTRODUCTION

SSISTIVE robots, last-mile delivery, warehouse naviga-
A tion, and robots in offices require robust robot navigation
in dynamic environments (Fig. 1). While good methods exist
for robot navigation sub-tasks such as localization and mapping,
motion planning, and control, current local navigation methods
typically must be tuned for each new robot and environment [7].
For example, vision-based navigation is robust to noisy sensors
but typically relies on high-level motion primitives, such as “go
straight” and “turn left” that abstract away robot dynamics [29].
Robot navigation requires behaviors that are useful to existing
navigation stacks, easily transfer from simulation to physical
robots or new large-scale environments with minimum tuning,
and robustly avoid obstacles despite noisy sensors and actuators.
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(a) Narrow corridor

(b) Unstructured dynamic

Fig. 1. Navigation behaviors on a Fetch: (a) path following in a narrow corridor
(b) point to point in a dynamic environment.

We define robot navigation behaviors as intelligent agents that
depend on the robot’s sensors, actuators, dynamics and geom-
etry, without relying on foreknowledge of its environment [3].
Many navigation tasks can be accomplished using two basic
behaviors: local planning, i.e., point to point, which creates tra-
jectories from the robot’s current configuration to a given target
[12], and path following, which stays near a given guidance path
[8]. Both behaviors need to produce dynamically feasible tra-
jectories that are robust to many kinds of noise and inaccuracies,
rely only on observations coming from primitive sensors, and
avoid unexpected obstacles. In this letter, we present a reliable
method to implement these navigation behaviors by learning
end to end polices that directly map sensors to controls, and
we show that these policies transfer from simulation to physical
robots and new environments while robustly avoiding obstacles.

To do so, we rely on deep Reinforcement Learning (RL),
which has shown great progress in visual navigation [37] and
video games [28]. RL learns policies that map between observa-
tions and controls to maximize the cumulative return. Deep RL
has enabled learning tasks that have been difficult or impossible
to program manually, from matching human performance [28]
to locomotion of humanoid figures [17]. Despite the promise of
deep RL, training these policies is difficult and requires careful
consideration when selecting the reward function and choosing
the neural network architecture. Specifically, training even sim-
ple tasks can fail if rewards are sparse - that is, if the success
conditions of the true objective are hard to discover [4]; this is
true for navigation in large spaces. Reward shaping [21], [36]
addresses this problem by introducing a proxy reward function
that is less sparse than the true objective. However, poorly cho-
sen shaped rewards can lead to pathologies where agents learn
to exploit the reward function or to terminate the episode early
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(a) Training, 23 by 18m (b) Building 1, 183 by 66m

Fig. 2.
than the training, generated from real office building plans.

[31]. Designing good reward functions is well understood for
some areas (e.g., video games [28]), but for most tasks, includ-
ing navigation, it remains a black art. Similarly, selection of
neural network architecture often consists of trial and error, and
remains another source of training difficulties.

Hyperparameter tuning can improve learning behavior:
gradient-free, evolutionary methods, such as Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) [18], can transform
an algorithm that fails to converge into one that produces near-
optimal policies. To simplify deep RL training, we present Au-
toRL, which automates the search for both the shaped reward
and the neural network architecture. AutoRL combines deep
RL with gradient-free hyperparameter optimization. It takes a
parameterized reward function along with the true objective,
and then uses large-scale hyperparameter optimization to shape
the reward. With this reward fixed, it then optimizes network
layer sizes to identify the most successful policies for the given
task. Applied to point-to-point and path-following tasks, Au-
toRL learns robust policies that cope with both static and dy-
namic obstacles, even though the tasks are trained in simulation
in small environments with only static obstacles. The specific
contributions of this work are the AutoRL method as well as
point-to-point and path-following navigation policies.

We evaluate these policies in three large building environ-
ments (Fig. 2) with respect to various noise levels and a number
of moving obstacles. Our simulation results show the path fol-
lowing and point to point policies have higher success rate in
novel environments, on average 23% and 26% higher over the
baseline, respectively, and are robust to noise. In experiments on
a real robot (Fig. 1), we observe reliable obstacle avoidance in
dynamic environments and collision-free navigation along 80+
m paths.

II. RELATED WORK

Motion planning: Practical robot navigation typically uses a
layered navigation stack: given an occupancy map generated
by a mapping algorithm such as SLAM [6], a global planner
such as PRM [22] or RRT [24] finds a near-optimal path that
a local planner (e.g., [14]) executes. This “stacked” approach
has demonstrated reliable operation over long distances [26].
Typical planners for dynamic environments include Artificial
Potential Field (APF), velocity obstacle, and sampling-based
methods [9]. Many of those methods, such as DRT [8] or PEARL
[11], require perfect knowledge of obstacle position or dynam-
ics, which is difficult to obtain when the robot has limited and

(c) Building 2, 60 by 47m (d) Building 3, 134 by 93m

(a) Training and (b, c, d) evaluation environments with 40 moving obstacles (white circles). The evaluation environments are 6.8 to 30.1 times bigger

noisy sensors, like 1D lidar. Like these approaches, we assume
reasonably accurate localization, but we couple sensing directly
with controls to remove the need for knowing obstacle location
or dynamics.

Deep learning for navigation: Machine learning for naviga-
tion has seen a recent boom, particularly in point-to-point navi-
gation with vision [29], [37]. Some approaches discretize state
and action spaces to enable simple RL algorithms [1], whereas
others learn low-level controllers end to end using deep learn-
ing [7]. Our prior work on PRM-RL uses a point-to-point policy
trained with DDPG as the local planner for PRM [12]. Like
these approaches, we map from sensors to velocity control, but
we train with AutoRL, which tunes the agent’s reward and net-
work architectures to improve the policy performance and time
needed for hand-engineering. Learning by optimizing multiple
objective functions, rules, or perceptual features has proven ef-
fective for variants of the navigation problem [10]; other work
uses hierarchical RL to break the problem apart into tractable
components [5]. Unlike these methods, we automate the tun-
ing by learning the proxy reward function and neural network
architecture instead of imposing it. Some recent work features
learning based sensor to controls navigation in the presence of
moving obstacles. For example, Intention-Net [15] maps cam-
era observations and intents to controls, while Pfeiffer et al.
[32] navigate from lidar inputs. Both of those methods require
demonstrations for training, while AutoRL learns by reinforce-
ment.

Reinforcement learning with sparse rewards: Three main ap-
proaches handle sparse rewards in RL: curriculum learning,
bootstrapping, and reward shaping. Curriculum methods make
tasks progressively more difficult during training, e.g., by mov-
ing the goal further from the start in navigation [13], [20]. In
contrast, AutoRL does not change task difficulty during train-
ing. Bootstrapping allows RL policies to be initialized from
either hand-engineered polices or recorded episodes [35]. Au-
toRL starts with an uninitialized policy and trains it from scratch.
Reward shaping learns from a parameterized dense reward [30].
AutoRL is a reward-shaping method. While reward shaping
can be done with curriculum and bootstrapping [20], [35], Au-
toRL uses hyperparameter optimization rooted in evolutionary
algorithms to accomplish this. Further, curriculum learning and
bootstrapping can be applied in addition to the hyperparameter
optimization.

Hyper-parameter optimization in deep learning: AutoML
methods learn the neural network architecture for a given prob-
lem. AutoML achieves this with gradient descent [2], rein-
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forcement learning [38], and even hyper-parameter optimiza-
tion [34]. AutoRL extends the AutoML approach to RL and
subjects both the network architecture and the reward function
to hyper-parameter optimization.

III. METHODS

To learn point-to-point and path-following navigation behav-
iors, we choose continuous reinforcement learning with par-
tial state observations, which we model with Partially Observ-
able Markov Decision Process (POMDP). We model the agent
as an (O, A, D, R, ) tuple representing a partially observable
Markov decision process (POMDP) with continuous observa-
tions and actions. Observations, actions, and dynamics are deter-
mined by the robot and are common to both tasks; we describe
them in Section ITI-A. Point to point and path following share ob-
servations, actions, and dynamics, but have different objectives,
that are modeled through rewards in POMDP. Sections III-B
and III-C describe the true task objectives, specific rewards, and
additional observations specific to each behavior. Section III-D
describes the hyper-parameters of a reinforcement learning al-
gorithm, and Section III-E presents the AutoRL algorithm that
learns both the hyperparameters and the policy.

A. POMDP Setup

The observations, o = (o0;, 0,)" € O, are 6, pairs of 1-D

lidar vectors, o;, and goal set, o4, observed over the last 6,
steps. The agent is a unicycle robot and is controlled by a
2-dimensional continuous action vector, a = (v, ¢) € A, that
encodes the robot’s linear and angular velocity. The dynamics,
D, is encoded in the simulator or implicit in the real world.
The remaining factors encode the task: v € (0, 1) is a scalar
discount factor, whereas the structure of the reward R is more
complicated and we discuss it next.

The agent’s goal is to complete a true navigation objective.
For point-to-point navigation this is arriving at a goal location,
while for path following this is traversing the entire path by
reaching all its waypoints. We can formalize this problem as
learning a policy that maximizes the probability of reaching the
true objective, GG,

7~1':argm;u(]P’(G(s)\Tr)7 (1)

where P (G(s)|m) means that true objective G is reachable from
the state s under control of policy w. At the same time, RL
learns a policy that maximizes the cumulative reward. We could
use the true objective as a reward, but it is sparse, and there
are other requirements, such as dynamical feasibility, smooth
trajectories, avoiding obstacles, and sensory/motor limitations.
We can formulate these requirements as parameterized atomic
rewards which provide more timely feedback to aid learning. To
that end we represent rewards with

n,

RQT(S,G) :Zri(s,a,ﬂn), 2
i=1

where r; (s, a, 0,.,) is a parameterized atomic reward, and 8,. =
[0, - - -0, ]becomes a hyperparameter to be tuned.
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B. Point-to-Point (P2P) Task

The goal of the P2P behavior is to navigate a robot to a
goal position without collision. We assume the robot is well-
localized using traditional methods. The P2P behavior can be
used as a local planner for sampling-based planners [12] in
order to navigate large environments. We require the agent to
navigate to goals that are not within clear line of sight, but not far
enough to require higher-level knowledge of the environment.
For example, we expect it to navigate around a corner, but not
to a room in a maze of hallways.

The true objective of P2P is to maximize the probability of
reaching the goal during an episode,

Gpap(s) = I(||s — sy || < dpap), (3)

where I is an indicator function, s, is the goal pose, and dp,p the
goal size. The goal observation o, is the relative goal position in
polar coordinates, which is readily available from localization.
The reward for P2P is:

T
RBTPZP = 0’)"})2}) [Tstep T'goalDist T'collision "turning 7'clearance Tgoal]; (4)

where 7., is a constant penalty step with value 1, 7goapist 18
the negative Euclidean distance to the goal, r¢opision 1S 1 When
the agent collides with obstacles and 0 otherwise, 7yming 18 the
negative angular speed, 7¢jearance 1S the distance to the closest
obstacle, and 7,0, is 1 when the agent reaches the goal and 0
otherwise.

C. Path-Following (PF) Task

The goal of the PF behavior is to follow a guidance path
represented by a sequence of waypoints in the workspace. The
collision-free guidance path does not need to be dynamically
feasible, and can be generated by off-the-shelf path planners
like PRMs or A*, or even manually. In navigation stack terms,
PF is trajectory tracking.

Guidance paths for real-world navigation are often long (100+
m) and have many waypoints with varied separation. The varied
input size and non-uniformity pose a challenge for RL methods
using neural networks. To address this problem, we augment
the original guidance path P, with intermediate waypoints that
are linearly interpolated with a constant separation d,,s between
consecutive waypoints. The result is a new guidance path P con-
sisting of both original and new waypoints. The separation, dy,
between waypoints is a hyper-parameter that AutoRL searches
for. The waypoint w; is considered reached iff 1) the previous
waypoint w,_; is already reached and 2) the robot is within dy,
of w;.

The true objective of PF is to reach as many waypoints per
episode as possible:

Pwep L(lls — w| < dw)

1P| '
where I is an indicator function that returns 1 if waypoint w is
reached and O otherwise. The goal observation of PF, o, is a
partial path consisting of the Npaia un-reached waypoints. The
reward for PF is:

Re

GPF(S) = (5)

T
rpE = erpp [rstep Tdist Tcollision Tclearance]- (6)
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where ry.p is a penalty step with value 1. 74 is the Euclidean
distance to the first un-reached waypoint. 7opision 1S 1 when
the agent collide with obstacles and 0 otherwise. 7¢jearance 1S @
penalty with value 1 when the the agent is within dgjearace M
away from obstacles and 0 otherwise.

D. Reinforcement Learning Parametrization

With observations, action space, true objectives, and parame-
terized rewards defined, training deep RL requires selecting neu-
ral network architecture. Network architecture affects the qual-
ity of the trained agent: the capacity of the network determines
what the agent can learn. In this work, we use feed-forward
fully-connected networks and fix network depth, leaving the
size of each layer as our tunable hyperparameter. However, the
hyperparameter tuning technique can be applied to any network
architecture.

Let FF(0), for 6 € R" be a feed-forward fully-connected
neural network with RELU units and n layers, where the i'"
layer contains 6; neurons. Let us denote the learnable weights
of the feed-forward network F'F'(0) with Wj. Let

RL(Actor(6,),Critic(0g), R(0,))

be a parameterized actor-critic reinforcement learning algo-
rithm that learns policy 7 (s|Wr) = FF(0,) and critic Q(s,
a|lWg) = FF(0¢). Actor and critics network architectures are
parameterized with 6, 0 , and reward function, I given in Eq.
(2), parameterized with vector ,.. Let Obj(0,,0q,0,|G) € R
be the true objective the trained actor 7w (s| W) achieved for the
corresponding RL(Actor(0r), Critic(0q), R(6,)).

E. AutoRL

We automate RL hyperparameter selection with the AutoRL
evolutionary search procedure, described in Algorithms 1 and 2.
We split shaping in two phases, reward shaping (Line 1, Alg. 1)
and network shaping (Line 2), because the search space grows
exponentially in the number of tuning parameters. First, we find
the best reward function w.r.t. task’s true objective for a fixed
actor and critic. Then, we find the best actor and critic w.r.t. to
the previously selected reward (Algorithm 1).

For reward shaping, actor and critic network shapes are fixed
sizes O, 0Q € I(Nyin, Mgy ) Where I(a, b) is a closed inter-
val in n-dimensional space bounded by points a, b € R". We
run n, trials, at most n,,. in parallel (Line 3, Alg. 2). At each
trial ¢, we initialize the reward function 6, (7) from I(0,1)",
based on all completed trials according to a black-box gradient-
free optimization algorithm [18] (Line 5). The first n,,. trials
select reward weights randomly. Next, we train asynchronous
instances RL(Actor(05), Critic(6g), R(6..)) (Line 13). Af-
ter each agent is trained, its policy is evaluated according to the
true task objective Eq. (1) (Line 14). For P2P that is Eq. (3) and
for PF it is Eq. (5). Upon completion of all n, trials, the best
reward (Line 17)

6, = argmax Obj(0,,00,0.)|G) @)

corresponds to the trial with the highest true objective.
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Algorithm 1: AutoRL.
Output: 7(s|Wp, ): Trained policy.
1: /* Select best reward.*/
_,0,.,_,_— HPSelector(0,, = None)
2: /* Select best NN architecture. */
7, _ O, 05 — HPSelector(6,)
3: return 7

Algorithm 2: HPSelector: Hyper-parameter selector.

Property: n,: Num. of generations (trials).
Property: n,,.: Num. of parallel trials.
Property: n,,;,,, 7,4, Min. and max. of neurons per layer.
Input: 0,. : Reward hyper-parameters.
Output: 7 : Policy trained with the selected
_hyper-parameters.
Output: 6,. : Selected reward hyper-parameters.
Output: 0, 0¢ : Selected NN architecture
hyper-parameters.
1: T « () /* Initialize the experience. */
2: Initialize NN architecture: np,ip, < 0, 0 < Mgy
3: for i =1, - ny running n,, trials in parallel. do
4: if 0, is None /* Tune rewards */ then

5 0. — Select(min = 0,max = 1,T) with [18]
6: 0, 0&, « 05, Og /* NN hyper-parameters are
fixed.*/

7. objt, « true objective (Eq. (3) or Eq. (5))

8: else

9: 0. — 0, /* Reward hyper-parameters are fixed. */
10: 0, 022 — Select(Myin, M az, T') with [18]
11: objt, < cumulative reward.
12:  endif

13/« Train the agent with the selected
hyper-parameters. x/ w' = RL(Actor(0'.), Critic
(8),).7(5.6}))

14: ' « Evaluate 7' w.r.t. objy, objective function.

15: T <—TuU(e,n',8,,05,6)/* Save the trial. */

16: end for

17 /* Select best hyper-parameters according to Eq. (7) or

). */ 7, 0,, 0, 0~Q —argmaxeer T

18: return 7, 0,., 0,0, /* Eq. (9) */

Next, we repeat a similar process to find the best actor and
critic architecture w.r.t. to 6, (Line 2, Alg. 1). In this case,
the optimization objective is to maximize the cumulative re-
ward (Line 11, Alg. 2). This time, at each trial we train asyn-
chronously RL(Actor(65.), Critic(03), R(6,)) and evaluate
the objective w.r.t. Eq. (2). For P2P that is Eq. (4), and for PF it is
Eq. (6). Lastly the best actor and critic architecture corresponds
to the trial with the best return,

0, 6y = argmax Obj(0%.0q",6,), ®)
J
(Line 17). The final policy trained by AutoRL is
#(s|Wj_ ) = RL(Actor(0r), Critic(0q), R(6,))  (9)
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Algorithm 2 scales linearly with the number of trials. It is
important to note that the number of concurrent trials, n,,.,
needs to be much smaller than the total number of trials, n,, in
order for the algorithm to have enough completed experience
when selecting the next set of parameters in Lines 5 and 10.
If there are no completed trials, the parameters are randomly
selected Overall the Algorithm requires Ny processors, and
run

IV. RESULTS

A. Setup

The training environment, generated from a real building floor
plan, is 23 m by 18 m and contains no moving obstacles (Fig. 2a).
The simulated differential drive robot a point mass, with a 64-
beam 1D lidar with 220 degrees field of view with Gaussian
distributed noise N'(0, oLigar). The robot’s action space is the
linear and angular velocities with bounds of [—0.2, 1.0] m/s and
[—1.0, 1.0] radian/s, respectively. The details of our noise model
are in the supplementary materials.

Actor and critic are three-layers deep for both tasks. We
choose wide and shallow feed-forward fully-connected net-
works, because their fast inference time makes them feasible
for on-board high frequency robot control. The critic consists
of a two-layer observation embedding joined with the action
network by two fully connected layers. We select DDPG for
the learning algorithm, and Vizier [16] with CMA-ES [18] for
hyperparameter tuning.

We compare P2P agent with vanilla hand-tuned DDPG [25],
artificial potential fields (APF) [23], Dynamic Window Ap-
proach (DWA) [14], and behavior cloning (BC) [33]. Behavior
cloning uses the same neural network architecture as learned
with AutoRL, but relies on a supervised loss instead of a re-
ward. The PF agent is compared with guidance paths generated
with PRMs [22] with straight line local planner, and combined
vanilla DDPG, APF, and DWA, to guide the robot, resulting in
methods PRM-RL [12], PRM-APF [8], and PRM-guided DWA,
denoted as PRM-DWA [14*] to differentiate from DWA without
a guidance path. We test the PF and P2P policies in three previ-
ously unseen large environments (Figs. 2b, 2c, 2d). For the P2P
policy, the start and goal are randomly selected to be between
5 and 10 meters apart. For the PF, the starts and goals are ran-
domly chosen, requiring at least 35 meters Euclidean distance
between start and goal.

B. Training

We train the P2P and PF agents for 1000 trials, running 100
agents in parallel, each for 5 million training steps. Each agent
takes about 12 hours to train, with the complete AutoRL run
completing in several days. For reproducibility, the supplemen-
tary materials contain the parameters found by AutoRL.

Fig. 3 shows the impact of the AutoRL on the PF task. Across
both reward and network shaping there are certain parameter
values where the agent does not perform well (Figs. 3a and 3c),
although during the network shaping there are fewer bad trials.
The learning curve of the non-shaped objective resembles the
one depicted in Fig. 3b. The best agent after reward shaping
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Fig. 4. Success rates for PF and P2P tasks in three environments.

(Fig. 3b) shows signs on catastrophic forgetting that plagues
DDPG training. Notice, that the best agent after both shaping
phases (Fig. 3d) does not exhibit such forgetfulness, and the
training could have been terminated sooner. The PF AutoRL
policy achieves a true objective of 0.56, while the non-shaped
policy reaches an objective of 0.26. The P2P agent trained with
AutoRL has training objective of 0.90, while the hand-tuned
one is 0.54. This is a promising result for the utility of AutoRL.

C. Generalization to New Environments

1) PF: AutoRL has near perfect success rate, 98.7% on av-
erage, across all three environments (Fig. 4 a), and is the only
method that can transfer to unseen, large, real building sized
environments. PF with AutoRL is 11% more successful than
hand tuned policy that has average success rate of 88.3%; and
23% more successful than best non-learned baseline (PRM-
DWA with 80% success rate). PRM-APF is consistently under
performing. The primary failure causes for both PRM-APF and
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(a) AutoRL

(b) Handed tuned DDPG

Fig. 5. PF policy sample trajectories (red) and guidance paths (black) found
by (a) AutoRL and (b) hand-tuned RL.

PRM-DWA are wall collisions and getting stuck in a local min-
imum, especially when the guidance path generated by PRM is
close to obstacles, which creates a local minimum [8]. PRM-RL
performs worse than PRM-DWA and AutoRL, since it does not
use hyperparameter tuning.

Curiously, the hand-tuned policy creates longer trajectories
than the AutoRL one. Inspecting the trajectories (Fig. 5), it is
clear that DDPG learns completely different behaviors under
the two parameterizations. The AutoRL policy exhibits smooth,
forward-moving behavior while the hand-tuned policy alternates
between forward and reverse motion, resulting in a twirling
behavior with longer paths. Since the 220 degree field of view
lidar cannot detect obstacles in the back, the twirling behavior
has a lower success rate.

2) P2P: Fig. 4 b shows that P2P’s generalization results are
consistent with path following’s. The AutoRL policy’s success
rate of 89% is highest (on average 71%, 26%, and 27% higher
than APF, DWA, and BC respectively) across all environments.
AutoRL exhibits smooth forward motion, while the failure cases
are mostly due to complex static obstacles. Once again, despite
promising success rate of 86.5%, the hand-tuned policy exhibits
twirling, leading to high path lengths and subpar performance
in noisy conditions.

D. Moving Obstacle Avoidance

We evaluate the shaped PF and P2P policies in a large envi-
ronment (Fig. 2¢) among up to 40 moving obstacles. The moving
obstacles motion follows the social force model (SFM) [19] to
mimic pedestrian motion.

1) PF: AutoRL policy outperforms hand-tuned DPPG and
both PRM-APF and PRM-DWA in all numbers of obstacles
(Fig. 6a). Note that although SFM avoids collision with the
robot, simply executing the path using PRM-APF without re-
acting to obstacles (no repulsive potential) results in no success.
This implies the robot must also partake in collision avoidance
with moving obstacles. PRM-DWA can avoid moving obsta-
cles and its performance is steady as the number of obstacles
increases.

AutoRL PF performs uniformly across path guidance lengths
up to 80 meters, and decreases slightly in the presence of moving
obstacles, while PRM-APF degrades rapidly with guidance path
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length (Figs. 6b and 6¢). PRM-DWA'’s success is also uniform
across the guidance path lengths, but is lower than AutoRL’s.

2) P2P: P2P policy’s success degrades with the goal dis-
tance increase (Fig. 7) and its success rate is not affected with
the number of obstacles (Fig. 7 b). Hand tuned RL, APF’s and
DWA'’s performance degrade rapidly with goal distance as well,
which indicates that the main P2P failure cause, regardless of
its implementation, is the inability to navigate among complex
static obstacles rather than collision with moving obstacles. This
is not surprising, since local planners are not designed to avoid
complex static obstacles.

E. Robustness to Noise

Fig. 8 isolates one noise source at a time in order to investigate
the impact on performance in an environment with 20 moving
obstacles. Results show that PF and P2P policies are resilient
to noise, even when the lidar noise is more than three times
the radius of the robot (gjqar = 1 m). On the other hand, lidar
noise heavily influences the success of APF and DWA (for both
PRM and local planner variants). This is expected since obstacle
clearance is used to compute the repulsive potential for APF and
compute the objective function of DWA. In addition, the action
of APF is computed by taking the gradient of the potential; such
a greedy approach often guides the robot to collision or local
minima.

F. Physical Robot Experiments

First, we investigate the difference between simulation and
reality when PF and P2P policies were deployed on the Fetch
robot [27]. For the PF task (Fig. 9 a), we manually specify a
sequence of waypoints (black dots) as the guidance path (80.6
m in length). For the P2P task (Fig. 9 a) the start and goal are
about 13.4 m apart. The robot reaches the goal without collision
in all three runs, navigating roughly 240 m without collision.
Figs. 9 aand 9 b (magenta) show one of robot trajectories. These
trajectories are very close to the simulated ones (green for PF
and red for P2P) but exhibit more turning than simulation, likely
caused by the delay between sensing and action execution.

Next, we test the policy’s performance in a very narrow corri-
dor (only 0.3 m wider than the robot, which is 0.3 m in diameter),
and with moving obstacles (Fig. 1a), qualitatively over four tri-
als. The enclosed video demonstrates the Fetch robot executing
these policies. The robot reliably navigates in the corridor all
four times. We also execute the P2P policy in a highly unstruc-
tured dynamic environment with a person playing with a dog
(Fig. 1b). The robot stops and avoids obstacles reliably. Notice
in the attached video how the agent adapts when blocked, moves
away from the goal, and around obstacles. The only failure case
we observed was caused by the obstacles undetectable by the
1D lidar such as human feet, which are below lidar’s field of
view.

V. DISCUSSION

AutoRL is not sample efficient: it took 12 days to train 1000
agents. However, AutoRL learns high-quality navigation be-
haviors that transfer well across environments and are easy to



CHIANG et al.: LEARNING NAVIGATION BEHAVIORS END-TO-END WITH AUTORL 2013
@—® Ours Ak AL &—A [8] ¥ [14%] N Ours E RL N [14+] EEN OCurs N RL N [14+]
1_0_I 1 1 i [ 10_IIIIIIIIIIIIIIIIII_ 10_IIIIIIIIIIIIIIIIII_
g 0-8-%3‘ z 08— - 2 o0s- -
= 0.6 - - E 0.6 — - E 0.6 — -
@ 04 - - 2 0a- - 2 g4 - -
§ 0z2-& ~ e & a & 0.2 - - R 02 - -
0.0 -, ' | ' 1= LS e e e e e I I g Lo e e e O e S A B B -
o 10 20 30 40 0-20 20-40 40-60 60-80 80-100 0-20 20-40 40-60 60-80 80-100
Number of Obstacles Guidance path length (m) Guidance path length (m)
(a) Path following (b) 0 moving obstacles (c) 20 moving obstacles
Fig. 6. PF success rate over (a) number of moving obstacles, (b) guidance path length with no obstacles, and (c) guidance path length with 20 moving obstacles
for AutoRL (Ours), hand tuned RL [25], PRM-APF [8], and PRM-DWA [14]*.
- Ours [23] 14 . mrs [23] . [14) 50
9 0.8 - 9 0.8 -
& 06 - & 06 - 40
ﬁ o I I I ﬁ - I I I
8 02- S 02
3ol |||| 3ol I|||
5 5—10 10- 15 15-, 20 5 5—10 10- 15 15- 20 §
Goal Distance Range (m) Goal Distance Range (m) = 20
(a) P2P, 0 moving obstacles (b) P2P, 20 moving obstacles
10
Fig. 7. P2P policy: AutoRL (Ours), hand tuned RL [25], APF [23], and DWA
[14] success rates (a) without and (b) with 20 moving obstacles over goal <
distance. 0 10 20 30 40 % 10 20 30 40
X (m) X (m)
@@ Ours *~—* RL &4 [8] ¥ [14%] &9 Ours % RL &4 [23] ¥ [14] (a) Path fOHOWing (b) p2p
10 - 1 1 I I 1 1 - 10 - 1 1 I 1 1 1 -
r—r—o o . . . - oy g
& o8- - & o8- - Fig.9. (a)Path Following and (b) P2P on a real robot in an office building. The
< 06- ¥ A - © 06 - ,&::L_, - actual robot trajectories (magenta), the guidance path (black) and the trajectory
? 04- - g 04- ey = in simulation (green for Path Following and red for P2P) overlaid over the 2D
3 02- L - F 02- - lidar map.
0o- | | | | - 0o- | I | ' -
00 02 04 06 08 10 00 02 04 06 08 10
tidar Noise (m) tidar Noise (m) and learned, highlights the benefits of end-to-end learning. The
(a) PF lidar noise (b) P2P lidar noise hand-tuned DDPG agent, although it produces suboptimal tra-
L jectories, is still robust to noise (8). The traditional APF and

10- [ | | ! (- 10- ! [ ! ! ! oo

eoe—o————o

g o8- e g o8- -

€ 06 - a - € 06 - -

§oa- & - Boa- pu—a .

3 02- _ 3 02- -

00- [ 1 | l - 00- [ l l l -
00 02 04 06 08 10 00 02 04 06 08 10

Localization Noise (m) Localization Noise (m)

(c) PF localization noise (d) P2P localization noise

@@ Ours *—* RL A&A [§] V-V [14%] ®® Qurs ** RL &4 [23] V¥ [14]
» | [ | | | | 10- ! [ | ' ' -

@ _ _ U 08 - -

5 06 - - i ————————— |

0 0

g oa- 4 - S 04- 4 _

o o

& 02- - 3 02- _
00- | ' ' | [ 00- | ' ' | [

00 02 04 06 08 10 00 02 04 06 08 10

Process Noise (m) Process Noise (m/s, rad/s)

(e) PF process noise (f) P2P process noise

Fig. 8.  Success rate over (top) lidar, (middle) localization noise, and (bottom)
process noise with 20 moving obstacles. (left) Path Following compared to the
hand tuned RL, PRM-APF [8] and PRM-DWA [14]*. (right) P2P compared to
hand tuned RL [25], APF [23] and DWA [14] navigating from random starts to
goals, 5-10 m apart.

deploy on-robot. For navigation agents, the extra training cost
is justified by better quality policies.

End-to-end learning with AutoRL effectively creates tightly-
coupled perception, planning and controls. The end-to-end
POMDP setup enables robustness to noise. The comparison
with the agents on the opposite side of the spectrum, traditional

DWA, not designed for tight integration between the controls
and sensor, are brittle in the presence of noise.

Robustness to noise has an additional perk of overcoming
guidance path imperfections. We have observed during hand-
tuned training that path following is very sensitive to appropriate
waypoint spacing and waypoint radius. It is only after including
these parameters in reward tuning that the path-following agents
learn high-quality behaviors. This is likely because the tuning
finds the optimal distance from a waypoint w.r.t. to robot’s noise
and abilities, essentially deciding to give a credit to reaching a
waypoint for what is feasible on that particular robot.

The P2P policy found by AutoRL is more robust to local
minima than APF and DWA, likely because the agent learned
that following a wall usually leads to completing the goal. As
demonstrated in the enclosed video, the agent is also willing to
move away from the goal to avoid local minima. The failure
point of P2P policy remains its inability to avoid large-scale
local minima, such as moving from one room to another, which
it was not designed to do.

VI. CONCLUSIONS

This letter presents AutoRL, an evolutionary automation layer
around Deep Reinforcement Learning that, using large-scale hy-
perparameter optimization, selects reward and neural network
architecture that are best for a given goal-oriented task. AutoRL
is used to learn two navigation building blocks, P2P and PF
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end-to-end behaviors. The resulting policies, although compu-
tationally expensive to train, exhibit more desirable behaviors
compared to RL with hand-crafted hyperparameters and non-
learned baselines. They generalize to new environments with
moving obstacles, are robust to noise and are deployed to a
physical robot without tuning. In the future, we plan to evaluate
AutoRL on kinodynamic robots and high dimensional robots
such as mobile manipulators.
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